Search results for: cognitive image dimension
5432 The Effect of Soil Fractal Dimension on the Performance of Cement Stabilized Soil
Authors: Nkiru I. Ibeakuzie, Paul D. J. Watson, John F. Pescatore
Abstract:
In roadway construction, the cost of soil-cement stabilization per unit area is significantly influenced by the binder content, hence the need to optimise cement usage. This research work will characterize the influence of soil fractal geometry on properties of cement-stabilized soil, and strive to determine a correlation between mechanical proprieties of cement-stabilized soil and the mass fractal dimension Dₘ indicated by particle size distribution (PSD) of aggregate mixtures. Since strength development in cemented soil relies not only on cement content but also on soil PSD, this study will investigate the possibility of reducing cement content by changing the PSD of soil, without compromising on strength, reduced permeability, and compressibility. A series of soil aggregate mixes will be prepared in the laboratory. The mass fractal dimension Dₘ of each mix will be determined from sieve analysis data prior to stabilization with cement. Stabilized soil samples will be tested for strength, permeability, and compressibility.Keywords: fractal dimension, particle size distribution, cement stabilization, cement content
Procedia PDF Downloads 2205431 Attachment as a Predictor for Cognitive Rigidity
Authors: Barbara Gawda
Abstract:
Attachment model formed in childhood has an important impact on emotional development, personality, and social relationships. Attachment is also thought to have an impact on construction of affective-cognitive schemas and cognitive functioning. The aim of the current study was to verify whether there is an association between attachment and cognitive rigidity defined as dogmatism and intolerance of ambiguity. The analysis of 180 participants (persons of a similar age and education level, number of men and women was equal) was conducted. To test the attachment styles, the Revised Experiences in Close Relationships Inventory (ECR-R) was used. To examine cognitive rigidity, the Rokeach and Budner questionnaires were used. A multiple regression model was employed to examine whether attachment styles are predictors for dogmatism. The results confirmed that fearful-ambivalent attachment is the main predictor for dogmatism but not for intolerance of ambiguity.Keywords: attachment styles, cognitive rigidity, dogmatism, intolerance of ambiguity
Procedia PDF Downloads 3375430 Why and When to Teach Definitions: Necessary and Unnecessary Discontinuities Resulting from the Definition of Mathematical Concepts
Authors: Josephine Shamash, Stuart Smith
Abstract:
We examine reasons for introducing definitions in teaching mathematics in a number of different cases. We try to determine if, where, and when to provide a definition, and which definition to choose. We characterize different types of definitions and the different purposes we may have for formulating them, and detail examples of each type. Giving a definition at a certain stage can sometimes be detrimental to the development of the concept image. In such a case, it is advisable to delay the precise definition to a later stage. We describe two models, the 'successive approximation model', and the 'model of the extending definition' that fit such situations. Detailed examples that fit the different models are given based on material taken from a number of textbooks, and analysis of the way the concept is introduced, and where and how its definition is given. Our conclusions, based on this analysis, is that some of the definitions given may cause discontinuities in the learning sequence and constitute obstacles and unnecessary cognitive conflicts in the formation of the concept definition. However, in other cases, the discontinuity in passing from definition to definition actually serves a didactic purpose, is unavoidable for the mathematical evolution of the concept image, and is essential for students to deepen their understanding.Keywords: concept image, mathematical definitions, mathematics education, mathematics teaching
Procedia PDF Downloads 1315429 External Retinal Prosthesis Image Processing System Used One-Cue Saliency Map Based on DSP
Authors: Yili Chen, Jixiang Fu, Zhihua Liu, Zhicheng Zhang, Rongmao Li, Nan Fu, Yaoqin Xie
Abstract:
Retinal prothesis is designed to help the blind to get some sight.It is made up of internal part and external part.In external part ,there is made up of camera, image processing, and RF transmitter.In internal part, there is RF receiver, implant chip,micro-electrode.The image got from the camera should be processed by suitable stragies to corresponds to stimulus the electrode.Nowadays, the number of the micro-electrode is hundreds and we don’t know the mechanism how the elctrode stimulus the optic nerve, an easy way to the hypothesis is that the pixel in the image is correspondence to the electrode.So it is a question how to get the important information of the image captured from the picture.There are many strategies to experimented to get the most important information as soon as possible, due to the real time system.ROI is a useful algorithem to extract the region of the interest.Our paper will explain the details of the orinciples and functions of the ROI.And based on this, we simplified the ROI algrithem,and used it in outside image prcessing DSP system of the retinal prothesis.Results show that our image processing stratiges is suitable for real-time retinal prothesis and can cut redundant information and help useful information to express in the low-size image.Keywords: image processing, region of interest, saliency map, low-size image, useful information express, cut redundant information in image
