Search results for: comprehensive model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19166

Search results for: comprehensive model

19046 Preventive Behaviors of Exposure to ‎Secondhand Smoke among Women: A Study Based on the Health Belief Model

Authors: Arezoo Fallahi

Abstract:

Introduction: Exposure to second-hand smoke is an important global health problem and threatens the health of people, especially children and women. The aim of this study was to determine the effect of education based on the Health Belief Model on preventive behaviors of exposure to secondhand smoke in women. Materials and Methods: This experimental study was performed in 2023in Sanandaj, west of Iran. Seventy-four people were selected by simple random sampling and divided into an intervention group (37 people) and a control group (37 people). Data collection tools included demographic characteristics and a second-hand smoke exposure questionnaire based on the Health Beliefs Model. The training in the intervention group was conducted in three one-hour sessions in the comprehensive health service centers in the form of lectures, pamphlets, and group discussions. Data were analyzed using SPSS software version 21 and statistical tests such as correlation, paired t-test, and independent t-test. Results: The intervention and control groups were homogeneous before education. They were similar in terms of mean scores of the Health Belief Model. However, after an educational intervention, some of the scores increased, including the mean perceived sensitivity score (from 17.62±2.86 to 19.75±1.23), perceived severity score (28.40±4.45 to 31.64±2), perceived benefits score (27.27±4.89 to 31.94±2.17), practice score (32.64±4.68 to 36.91±2.32) perceived barriers from 26.62±5.16 to 31.29±3.34, guide for external action (from 17.70±3.99 to 22/89 ±1.67), guide for internal action from (16.59±2.95 to 1.03±18.75), and self-efficacy (from 19.83 ±3.99 to 23.37±1.43) (P <0.05). Conclusion: The educational intervention designed based on the Health Belief Model in women was effective in performing preventive behaviors against exposure to secondhand smoke.

Keywords: women, health behaviour, smoke, belive

Procedia PDF Downloads 54
19045 Prediction of Marijuana Use among Iranian Early Youth: an Application of Integrative Model of Behavioral Prediction

Authors: Mehdi Mirzaei Alavijeh, Farzad Jalilian

Abstract:

Background: Marijuana is the most widely used illicit drug worldwide, especially among adolescents and young adults, which can cause numerous complications. The aim of this study was to determine the pattern, motivation use, and factors related to marijuana use among Iranian youths based on the integrative model of behavioral prediction Methods: A cross-sectional study was conducted among 174 youths marijuana user in Kermanshah County and Isfahan County, during summer 2014 which was selected with the convenience sampling for participation in this study. A self-reporting questionnaire was applied for collecting data. Data were analyzed by SPSS version 21 using bivariate correlations and linear regression statistical tests. Results: The mean marijuana use of respondents was 4.60 times at during week [95% CI: 4.06, 5.15]. Linear regression statistical showed, the structures of integrative model of behavioral prediction accounted for 36% of the variation in the outcome measure of the marijuana use at during week (R2 = 36% & P < 0.001); and among them attitude, marijuana refuse, and subjective norms were a stronger predictors. Conclusion: Comprehensive health education and prevention programs need to emphasize on cognitive factors that predict youth’s health-related behaviors. Based on our findings it seems, designing educational and behavioral intervention for reducing positive belief about marijuana, marijuana self-efficacy refuse promotion and reduce subjective norms encourage marijuana use has an effective potential to protect youths marijuana use.

Keywords: marijuana, youth, integrative model of behavioral prediction, Iran

Procedia PDF Downloads 554
19044 The Development and Testing of Greenhouse Comprehensive Environment Control System

Authors: Mohammed Alrefaie, Yaser Miaji

Abstract:

Greenhouses provide a convenient means to grow plants in the best environment. They achieve this by trapping heat from the sunlight and using artificial means to enhance the environment of the greenhouse. This includes controlling factors such as air flow, light intensity and amount of water among others that can have a big impact on plant growth. The aim of the greenhouse is to give maximum yield from plants possible. This report details the development and testing of greenhouse environment control system that can regulate light intensity, airflow and power supply inside the greenhouse. The details of the module development to control these three factors along with results of testing are presented.

Keywords: greenhouse, control system, light intensity, comprehensive environment

Procedia PDF Downloads 484
19043 AutoML: Comprehensive Review and Application to Engineering Datasets

Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili

Abstract:

The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.

