Search results for: calendar coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 839

Search results for: calendar coating

719 Evaluating Mechanical Properties of CoNiCrAlY Coating from Miniature Specimen Testing at Elevated Temperature

Authors: W. Wen, G. Jackson, S. Maskill, D. G. McCartney, W. Sun

Abstract:

CoNiCrAlY alloys have been widely used as bond coats for thermal barrier coating (TBC) systems because of low cost, improved control of composition, and the feasibility to tailor the coatings microstructures. Coatings are in general very thin structures, and therefore it is impossible to characterize the mechanical responses of the materials via conventional mechanical testing methods. Due to this reason, miniature specimen testing methods, such as the small punch test technique, have been developed. This paper presents some of the recent research in evaluating the mechanical properties of the CoNiCrAlY coatings at room and high temperatures, through the use of small punch testing and the developed miniature specimen tensile testing, applicable to a range of temperature, to investigate the elastic-plastic and creep behavior as well as ductile-brittle transition temperature (DBTT) behavior. An inverse procedure was developed to derive the mechanical properties from such tests for the coating materials. A two-layer specimen test method is also described. The key findings include: 1) the temperature-dependent coating properties can be accurately determined by the miniature tensile testing within a wide range of temperature; 2) consistent DBTTs can be identified by both the SPT and miniature tensile tests (~ 650 °C); and 3) the FE SPT modelling has shown good capability of simulating the early local cracking. In general, the temperature-dependent material behaviors of the CoNiCrAlY coating has been effectively characterized using miniature specimen testing and inverse method.

Keywords: NiCoCrAlY coatings, mechanical properties, DBTT, miniature specimen testing

Procedia PDF Downloads 169
718 Controlling the Surface Morphology of the Biocompatible Hydroxyapatite Layer Deposited by Using a Flame-Coating

Authors: Nabaa M. Abdul Rahim, Mohammed A.Kadhim, Fadhil K. Fuliful

Abstract:

A biocompatible layer is prepared from calcium phosphate, which plays a role in building damaged bones and is used in many applications. In this research, calcium phosphate is coated on stainless steel substrates (SS 316) by using the flame coating. FE-SEM images show that the behavior of the sample surfaces varies with distance, at 3cm, appeared with nanostructures of bumps shaped of diameter about 317 nm. The contents of the elements are analyzed by energy-dispersive X-ray spectroscopy (EDX). The chemical elements C, Ca, Fe, Ni, Cr, Mn and O corresponding to calcium phosphate and the alloy are revealed by EDX analysis of the coating layer. XRD patterns for the calcium phosphate layers indicate the formation of the Hap layer on the deposited layers. The samples are immersed in a solution of simulated body fluids (SBF) for 21 days to examine the biocompatibility, as the tests show that the calcium phosphate ratio of 1.65 is the appropriate and biocompatible ratio in the human body. The assays show antibacterial activity using the diffusion disk procedure. On the surface of the agar, observed infested E.coli bacteria and incubated for 24 hours at 37°C. Bacteria grow on the entire agar rather than in some areas around some samples at a distance of 3 cm from the flame hole.

Keywords: biomaterial, flame coating, antibacterial activity, stainless steel

Procedia PDF Downloads 97
717 Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton

Authors: Saba Belgheisi

Abstract:

Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays.

Keywords: coating, whey protein, mutton, moisture, sensory

Procedia PDF Downloads 461
716 Ni-W-P Alloy Coating as an Alternate to Electroplated Hard Cr Coating

Authors: S. K. Ghosh, C. Srivastava, P. K. Limaye, V. Kain

Abstract:

Electroplated hard chromium is widely known in coatings and surface finishing, automobile and aerospace industries because of its excellent hardness, wear resistance and corrosion properties. However, its precursor, Cr+6 is highly carcinogenic in nature and a consensus has been adopted internationally to eradicate this coating technology with an alternative one. The search for alternate coatings to electroplated hard chrome is continuing worldwide. Various alloys and nanocomposites like Co-W alloys, Ni-Graphene, Ni-diamond nanocomposites etc. have already shown promising results in this regard. Basically, in this study, electroless Ni-P alloys with excellent corrosion resistance was taken as the base matrix and incorporation of tungsten as third alloying element was considered to improve the hardness and wear resistance of the resultant alloy coating. The present work is focused on the preparation of Ni–W–P coatings by electrodeposition with different content of phosphorous and its effect on the electrochemical, mechanical and tribological performances. The results were also compared with Ni-W alloys. Composition analysis by EDS showed deposition of Ni-32.85 wt% W-3.84 wt% P (designated as Ni-W-LP) and Ni-18.55 wt% W-8.73 wt% P (designated as Ni-W-HP) alloy coatings from electrolytes containing of 0.006 and 0.01M sodium hypophosphite respectively. Inhibition of tungsten deposition in the presence of phosphorous was noted. SEM investigation showed cauliflower like growth along with few microcracks. The as-deposited Ni-W-P alloy coating was amorphous in nature as confirmed by XRD investigation and step-wise crystallization was noticed upon annealing at higher temperatures. For all the coatings, the nanohardness was found to increase after heat-treatment and typical nanonahardness values obtained for 400°C annealed samples were 18.65±0.20 GPa, 20.03±0.25 GPa, and 19.17±0.25 for alloy coatings Ni-W, Ni-W-LP and Ni-W-HP respectively. Therefore, the nanohardness data show very promising results. Wear and coefficient of friction data were recorded by applying a different normal load in reciprocating motion using a ball on plate geometry. Post experiment, the wear mechanism was established by detail investigation of wear-scar morphology. Potentiodynamic measurements showed coating with a high content of phosphorous was most corrosion resistant in 3.5wt% NaCl solution.

Keywords: corrosion, electrodeposition, nanohardness, Ni-W-P alloy coating

Procedia PDF Downloads 348
715 Maturity Status of Male Boys in Punjab - India

Authors: Parminder K. Laroiya, Sukhdeep S. Kang

Abstract:

The Present cross-sectional study was conducted on 610 boys (ranging in age bracket of 11 to 17 years) to assess their developmental age to check percentage of early, normal and late maturity among them, and to check whether there is any significant difference in their calendar age and developmental age. Developmental age of these subjects has been accessed by TW2 method (using hand wrist X-rays) and their chronological age was checked from their date of birth certificate. Developmental status of subjects i.e. early, normal or late mature was considered with +2 years or -2 years from their calendar age. Results of this study shows that 50% boys were normal in their maturity status in all age brackets and rest of subjects were either early maturers 24.92% or late maturers 25.08%. When pattern of maturity was studied in each age group it has been found that till the age of 15 years, percentage of normal maturity was less than 50 % whereas in 16 and 17 years age groups, this percentage of normal maturity increased to 60% - 65 % ( this may be because at this age mostly boys attain adolescence) Further investigation of each age group showed that till the age of 14 years percentage of late maturity among these boys were approximately 35% to 40% whereas early maturity lies between 15% to 20%. It has been found from the present study that at the age of 15 years, there is a twist among percentage of late and early maturity among boys-early maturers are 38.61% and late maturers are 16.84%. At the age of 16 and 17 years percentage of late maturity has been decreased to 3% to 6%, whereas percentage of early maturity increased to 35.64 % and 30.69 % respectively.

Keywords: maturity status, developmental age, chronological age, X-rays

Procedia PDF Downloads 84
714 Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana

Authors: Karishma Sebastian, Pavethra A., Manjula B. S., K. N. Satheeshan, Jenita Thinakaran

Abstract:

Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate).

Keywords: bee wax, post-harvest treatments, potassium permanganate, Red Banana, shelf life

Procedia PDF Downloads 49
713 Modelling of Silicon Solar Cell with Anti-reflecting Coating

Authors: Ankita Gaur, Mouli Karmakar, Shyam

Abstract:

In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.

Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance

Procedia PDF Downloads 153
712 The Experimental and Statistical Analysis of the Wood Strength against Pressure According to Different Wood Types, Sizes, and Coatings

Authors: Mustafa Altin, Gamze Fahriye Pehlivan, Sadiye Didem Boztepe Erkis, Sakir Tasdemir, Sevda Altin

Abstract:

In this study, an experimental study was executed related to the strength of wooden materials which have been commonly used both in the past and present against pressure and whether fire retardant materials used against fire have any effects or not. Totally, 81 samples which included three different wood species, three different sizes, two different fire retardants and two unprocessed samples were prepared. Compressive pressure tests were applied to the prepared samples, their variance analyses were executed in accordance with the obtained results and it was aimed to determine the most convenient wooden materials and fire-retardant coating material. It was also determined that the species of wood and the species of coating caused the decrease and/or increase in the resistance against pressure.