Procedia PDF Downloads 2825428 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries
Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed
Abstract:
This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification
Procedia PDF Downloads 3805427 The Implementation of the Javanese Lettered-Manuscript Image Preprocessing Stage Model on the Batak Lettered-Manuscript Image
Authors: Anastasia Rita Widiarti, Agus Harjoko, Marsono, Sri Hartati
Abstract:
This paper presents the results of a study to test whether the Javanese character manuscript image preprocessing model that have been more widely applied, can also be applied to segment of the Batak characters manuscripts. The treatment process begins by converting the input image into a binary image. After the binary image is cleaned of noise, then the segmentation lines using projection profile is conducted. If unclear histogram projection is found, then the smoothing process before production indexes line segments is conducted. For each line image which has been produced, then the segmentation scripts in the line is applied, with regard of the connectivity between pixels which making up the letters that there is no characters are truncated. From the results of manuscript preprocessing system prototype testing, it is obtained the information about the system truth percentage value on pieces of Pustaka Batak Podani Ma AjiMamisinon manuscript ranged from 65% to 87.68% with a confidence level of 95%. The value indicates the truth percentage shown the initial processing model in Javanese characters manuscript image can be applied also to the image of the Batak characters manuscript.Keywords: connected component, preprocessing, manuscript image, projection profiles
Procedia PDF Downloads 4015426 Facial Biometric Privacy Using Visual Cryptography: A Fundamental Approach to Enhance the Security of Facial Biometric Data
Authors: Devika Tanna
Abstract:
'Biometrics' means 'life measurement' but the term is usually associated with the use of unique physiological characteristics to identify an individual. It is important to secure the privacy of digital face image that is stored in central database. To impart privacy to such biometric face images, first, the digital face image is split into two host face images such that, each of it gives no idea of existence of the original face image and, then each cover image is stored in two different databases geographically apart. When both the cover images are simultaneously available then only we can access that original image. This can be achieved by using the XM2VTS and IMM face database, an adaptive algorithm for spatial greyscale. The algorithm helps to select the appropriate host images which are most likely to be compatible with the secret image stored in the central database based on its geometry and appearance. The encryption is done using GEVCS which results in a reconstructed image identical to the original private image.Keywords: adaptive algorithm, database, host images, privacy, visual cryptography
Procedia PDF Downloads 1305425 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric
Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah
Abstract:
Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.Keywords: image registration, mutual information, image gradients, image transformations
Procedia PDF Downloads 2485424 Color Image Enhancement Using Multiscale Retinex and Image Fusion Techniques
Authors: Chang-Hsing Lee, Cheng-Chang Lien, Chin-Chuan Han
Abstract:
In this paper, an edge-strength guided multiscale retinex (EGMSR) approach will be proposed for color image contrast enhancement. In EGMSR, the pixel-dependent weight associated with each pixel in the single scale retinex output image is computed according to the edge strength around this pixel in order to prevent from over-enhancing the noises contained in the smooth dark/bright regions. Further, by fusing together the enhanced results of EGMSR and adaptive multiscale retinex (AMSR), we can get a natural fused image having high contrast and proper tonal rendition. Experimental results on several low-contrast images have shown that our proposed approach can produce natural and appealing enhanced images.Keywords: image enhancement, multiscale retinex, image fusion, EGMSR
Procedia PDF Downloads 4595423 Examination of 12-14 Years Old Volleyball Players’ Body Image Levels
Authors: Dilek Yalız Solmaz, Gülsün Güven
Abstract:
The aim of this study is to examine the body image levels of 12-14 years old girls who are playing volleyball. The research group consists of 113 girls who are playing volleyball in Sakarya during the fall season of 2015-2016. Data was collected by means of the 'Body Image Questionnaire' which was originally developed by Secord and Jourard. The consequence of repeated analysis of the reliability of the scale was determined to as '.96'. This study employed statistical calculations as mean, standard deviation and t-test. According to results of this study, it was determined that the mean point of the volleyball players is 158.5 ± 25.1 (minimum=40; maximum=200) and it can be said that the volleyball players’ body image levels are high. There is a significant difference between the underweight (167.4 ± 20.7) and normal weight (151.4 ± 26.2) groups according to their Body Mass Index. Body image levels of underweight group were determined higher than normal weight group.Keywords: volleyball, players, body image, body image levels