Keywords: automated machine learning, uncertainty, engineering dataset, regression

Procedia PDF Downloads 62
19042 A Multi-Criteria Decision Making (MCDM) Approach for Assessing the Sustainability Index of Building Façades

Authors: Golshid Gilani, Albert De La Fuente, Ana Blanco

Abstract:

Sustainability assessment of new and existing buildings has generated a growing interest due to the evident environmental, social and economic impacts during their construction and service life. Façades, as one of the most important exterior elements of a building, may contribute to the building sustainability by reducing the amount of energy consumption and providing thermal comfort for the inhabitants, thus minimizing the environmental impact on both the building and on the environment. Various methods have been used for the sustainability assessment of buildings due to the importance of this issue. However, most of the existing methods mainly concentrate on environmental and economic aspects, disregarding the third pillar of sustainability, which is the social aspect. Besides, there is a little focus on comprehensive sustainability assessment of facades, as an important element of a building. This confirms the need of developing methods for assessing the sustainable performance of building façades as an important step in achieving building sustainability. In this respect, this paper aims at presenting a model for assessing the global sustainability of façade systems. for that purpose, the Integrated Value Model for Sustainable Assessment (MIVES), a Multi-Criteria Decision Making model that integrates the main sustainability requirements (economic, environmental and social) and includes the concept of value functions, used as an assessment tool.

Keywords: façade, MCDM, MIVES, sustainability

Procedia PDF Downloads 346
19041 Model Driven Architecture Methodologies: A Review

Authors: Arslan Murtaza

Abstract:

Model Driven Architecture (MDA) is technique presented by OMG (Object Management Group) for software development in which different models are proposed and converted them into code. The main plan is to identify task by using PIM (Platform Independent Model) and transform it into PSM (Platform Specific Model) and then converted into code. In this review paper describes some challenges and issues that are faced in MDA, type and transformation of models (e.g. CIM, PIM and PSM), and evaluation of MDA-based methodologies.

Keywords: OMG, model driven rrchitecture (MDA), computation independent model (CIM), platform independent model (PIM), platform specific model(PSM), MDA-based methodologies

Procedia PDF Downloads 459
19040 Analyzing the Causes Behind Gas Turbine Blade Failure: A Comprehensive Case Study

Authors: Med. A. Djeridane, M. Ferhat, H. A. Benhorma, O. Bouledroua

Abstract:

This research is dedicated to exploring the failure of a turbine blade within a gas transportation plant, with a primary focus on conducting a comprehensive examination through advanced metallurgical and mechanical analyses of the identified failed blade. Crafted from the nickel superalloy Inconel IN738LC, the turbine engine had accumulated approximately 61,000 operational hours before the blades failed, causing severe damage to the transportation plant and necessitating a prolonged shutdown. The investigative procedure commenced with an in-depth visual inspection of the blade surfaces, succeeded by fractography analysis of the fracture surfaces, microstructural investigations, chemical analysis, and hardness measurements. The findings unveiled distinctive fatigue marks on the fracture surface. Critical microstructural changes were identified as a consequence of the blade's operation at high temperatures. The investigation determined that the crack initiation resulted from coating damage at the leading edge, subsequently propagating through fatigue. Ultimately, due to a reduction in cross-sectional area, the fracture was completed. This comprehensive analysis sheds light on the intricate factors contributing to turbine blade failure and offers valuable insights for enhancing operational reliability in similar environments.

Keywords: gas turbine, blade failure, TCP phases, fatigue, quantitative analysis

Procedia PDF Downloads 61
19039 Orbiting Intelligence: A Comprehensive Survey of AI Applications and Advancements in Space Exploration

Authors: Somoshree Datta, Chithra A. V., Sandeep Nithyanandan, Smitha K. K.

Abstract:

Space exploration has always been at the forefront of technological innovation, pushing the boundaries of human knowledge and capabilities. In recent years, the integration of Artificial Intelligence (AI) has revolutionized the field, offering unprecedented opportunities to enhance the efficiency, autonomy and intelligence of space missions. This survey paper aims to provide a comprehensive overview of the multifaceted applications of AI in space exploration, exploring the evolution of this synergy and its impact on mission success, scientific discovery, and the future of space endeavors. Indian Space Research Organization (ISRO) has achieved great feats in the recent moon mission (Chandrayaan-3) and sun mission (Aditya L1) by using artificial intelligence to enhance moon navigation as well as help young scientists to study the Sun even before the launch by creating AI-generated image visualizations. Throughout this survey, we will review key advancements, challenges and prospects in the intersection of AI and space exploration. As humanity continues its quest to explore the cosmos, the integration of AI promises to unlock new frontiers, reshape mission architectures, and redefine our understanding of the universe. This survey aims to serve as a comprehensive resource for researchers, engineers and enthusiasts interested in the dynamic and evolving landscape of AI applications in space exploration.