Keywords: resistance of wood against pressure, species of wood, variance analysis, wood coating, wood fire safety

Procedia PDF Downloads 431
711 Evaluation of the Effect Rare Earth Metal on the Microstructure and Properties of Zn-ZnO-Y2O3 Coating of Mild Steel

Authors: A. P. I. Popoola, O. S. I. Fayomi, V. S. Aigbodion

Abstract:

Mild steel has found many engineering applications due to its great formability, availability, low cost and good mechanical properties among others. However its functionality and durability is subject of concern due to corrosion deterioration. Based on these Yttrium is selected as reinforcing particles using electroplating process in this work to enhance the corrosion resistance. Bath formulation of zinc-yttrium was prepared at moderated temperature and pH, to coat mild steel sample. Corrosion and wear behaviour were analyzed using electrochemical potentiostat and abrasive test rig. The composition and microstructure of coated films were investigated standard method. The microstructure of the deposited plate obtained from optimum (10%Yttrium) bath revealed fine-grained deposit of the alloy in the presence of condensation product and hence modified the morphology of zinc–yttrium alloy deposit. It is demonstrated that by adding yttria particles, mild steel can be strengthened with improved polarization behaviour and higher resistance to corrosive in sodium chloride solutions. Microhardness of the coating compared to plain mild steel have increased before and after heat treatment, and an increased wear resistance was also obtained from the modified coating of zinc-yttrium.

Keywords: microhardness, zinc-yttrium, coating, mild steel, microstructure, wear, corrosion

Procedia PDF Downloads 288
710 Cold Spray High Entropy Alloy Coating Surface Microstructural Characterization and Mechanical Testing

Authors: Raffaella Sesana, Nazanin Sheibanian, Luca Corsaro, Sedat Özbilen, Rocco Lupoi, Francesco Artusio

Abstract:

High Entropy Alloy (HEA) coatings of Al0.1-0.5CoCrCuFeNi and MnCoCrCuFeNi on Mg substrates were prepared from mechanically alloyed HEA powder feedstocks and at three different Cold Spray (CS) process gas (N2) temperatures (650, 750 and 850°C). Mechanically alloyed and cold-sprayed HEA coatings were characterized by macro photography, OM, SEM+EDS study, micro-hardness testing, roughness, and porosity measurements. As a result of mechanical alloying (MA), harder particles are deformed and fractured. The particles in the Cu-rich region were coarser and more globular than those in the A1 phase, which is relatively soft and ductile. In addition to the A1 particles, there were some separate Cu-rich regions. Due to the brittle nature of the powder and the acicular shape, Mn-HEA powder exhibited a different trend with smaller particle sizes. It is observed that MA results in a loose structure characterized by many gaps, cracks, signs of plastic deformation, and small particles attached to the surface of the particle. Considering the experimental results obtained, it is not possible to conclude that the chemical composition of the high entropy alloy influences the roughness of the coating. It has been observed that the deposited volume increases with temperature only in the case of Al0.1 and Mg-based HEA, while for the rest of the Al-based HEA, there are no noticeable changes. There is a direct correlation between micro-hardness and the chemical composition of a coating: the micro-hardness of a coating increases as the percentage of aluminum increases in the sample. Compared to the substrate, the coating has a much higher hardness, and the hardness measured at the interface is intermediate.

Keywords: characterisation, cold spraying, HEA coatings, SEM+EDS

Procedia PDF Downloads 64
709 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 107
708 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 373
707 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating

Authors: Merzak Laribi, Abdelmadjid Kasser

Abstract:

Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.

Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication

Procedia PDF Downloads 126
706 Anti-Bubble Painting Booth for Wood Coating Resins

Authors: Abasali Masoumi, Amir Gholamian Bozorgi

Abstract:

To have the best quality in wood products such as tabletops and inlay-woods, applying two principles are required: aesthetic and protection against the destructive agent. Artists spent a lot of time creating a masterwork project and also for better demonstrating beautiful appearance and preserving it for hundred years. So they need good material and appropriate method to finish it. As usual, wood painters use polyester or epoxy resins. These finishes need a special skill to use and then give a fantastic paint film and clearness. If we let resins dry in exposure to environmental agents such as unstable temperature, dust and etc., no doubt it becomes cloudy, crack, blister and much wood dust and air bubbles in it. We have designed a special wood coating booth (IR-Patent No: 70429) for wood-coating resins (polyester and epoxy), and this booth provides an adjustable space to control factors that is necessary to have a good finish in the end. Anti-bubble painting booth has the ability to remove bubbles from resin, precludes the cracking process and causes the resin to be the best. With this booth drying time of resin is reduced from 24 hours to 6 hours by fixing the optimum temperature, and it is very good for saving time. This booth is environment-friendly and never lets the poisonous vapors and other VOC (Volatile organic components) enter to workplace atmosphere because they are very harmful to humans.

Keywords: wood coating, epoxy resin, polyester resin, wood finishes

Procedia PDF Downloads 229
705 Exploring the Effect of Cellulose Based Coating Incorporated with CaCl2 and MgSO4 on Shelf Life Extension of Kinnow (Citrus reticulata blanco) Cultivar

Authors: Muhammad Atif Randhawa, Muhammad Nadeem

Abstract:

Kinnow (Citrus reticulate Blanco) is nutritious and perishable fruit with high juice content, and also rich source of vitamin-C. In Pakistan, kinnow export is limited due to inadequate post-harvest handling and lack of satisfactory storage practices. Considering these issues, the present study was designed to evaluate the effect of hydroxypropyl methylcellulose (HPMC) coating in combination with CaCl2 and MgSO4 on shelf life extension of kinnow. Fruits were treated with different levels of CaCl2 and MgSO4 followed by HPMC coating (3 and 5%) and stored at 10°C with 80% relative humidity for 6 weeks. Fruits were analyzed for various physico-chemical parameters on weekly basis. During this study lower fruit firmness (0.24Nm-2), loss in weight (0.64%) and ethylene production (0.039 µL•kg-1•hr-1) was observed in fruits treated with 1% CaCl2 + 1% MgSO4 + 5% HPMC (T6) during storage of 42 days. Minimum chilling injury indexes 0.22% and 0.61% were recorded in treatments T4 and T6, respectively. T6 showed higher values of titerable acidity (0.29%) and ascorbic acid contents (39.82mg/100g). Minimum TSS (9.62°Brix) was found in fruits of T6. Overall T6 showed significantly better results for various parameters, as compared to all other treated and control fruits.

Keywords: firmness, kinnow coating, physicochemical, storage

Procedia PDF Downloads 430
704 Electroless Nickel Boron Deposition onto the SiC and B4C Ceramic Reinforced Materials

Authors: I. Kerti, G. Sezen, S. Daglilar

Abstract:

This present work is focused on studying to improve low wetting behaviour between liquid metal and ceramic particles. Ceramic particles like SiC and B4C have attracted great attention because of their usability as reinforcement for composite materials. However, poor wettability of particles is one of the major drawbacks of metal matrix composite production. Various methods have been studied to enhance the wetting properties between ceramic materials and metal substrates during ceramic reinforced metal matrix composites. Among these methods, autocatalytic nickel deposition is a unique process for the enhancement of the surface properties of ceramic particles. In fact, it is difficult to obtain continuous and uniform metallic coating on ceramic powders. In this study deposition of nickel boron layer on ceramic particles via autocatalytic plating in borohydride baths were investigated. Firstly, powders with different particle sizes were sensitized and activated respectively in order to ensure catalytic properties. Following the pre-treatment operations, particles were transferred into the coating bath containing nickel sulphate or nickel chloride as the Ni2+ source. The results show that a better bonding and uniform coating layer were obtained for Ni-B coatings with the Ni2+ source of NiCl2.6H2O as compared to NiSO4.6H2O. With the progress of the time, both particle surfaces are completely covered by a continuous and thin nickel boron layer. The surface morphology of the coatings that were analysed using scanning electron microscopy (SEM) show that SiC and B4C particles both distributed and different thickness of Ni-B nanolayers have been successfully coated onto the particles. The particles were mounted into a polimeric resin and polished in order to observe the thickness and the continuity of the coating layer. The composition of the coating layers were also evaluated by EDS analyses. The SEM morphologies and the EDS results of the coatings at different reaction times were adopted for detailed discussion of the Ni-B electroless plating mechanism.