Procedia PDF Downloads 2115422 Review on Effective Texture Classification Techniques
Authors: Sujata S. Kulkarni
Abstract:
Effective and efficient texture feature extraction and classification is an important problem in image understanding and recognition. This paper gives a review on effective texture classification method. The objective of the problem of texture representation is to reduce the amount of raw data presented by the image, while preserving the information needed for the task. Texture analysis is important in many applications of computer image analysis for classification include industrial and biomedical surface inspection, for example for defects and disease, ground classification of satellite or aerial imagery and content-based access to image databases.Keywords: compressed sensing, feature extraction, image classification, texture analysis
Procedia PDF Downloads 4375421 A High Compression Ratio for a Losseless Image Compression Based on the Arithmetic Coding with the Sorted Run Length Coding: Meteosat Second Generation Image Compression
Authors: Cherifi Mehdi, Lahdir Mourad, Ameur Soltane
Abstract:
Image compression is the heart of several multimedia techniques. It is used to reduce the number of bits required to represent an image. Meteosat Second Generation (MSG) satellite allows the acquisition of 12 image files every 15 minutes and that results in a large databases sizes. In this paper, a novel image compression method based on the arithmetic coding with the sorted Run Length Coding (SRLC) for MSG images is proposed. The SRLC allows us to find the occurrence of the consecutive pixels of the original image to create a sorted run. The arithmetic coding allows the encoding of the sorted data of the previous stage to retrieve a unique code word that represents a binary code stream in the sorted order to boost the compression ratio. Through this article, we show that our method can perform the best results concerning compression ratio and bit rate unlike the method based on the Run Length Coding (RLC) and the arithmetic coding. Evaluation criteria like the compression ratio and the bit rate allow the confirmation of the efficiency of our method of image compression.Keywords: image compression, arithmetic coding, Run Length Coding, RLC, Sorted Run Length Coding, SRLC, Meteosat Second Generation, MSG
Procedia PDF Downloads 3545420 A Self-Coexistence Strategy for Spectrum Allocation Using Selfish and Unselfish Game Models in Cognitive Radio Networks
Authors: Noel Jeygar Robert, V. K.Vidya
Abstract:
Cognitive radio is a software-defined radio technology that allows cognitive users to operate on the vacant bands of spectrum allocated to licensed users. Cognitive radio plays a vital role in the efficient utilization of wireless radio spectrum available between cognitive users and licensed users without making any interference to licensed users. The spectrum allocation followed by spectrum sharing is done in a fashion where a cognitive user has to wait until spectrum holes are identified and allocated when the licensed user moves out of his own allocated spectrum. In this paper, we propose a self –coexistence strategy using bargaining and Cournot game model for achieving spectrum allocation in cognitive radio networks. The game-theoretic model analyses the behaviour of cognitive users in both cooperative and non-cooperative scenarios and provides an equilibrium level of spectrum allocation. Game-theoretic models such as bargaining game model and Cournot game model produce a balanced distribution of spectrum resources and energy consumption. Simulation results show that both game theories achieve better performance compared to other popular techniquesKeywords: cognitive radio, game theory, bargaining game, Cournot game
Procedia PDF Downloads 3015419 A Robust Spatial Feature Extraction Method for Facial Expression Recognition
Authors: H. G. C. P. Dinesh, G. Tharshini, M. P. B. Ekanayake, G. M. R. I. Godaliyadda
Abstract:
This paper presents a new spatial feature extraction method based on principle component analysis (PCA) and Fisher Discernment Analysis (FDA) for facial expression recognition. It not only extracts reliable features for classification, but also reduces the feature space dimensions of pattern samples. In this method, first each gray scale image is considered in its entirety as the measurement matrix. Then, principle components (PCs) of row vectors of this matrix and variance of these row vectors along PCs are estimated. Therefore, this method would ensure the preservation of spatial information of the facial image. Afterwards, by incorporating the spectral information of the eigen-filters derived from the PCs, a feature vector was constructed, for a given image. Finally, FDA was used to define a set of basis in a reduced dimension subspace such that the optimal clustering is achieved. The method of FDA defines an inter-class scatter matrix and intra-class scatter matrix to enhance the compactness of each cluster while maximizing the distance between cluster marginal points. In order to matching the test image with the training set, a cosine similarity based Bayesian classification was used. The proposed method was tested on the Cohn-Kanade database and JAFFE database. It was observed that the proposed method which incorporates spatial information to construct an optimal feature space outperforms the standard PCA and FDA based methods.Keywords: facial expression recognition, principle component analysis (PCA), fisher discernment analysis (FDA), eigen-filter, cosine similarity, bayesian classifier, f-measure