Keywords: artificial intelligence, space exploration, space missions, deep learning

Procedia PDF Downloads 34
19038 Material Characterization and Numerical Simulation of a Rubber Bumper

Authors: Tamás Mankovits, Dávid Huri, Imre Kállai, Imre Kocsis, Tamás Szabó

Abstract:

Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. Rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. In this paper, a comprehensive investigation is introduced including laboratory measurements, mesh density analysis and complex finite element simulations to obtain the load-displacement curve of the chosen rubber bumper. Contact and friction effects are also taken into consideration. The aim of this research is to elaborate an FEM model which is accurate and competitive for a future shape optimization task.

Keywords: rubber bumper, finite element analysis, compression test, Mooney-Rivlin material model

Procedia PDF Downloads 509
19037 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time

Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani

Abstract:

This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.

Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management

Procedia PDF Downloads 85
19036 A Comparative Study of the Proposed Models for the Components of the National Health Information System

Authors: M. Ahmadi, Sh. Damanabi, F. Sadoughi

Abstract:

National Health Information System plays an important role in ensuring timely and reliable access to Health information which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, by using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system for better planning and management influential factors of performance seems necessary, therefore, in this study, different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process, and output. In this context, search for information using library resources and internet search were conducted and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system, Lippeveld, Sauerborn, and Bodart Model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008 and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities, and equipment. In addition, in the ‘process’ section from three models, we pointed up the actions ensuring the quality of health information system and in output section, except Lippeveld Model, two other models consider information products, usage and distribution of information as components of the national health information system. Conclusion: The results showed that all the three models have had a brief discussion about the components of health information in input section. However, Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process, and output.

Keywords: National Health Information System, components of the NHIS, Lippeveld Model

Procedia PDF Downloads 422
19035 The Influence of the Concentration and Temperature on the Rheological Behavior of Carbonyl-Methylcellulose

Authors: Mohamed Rabhi, Kouider Halim Benrahou

Abstract:

The rheological properties of the carbonyl-methylcellulose (CMC), of different concentrations (25000, 50000, 60000, 80000 and 100000 ppm) and different temperatures were studied. We found that the rheological behavior of all CMC solutions presents a pseudo-plastic behavior, it follows the model of Ostwald-de Waele. The objective of this work is the modeling of flow by the CMC Cross model. The Cross model gives us the variation of the viscosity according to the shear rate. This model allowed us to adjust more clearly the rheological characteristics of CMC solutions. A comparison between the Cross model and the model of Ostwald was made. Cross the model fitting parameters were determined by a numerical simulation to make an approach between the experimental curve and those given by the two models. Our study has shown that the model of Cross, describes well the flow of "CMC" for low concentrations.

Keywords: CMC, rheological modeling, Ostwald model, cross model, viscosity

Procedia PDF Downloads 406
19034 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 61
19033 3D Model of Rain-Wind Induced Vibration of Inclined Cable

Authors: Viet-Hung Truong, Seung-Eock Kim

Abstract:

Rain–wind induced vibration of inclined cable is a special aerodynamic phenomenon because it is easily influenced by many factors, especially the distribution of rivulet and wind velocity. This paper proposes a new 3D model of inclined cable, based on single degree-of-freedom model. Aerodynamic forces are firstly established and verified with the existing results from a 2D model. The 3D model of inclined cable is developed. The 3D model is then applied to assess the effects of wind velocity distribution and the continuity of rivulets on the cable. Finally, an inclined cable model with small sag is investigated.

Keywords: 3D model, rain - wind induced vibration, rivulet, analytical model

Procedia PDF Downloads 490
19032 A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis

Authors: Sukrat Sinha, Abhay Kumar, Shanthy Sundaram

Abstract:

The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target.

Keywords: bioinformatics, genome assembly, leishmania activated protein kinase c (lack), next-generation sequencing

Procedia PDF Downloads 338
19031 A Conceptual Study for Investigating the Preliminary State of Energy at the Birth of Universe and Understanding Its Emergence From the State of Nothing

Authors: Mahmoud Reza Hosseini

Abstract:

In this study, a comprehensive energy model is proposed and utilized to study the birth of universe from the state of nothing. The state of nothing main specification is introduced and its role in the creation of universe is studied. In addition, the current research work provides a different approach to some of the ongoing paradox in cosmology such as the singularity at the beginning of big bang, and the expansion of universe at an accelerated rate. Also, the possible mechanism responsible for the creation of space-time domain is investigated.