Procedia PDF Downloads 4265418 Perfectionism and its Impact on Body Image in Emerging Adults
Authors: Marianne John
Abstract:
This study explores the complex relationship between perfectionism and body image among young adults, focusing on self-oriented, socially prescribed, and other-oriented dimensions of perfectionism. Using the Multidimensional Perfectionism Scale (MPS) and the Body Image Scale (BIS), data from 200 participants revealed moderate levels of perfectionism and body image concerns, with both scales showing significant deviations from normality. Gender comparisons indicated no significant difference in body image perceptions, suggesting comparable societal pressures across genders, but a significant difference in perfectionism scores, with women showing higher socially influenced perfectionism tendencies. Correlation analysis found no significant associations between self-oriented or socially prescribed perfectionism and body image perceptions; however, a weak yet significant negative correlation emerged between other-oriented perfectionism and body dissatisfaction, indicating that heightened expectations of others may relate to greater body image concerns. These findings emphasize the multidimensional nature of perfectionism and its nuanced relationship with body image, highlighting the need for gender-sensitive interventions and further exploration of mediating factors like self-esteem and coping strategies in future research.Keywords: perfectionism, body image, self-oriented, socially prescribed, other-oriented
Procedia PDF Downloads 135417 Complex Learning Tasks and Their Impact on Cognitive Engagement for Undergraduate Engineering Students
Authors: Anastassis Kozanitis, Diane Leduc, Alain Stockless
Abstract:
This paper presents preliminary results from a two-year funded research program looking to analyze and understand the relationship between high cognitive engagement, higher order cognitive processes employed in situations of complex learning tasks, and the use of active learning pedagogies in engineering undergraduate programs. A mixed method approach was used to gauge student engagement and their cognitive processes when accomplishing complex tasks. Quantitative data collected from the self-report cognitive engagement scale shows that deep learning approach is positively correlated with high levels of complex learning tasks and the level of student engagement, in the context of classroom active learning pedagogies. Qualitative analyses of in depth face-to-face interviews reveal insights into the mechanisms influencing students’ cognitive processes when confronted with open-ended problem resolution. Findings also support evidence that students will adjust their level of cognitive engagement according to the specific didactic environment.Keywords: cognitive engagement, deep and shallow strategies, engineering programs, higher order cognitive processes
Procedia PDF Downloads 3245416 Neural Style Transfer Using Deep Learning
Authors: Shaik Jilani Basha, Inavolu Avinash, Alla Venu Sai Reddy, Bitragunta Taraka Ramu
Abstract:
We can use the neural style transfer technique to build a picture with the same "content" as the beginning image but the "style" of the picture we've chosen. Neural style transfer is a technique for merging the style of one image into another while retaining its original information. The only change is how the image is formatted to give it an additional artistic sense. The content image depicts the plan or drawing, as well as the colors of the drawing or paintings used to portray the style. It is a computer vision programme that learns and processes images through deep convolutional neural networks. To implement software, we used to train deep learning models with the train data, and whenever a user takes an image and a styled image, the output will be as the style gets transferred to the original image, and it will be shown as the output.Keywords: neural networks, computer vision, deep learning, convolutional neural networks
Procedia PDF Downloads 965415 Perception of Reproductive Age Group Females of a Central University in India about Body Image
Authors: Rajani Vishal, C. P. Mishra
Abstract:
Background: Self-perception of an individual about own body has a strong influence on their food preference and thereby on their nutritional status. Body image is gaining importance in social theory. Globally, women in particular seem to be favour of one ideal body type (Viz A slim, tall and perfectly proportionate body). Beauty and body image ideals among research scholars can play a significant influence on their own actions. Objectives: 1) To assess perception of study subjects about body image; 2)To analyze the relationship between body image and residential status of study subjects. Material and Method: 176 female research scholars of Banaras Hindu University were selected through multistage sampling. They were interviewed with pre designed and pre-tested proforma about area of residence and perception about body image. Result: As much as 86.4% subjects were happy with the way they looked whereas 83.0% subjects considered themselves as attractive. In case of 13.6%, 27.3%, 31.8%, 14.2% and 13.1% subjects, best-described body shapes were thin, normal, curvy, athletic and overweight, respectively. Area of residence was significantly (p< o.o5) associated with perception of attractiveness and description of body shape. Conclusion: In spite of varied description of body image, majority of subjects had positive perception about their body image.Keywords: attractiveness, body image, body shape, nutritional status
Procedia PDF Downloads 2675414 Mage Fusion Based Eye Tumor Detection
Authors: Ahmed Ashit
Abstract:
Image fusion is a significant and efficient image processing method used for detecting different types of tumors. This method has been used as an effective combination technique for obtaining high quality images that combine anatomy and physiology of an organ. It is the main key in the huge biomedical machines for diagnosing cancer such as PET-CT machine. This thesis aims to develop an image analysis system for the detection of the eye tumor. Different image processing methods are used to extract the tumor and then mark it on the original image. The images are first smoothed using median filtering. The background of the image is subtracted, to be then added to the original, results in a brighter area of interest or tumor area. The images are adjusted in order to increase the intensity of their pixels which lead to clearer and brighter images. once the images are enhanced, the edges of the images are detected using canny operators results in a segmented image comprises only of the pupil and the tumor for the abnormal images, and the pupil only for the normal images that have no tumor. The images of normal and abnormal images are collected from two sources: “Miles Research” and “Eye Cancer”. The computerized experimental results show that the developed image fusion based eye tumor detection system is capable of detecting the eye tumor and segment it to be superimposed on the original image.Keywords: image fusion, eye tumor, canny operators, superimposed
Procedia PDF Downloads 3655413 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network
Authors: Li Qingjian, Li Ke, He Chun, Huang Yong
Abstract:
In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.Keywords: DBN, SOM, pattern classification, hyperspectral, data compression
Procedia PDF Downloads 3415412 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5245411 Gaussian Probability Density for Forest Fire Detection Using Satellite Imagery
Authors: S. Benkraouda, Z. Djelloul-Khedda, B. Yagoubi
Abstract:
we present a method for early detection of forest fires from a thermal infrared satellite image, using the image matrix of the probability of belonging. The principle of the method is to compare a theoretical mathematical model to an experimental model. We considered that each line of the image matrix, as an embodiment of a non-stationary random process. Since the distribution of pixels in the satellite image is statistically dependent, we divided these lines into small stationary and ergodic intervals to characterize the image by an adequate mathematical model. A standard deviation was chosen to generate random variables, so each interval behaves naturally like white Gaussian noise. The latter has been selected as the mathematical model that represents a set of very majority pixels, which we can be considered as the image background. Before modeling the image, we made a few pretreatments, then the parameters of the theoretical Gaussian model were extracted from the modeled image, these settings will be used to calculate the probability of each interval of the modeled image to belong to the theoretical Gaussian model. The high intensities pixels are regarded as foreign elements to it, so they will have a low probability, and the pixels that belong to the background image will have a high probability. Finally, we did present the reverse of the matrix of probabilities of these intervals for a better fire detection.Keywords: forest fire, forest fire detection, satellite image, normal distribution, theoretical gaussian model, thermal infrared matrix image
Procedia PDF Downloads 1435410 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor
Procedia PDF Downloads 4905409 An Efficient Clustering Technique for Copy-Paste Attack Detection
Authors: N. Chaitawittanun, M. Munlin
Abstract:
Due to rapid advancement of powerful image processing software, digital images are easy to manipulate and modify by ordinary people. Lots of digital images are edited for a specific purpose and more difficult to distinguish form their original ones. We propose a clustering method to detect a copy-move image forgery of JPEG, BMP, TIFF, and PNG. The process starts with reducing the color of the photos. Then, we use the clustering technique to divide information of measuring data by Hausdorff Distance. The result shows that the purposed methods is capable of inspecting the image file and correctly identify the forgery.Keywords: image detection, forgery image, copy-paste, attack detection
Procedia PDF Downloads 3385408 Image Steganography Using Least Significant Bit Technique
Authors: Preeti Kumari, Ridhi Kapoor
Abstract:
In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.Keywords: steganography, LSB, encoding, information hiding, color image