Keywords: big bang, cosmic inflation, birth of universe, energy creation, universe evolution

Procedia PDF Downloads 51
19030 Factors Affecting Slot Machine Performance in an Electronic Gaming Machine Facility

Authors: Etienne Provencal, David L. St-Pierre

Abstract:

A facility exploiting only electronic gambling machines (EGMs) opened in 2007 in Quebec City, Canada under the name of Salons de Jeux du Québec (SdjQ). This facility is one of the first worldwide to rely on that business model. This paper models the performance of such EGMs. The interest from a managerial point of view is to identify the variables that can be controlled or influenced so that a comprehensive model can help improve the overall performance of the business. The EGM individual performance model contains eight different variables under study (Game Title, Progressive jackpot, Bonus Round, Minimum Coin-in, Maximum Coin-in, Denomination, Slant Top and Position). Using data from Quebec City’s SdjQ, a linear regression analysis explains 90.80% of the EGM performance. Moreover, results show a behavior slightly different than that of a casino. The addition of GameTitle as a factor to predict the EGM performance is one of the main contributions of this paper. The choice of the game (GameTitle) is very important. Games having better position do not have significantly better performance than games located elsewhere on the gaming floor. Progressive jackpots have a positive and significant effect on the individual performance of EGMs. The impact of BonusRound on the dependent variable is significant but negative. The effect of Denomination is significant but weakly negative. As expected, the Language of an EGMS does not impact its individual performance. This paper highlights some possible improvements by indicating which features are performing well. Recommendations are given to increase the performance of the EGMs performance.

Keywords: EGM, linear regression, model prediction, slot operations

Procedia PDF Downloads 257
19029 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 177
19028 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 744
19027 Back to Basics: Redefining Quality Measurement for Hybrid Software Development Organizations

Authors: Satya Pradhan, Venky Nanniyur

Abstract:

As the software industry transitions from a license-based model to a subscription-based Software-as-a-Service (SaaS) model, many software development groups are using a hybrid development model that incorporates Agile and Waterfall methodologies in different parts of the organization. The traditional metrics used for measuring software quality in Waterfall or Agile paradigms do not apply to this new hybrid methodology. In addition, to respond to higher quality demands from customers and to gain a competitive advantage in the market, many companies are starting to prioritize quality as a strategic differentiator. As a result, quality metrics are included in the decision-making activities all the way up to the executive level, including board of director reviews. This paper presents key challenges associated with measuring software quality in organizations using the hybrid development model. We introduce a framework called Prevention-Inspection-Evaluation-Removal (PIER) to provide a comprehensive metric definition for hybrid organizations. The framework includes quality measurements, quality enforcement, and quality decision points at different organizational levels and project milestones. The metrics framework defined in this paper is being used for all Cisco systems products used in customer premises. We present several field metrics for one product portfolio (enterprise networking) to show the effectiveness of the proposed measurement system. As the results show, this metrics framework has significantly improved in-process defect management as well as field quality.

Keywords: quality management system, quality metrics framework, quality metrics, agile, waterfall, hybrid development system

Procedia PDF Downloads 176
19026 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy

Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni

Abstract:

This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.

Keywords: deep seated gravitational slope deformation, Italy, landslide, numerical modeling

Procedia PDF Downloads 365
19025 Comprehensive Review of Adversarial Machine Learning in PDF Malware

Authors: Preston Nabors, Nasseh Tabrizi

Abstract:

Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.

Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion

Procedia PDF Downloads 40
19024 A System Dynamic Based DSS for Ecological Urban Management in Alexandria, Egypt

Authors: Mona M. Salem, Khaled S. Al-Hagla, Hany M. Ayad

Abstract:

The concept of urban metabolism has increasingly been employed in a diverse range of disciplines as a mean to analyze and theorize the city. Urban ecology has a particular focus on the implications of applying the metabolism concept to the urban realm. This approach has been developed by a few researchers, though it has rarely if ever been used in policy development for city planning. The aim of this research is to use ecologically informed urban planning interventions to increase the sustainability of urban metabolism; with special focus on land stock as a most important city resource by developing a system dynamic based DSS. This model identifies two critical management strategy variables for the Strategic Urban Plan Alexandria SUP 2032. As a result, this comprehensive and precise quantitative approach is needed to monitor, measure, evaluate and observe dynamic urban changes working as a decision support system (DSS) for policy making.