Procedia PDF Downloads 4755407 Employer Brand Image and Employee Engagement: An Exploratory Study in Britain
Authors: Melisa Mete, Gary Davies, Susan Whelan
Abstract:
Maintaining a good employer brand image is crucial for companies since it has numerous advantages such as better recruitment, retention and employee engagement, and commitment. This study aims to understand the relationship between employer brand image and employee satisfaction and engagement in the British context. A panel survey data (N=228) is tested via the regression models from the Hayes (2012) PROCESS macro, in IBM SPSS 23.0. The results are statistically significant and proves that the more positive employer brand image, the greater employee’ engagement and satisfaction, and the greater is employee satisfaction, the greater their engagement.Keywords: employer brand, employer brand image, employee engagement, employee satisfaction
Procedia PDF Downloads 3375406 3D Guided Image Filtering to Improve Quality of Short-Time Binned Dynamic PET Images Using MRI Images
Authors: Tabassum Husain, Shen Peng Li, Zhaolin Chen
Abstract:
This paper evaluates the usability of 3D Guided Image Filtering to enhance the quality of short-time binned dynamic PET images by using MRI images. Guided image filtering is an edge-preserving filter proposed to enhance 2D images. The 3D filter is applied on 1 and 5-minute binned images. The results are compared with 15-minute binned images and the Gaussian filtering. The guided image filter enhances the quality of dynamic PET images while also preserving important information of the voxels.Keywords: dynamic PET images, guided image filter, image enhancement, information preservation filtering
Procedia PDF Downloads 1335405 The Postcognitivist Era in Cognitive Psychology
Authors: C. Jameke
Abstract:
During the cognitivist era in cognitive psychology, a theory of internal rules and symbolic representations was posited as an account of human cognition. This type of cognitive architecture had its heyday during the 1970s and 80s, but it has now been largely abandoned in favour of subsymbolic architectures (e.g. connectionism), non-representational frameworks (e.g. dynamical systems theory), and statistical approaches such as Bayesian theory. In this presentation I describe this changing landscape of research, and comment on the increasing influence of neuroscience on cognitive psychology. I then briefly review a few recent developments in connectionism, and neurocomputation relevant to cognitive psychology, and critically discuss the assumption made by some researchers in these frameworks that higher-level aspects of human cognition are simply emergent properties of massively large distributed neural networksKeywords: connectionism, emergentism, postocgnitivist, representations, subsymbolic archiitecture
Procedia PDF Downloads 5795404 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model
Authors: Kalyani Kulkarni, Bharat Chaudhari
Abstract:
This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the quality of service (QoS) of primary users (PU), a novel method is proposed for the resource allocation of secondary users (SU). In this paper, we propose the unique utility function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the cognitive radio network (CRN) and to minimize the interference scenario. The utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. The existence of Nash equilibrium is for the postulated game is established.Keywords: cognitive networks, game theory, Nash equilibrium, resource allocation
Procedia PDF Downloads 4815403 Progress in Combining Image Captioning and Visual Question Answering Tasks
Authors: Prathiksha Kamath, Pratibha Jamkhandi, Prateek Ghanti, Priyanshu Gupta, M. Lakshmi Neelima
Abstract:
Combining Image Captioning and Visual Question Answering (VQA) tasks have emerged as a new and exciting research area. The image captioning task involves generating a textual description that summarizes the content of the image. VQA aims to answer a natural language question about the image. Both these tasks include computer vision and natural language processing (NLP) and require a deep understanding of the content of the image and semantic relationship within the image and the ability to generate a response in natural language. There has been remarkable growth in both these tasks with rapid advancement in deep learning. In this paper, we present a comprehensive review of recent progress in combining image captioning and visual question-answering (VQA) tasks. We first discuss both image captioning and VQA tasks individually and then the various ways in which both these tasks can be integrated. We also analyze the challenges associated with these tasks and ways to overcome them. We finally discuss the various datasets and evaluation metrics used in these tasks. This paper concludes with the need for generating captions based on the context and captions that are able to answer the most likely asked questions about the image so as to aid the VQA task. Overall, this review highlights the significant progress made in combining image captioning and VQA, as well as the ongoing challenges and opportunities for further research in this exciting and rapidly evolving field, which has the potential to improve the performance of real-world applications such as autonomous vehicles, robotics, and image search.Keywords: image captioning, visual question answering, deep learning, natural language processing
Procedia PDF Downloads 74