Keywords: ecology, land resource, LULCC, management, metabolism, model, scenarios, system dynamics, urban development

Procedia PDF Downloads 380
19023 Vertebrate Model to Examine the Biological Effectiveness of Different Radiation Qualities

Authors: Rita Emília Szabó, Róbert Polanek, Tünde Tőkés, Zoltán Szabó, Szabolcs Czifrus, Katalin Hideghéty

Abstract:

Purpose: Several feature of zebrafish are making them amenable for investigation on therapeutic approaches such as ionizing radiation. The establishment of zebrafish model for comprehensive radiobiological research stands in the focus of our investigation, comparing the radiation effect curves of neutron and photon irradiation. Our final aim is to develop an appropriate vertebrate model in order to investigate the relative biological effectiveness of laser driven ionizing radiation. Methods and Materials: After careful dosimetry series of viable zebrafish embryos were exposed to a single fraction whole-body neutron-irradiation (1,25; 1,875; 2; 2,5 Gy) at the research reactor of the Technical University of Budapest and to conventional 6 MeV photon beam at 24 hour post-fertilization (hpf). The survival and morphologic abnormalities (pericardial edema, spine curvature) of each embryo were assessed for each experiment at 24-hour intervals from the point of fertilization up to 168 hpf (defining the dose lethal for 50% (LD50)). Results: In the zebrafish embryo model LD50 at 20 Gy dose level was defined and the same lethality were found at 2 Gy dose from the reactor neutron beam resulting RBE of 10. Dose-dependent organ perturbations were detected on macroscopic (shortening of the body length, spine curvature, microcephaly, micro-ophthalmia, micrognathia, pericardial edema, and inhibition of yolk sac resorption) and microscopic (marked cellular changes in skin, cardiac, gastrointestinal system) with the same magnitude of dose difference. Conclusion: In our observations, we found that zebrafish embryo model can be used for investigating the effects of different type of ionizing radiation and this system proved to be highly efficient vertebrate model for preclinical examinations.

Keywords: ionizing radiation, LD50, relative biological effectiveness, zebrafish embryo

Procedia PDF Downloads 309
19022 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 61
19021 Analysis of NFC and Biometrics in the Retail Industry

Authors: Ziwei Xu

Abstract:

The increasing emphasis on mobility has driven the application of innovative communication technologies across various industries. In the retail sector, Near Field Communication (NFC) has emerged as a significant and transformative technology, particularly in the payment and retail supermarket sectors. NFC enables new payment methods, such as electronic wallets, and enhances information management in supermarkets, contributing to the growth of the trade. This report presents a comprehensive analysis of NFC technology, focusing on five key aspects. Firstly, it provides an overview of NFC, including its application methods and development history. Additionally, it incorporates Arthur's work on combinatorial evolution to elucidate the emergence and impact of NFC technology, while acknowledging the limitations of the model in analyzing NFC. The report then summarizes the positive influence of NFC on the retail industry along with its associated constraints. Furthermore, it explores the adoption of NFC from both organizational and individual perspectives, employing the Best Predictors of organizational IT adoption and UTAUT2 models, respectively. Finally, the report discusses the potential future replacement of NFC with biometrics technology, highlighting its advantages over NFC and leveraging Arthur's model to investigate its future development prospects.

Keywords: innovation, NFC, industry, biometrics

Procedia PDF Downloads 76
19020 Bridging the Gap between Teaching and Learning: A 3-S (Strength, Stamina, Speed) Model for Medical Education

Authors: Mangala. Sadasivan, Mary Hughes, Bryan Kelly

Abstract:

Medical Education must focus on bridging the gap between teaching and learning when training pre-clinical year students in skills needed to keep up with medical knowledge and to meet the demands of health care in the future. The authors were interested in showing that a 3-S Model (building strength, developing stamina, and increasing speed) using a bridged curriculum design helps connect teaching and learning and improves students’ retention of basic science and clinical knowledge. The authors designed three learning modules using the 3-S Model within a systems course in a pre-clerkship medical curriculum. Each module focused on a bridge (concept map) designed by the instructor for specific content delivered to students in the course. This with-in-subjects design study included 304 registered MSU osteopathic medical students (3 campuses) ranked by quintile based on previous coursework. The instructors used the bridge to create self-directed learning exercises (building strength) to help students master basic science content. Students were video coached on how to complete assignments, and given pre-tests and post-tests designed to give them control to assess and identify gaps in learning and strengthen connections. The instructor who designed the modules also used video lectures to help students master clinical concepts and link them (building stamina) to previously learned material connected to the bridge. Boardstyle practice questions relevant to the modules were used to help students improve access (increasing speed) to stored content. Unit Examinations covering the content within modules and materials covered by other instructors teaching within the units served as outcome measures in this study. This data was then compared to each student’s performance on a final comprehensive exam and their COMLEX medical board examinations taken some time after the course. The authors used mean comparisons to evaluate students’ performances on module items (using 3-S Model) to non-module items on unit exams, final course exam and COMLEX medical board examination. The data shows that on average, students performed significantly better on module items compared to non-module items on exams 1 and 2. The module 3 exam was canceled due to a university shut down. The difference in mean scores (module verses non-module) items disappeared on the final comprehensive exam which was rescheduled once the university resumed session. Based on Quintile designation, the mean scores were higher for module items than non-module items and the difference in scores between items for Quintiles 1 and 2 were significantly better on exam 1 and the gap widened for all Quintile groups on exam 2 and disappeared in exam 3. Based on COMLEX performance, all students on average as a group, whether they Passed or Failed, performed better on Module items than non-module items in all three exams. The gap between scores of module items for students who passed COMLEX to those who failed was greater on Exam 1 (14.3) than on Exam 2 (7.5) and Exam 3 (10.2). Data shows the 3-S Model using a bridge effectively connects teaching and learning

Keywords: bridging gap, medical education, teaching and learning, model of learning

Procedia PDF Downloads 62
19019 Delivering Comprehensive Sexuality Education to Students with Disability in Special Schools in Fiji

Authors: Sera Ratu, Jane Chivers, Jessica Botfield

Abstract:

Objectives: The Reproductive and Family Health Association of Fiji (RFHAF) and Family Planning Australia are working together to introduce quality comprehensive sexuality education into Special Schools - which are schools for students with disability. Sexual and reproductive health information is needed by students with disability attending Special Schools. Children with special needs go through the same changes as able-bodied children. The Fiji Disability Inclusion project is a three-year project that started in 2015. One of its objectives is to increase exposure to comprehensive sexuality education for primary and secondary school students with disability. Method: A baseline survey was undertaken with 72 students with disability; it included questions about puberty, sexual health, and relationships. 34 teachers also completed a survey about their views of sexuality education and confidence in delivering it. Consent was facilitated by running information sessions with teachers and parents. The process of gaining consent and completing the surveys was designed to be accessible to students with disability. Given the sensitive nature of reproductive and sexual health, and the potential vulnerability of young people with disability, ethical considerations were important in the design and implementation of the surveys, and ethics approval was obtained. Results: Findings from the surveys suggest that students have mixed knowledge and awareness of sexual health issues. Most teachers reported a need for their students to learn about sexuality and relationships. A positive outcome of conducting the surveys was that RFHAF staff reported they have developed skills and confidence in communicating with young people with a range of disabilities. They have a greater understanding of what students want to learn, and what teachers feel is important. Conclusions: These survey findings will assist RFHAF in developing comprehensive sexuality education programs that are relevant and accessible to students in Special Schools, and to develop an appropriate professional development program for teachers. Findings may also be applicable to other Special Schools when developing sexuality education programs. The education programs developed for students as part of this project, and the professional development programs for teachers, may be relevant to other countries.

Keywords: comprehensive sexuality education, delivery, sexual and reproductive health and rights, special schools

Procedia PDF Downloads 338
19018 Prioritizing Quality Dimensions in ‘Servitised’ Business through AHP

Authors: Mohita Gangwar Sharma

Abstract:

Different factors are compelling manufacturers to move towards the phenomenon of servitization i.e. when firms go beyond giving support to the customers in operating the equipment. The challenges that are being faced in this transition by the manufacturing firms from being a product provider to a product- service provider are multipronged. Product-Service Systems (PSS) lies in between the pure-product and pure-service continuum. Through this study, we wish to understand the dimensions of ‘PSS-quality’. We draw upon the quality literature for both the product and services and through an expert survey for a specific transportation sector using analytical hierarchical process (AHP) derive a conceptual model that can be used as a comprehensive measurement tool for PSS offerings.

Keywords: servitisation, quality, product-service system, AHP

Procedia PDF Downloads 308
19017 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 114