Keywords: boron carbide, electroless coating, nickel boron deposition, silicon carbide

Procedia PDF Downloads 348
703 Formation of Stable Aqueous Dispersions of Polyaniline-Silica Particles for Application in Anticorrosive Coatings on Steel

Authors: K. Kamburova, N. Boshkova, N. Boshkov, T. Radeva

Abstract:

Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. Two forms of PANI are generally accepted to have effective protection of steel: the conducting emeraldine salt (ES) and the non-conducting emeraldine base (EB). The ability to intercept electrons at the metal surface and to transport them is typically attributed to ES, while the success of EB as an anticorrosive additive in the coating is attributed to its ability to oxidize and reduce in a reversible way. This electrochemical mechanism is probably combined with barrier effect against corrosion species. In this work, we describe the preparation of stable suspensions of colloidal PANI-SiO₂ particles, suitable for obtaining of composite anticorrosive coating on steel. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO₂ particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO₂ particles’ suspension against aggregation is realized at pH > 5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO₂ particles. We anticipate that incorporation of the small particles will provide a more homogeneous distribution in the coating matrix and will decrease the negative effect on barrier properties of the composite coating.

Keywords: particles, stable dispersion, composite coatings, corrosion protection

Procedia PDF Downloads 175
702 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method

Authors: Mai M. Khalaf, Hany M. Abd El-Lateef

Abstract:

A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.

Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG

Procedia PDF Downloads 429
701 Optimization of Machining Parameters in AlSi/10%AlN Metal Matrix Composite Material by TiN Coating Insert

Authors: Nurul Na'imy Wan, Mohamad Sazali Said, Jaharah Ab. Ghani, Rusli Othman

Abstract:

This paper presents the surface roughness of the aluminium silicon alloy (AlSi) matrix composite which has been reinforced with aluminium nitride (AlN). Experiments were conducted at various cutting speeds, feed rates, and depths of cut, according to a standard orthogonal array L27 of Taguchi method using TiN coating tool of insert. The signal-to-noise (S/N) ratio and analysis of variance are applied to study the characteristic performance of cutting speeds, feed rates and depths of cut in measuring the surface roughness during the milling operation. The surface roughness was observed using Mitutoyo Formtracer CS-500 and analyzed using the Taguchi method. From the Taguchi analysis, it was found that cutting speed of 230 m/min, feed rate of 0.4 mm/tooth, depth of cut of 0.3 mm were the optimum machining parameters using TiN coating insert.

Keywords: AlSi/AlN metal matrix composite (MMC), surface roughness, Taguchi method, machining parameters

Procedia PDF Downloads 432
700 Monocrystalline Silicon Surface Passivation by Porous Silicon

Authors: Mohamed Ben Rabha

Abstract:

In this paper, we report on the effect of porous silicon (PS) treatment on the surface passivation of monocrystalline silicon (c-Si). PS film with a thickness of 80 nm was deposited by stain etching. It was demonstrated that PS coating is a very interesting solution for surface passivation. The level of surface passivation is determined by techniques based on photoconductance and FTIR. As a results, the effective minority carrier lifetime increase from 2 µs to 7 µs at ∆n=1015 cm-3 and the reflectivity reduce from 28 % to about 7 % after PS coating.

Keywords: porous silicon, effective minority carrier lifetime, reflectivity

Procedia PDF Downloads 445
699 Pomegranate Peel Based Edible Coating Treatment for Safety and Quality of Chicken Nuggets

Authors: Muhammad Sajid Arshad, Sadaf Bashir

Abstract:

In this study, the effects of pomegranate peel based edible coating were determined on safety and quality of chicken nuggets. Four treatment groups were prepared as control (without coating), coating with sodium alginate (SA) (1.5%), pomegranate peel powder (PPP) (1.5%), and combination of SA and PPP. There was a significant variation observed with respect to coating treatments and storage intervals. The chicken nuggets were subjected to refrigerated storage (40C) and were analyzed at regular intervals of 0, 7, 14 1 and 21 days. The microbiological quality was determined by total aerobic and coliform counts. Total aerobic (5.09±0.05 log CFU/g) and coliforms (3.91±0.06 log CFU/g) counts were higher in uncoated chicken nuggets whereas lower was observed in coated chicken nuggets having combination of SA and PPP. Likewise, antioxidants potential of chicken nuggets was observed by assessing total phenolic contents (TPC) and DPPH activity. Higher TPC (135.66 GAE/100g) and DPPH (64.65%) were found in combination with SA and PPP, whereas minimum TPC (91.38) and DPPH (41.48) was observed in uncoated chicken nuggets. Regarding the stability analysis of chicken nuggets, thiobarbituric acid reactive substances (TBARS) and peroxide value (POV) were determined. Higher TBARS (1.62±0.03 MDA/Kg) and POV (0.92±0.03 meq peroxide/kg) were found in uncoated chicken nuggets. Hunter color values were also observed in both uncoated and coated chicken nuggets. Sensorial attributes were also observed by the trained panelists. The higher sensory score for appearance, color, taste, texture and overall acceptability were observed in control (uncoated) while in coated treatments, it was found within acceptable limits. In nutshell, the combination of SA and PPP enhanced the overall quality, antioxidant potential, and stability of chicken nuggets.

Keywords: chicken nuggets, edible coatings, pomegranate peel powder, sodium alginate

Procedia PDF Downloads 148
698 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 434
697 Simulated Mechanical Analysis on Hydroxyapatite Coated Porous Polylactic Acid Scaffold for Bone Grafting

Authors: Ala Abobakr Abdulhafidh Al-Dubai

Abstract:

Bone loss has risen due to fractures, surgeries, and traumatic injuries. Scientists and engineers have worked over the years to find solutions to heal and accelerate bone regeneration. The bone grafting technique has been utilized, which projects significant improvement in the bone regeneration area. An extensive study is essential on the relation between the mechanical properties of bone scaffolds and the pore size of the scaffolds, as well as the relation between the mechanical properties of bone scaffolds with the development of bioactive coating on the scaffolds. In reducing the cost and time, a mechanical simulation analysis is beneficial to simulate both relations. Therefore, this study highlights the simulated mechanical analyses on three-dimensional (3D) polylactic acid (PLA) scaffolds at two different pore sizes (P: 400 and 600 μm) and two different internals distances of (D: 600 and 900 μm), with and without the presence of hydroxyapatite (HA) coating. The 3D scaffold models were designed using SOLIDWORKS software. The respective material properties were assigned with the fixation of boundary conditions on the meshed 3D models. Two different loads were applied on the PLA scaffolds, including side loads of 200 N and vertical loads of 2 kN. While only vertical loads of 2 kN were applied on the HA coated PLA scaffolds. The PLA scaffold P600D900, which has the largest pore size and maximum internal distance, generated the minimum stress under the applied vertical load. However, that same scaffold became weaker under the applied side load due to the high construction gap between the pores. The development of HA coating on top of the PLA scaffolds induced greater stress generation compared to the non-coated scaffolds which is tailorable for bone implantation. This study concludes that the pore size and the construction of HA coating on bone scaffolds affect the mechanical strength of the bone scaffolds.

Keywords: hydroxyapatite coating, bone scaffold, mechanical simulation, three-dimensional (3D), polylactic acid (PLA).

Procedia PDF Downloads 60
696 Evaluation of Thermal Barrier Coating Applied to the Gas Turbine Blade According to the Thermal Gradient

Authors: Jeong-Min Lee, Hyunwoo Song, Yonseok Kim, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

The Thermal Barrier Coating (TBC) prevents heat directly transferring from the high-temperature flame to the substrate. Top coat and bond coat compose the TBC and top coat consists of a ceramic and bond coat increases adhesion between the top coat and the substrate. The TBC technology drops the substrate surface temperature by about 150~200°C. In addition, the TBC system has a cooling system to lower the blade temperature by the air flow inside the blade. Then, as a result, the thermal gradient occurs inside the blade by cooling. Also, the internal stress occurs due to the difference in thermal expansion. In this paper, the finite element analyses (FEA) were performed and stress changes were derived according to the thermal gradient of the TBC system. The stress was increased due to the cooling, but difference of the stress between the top coat and bond coat was decreased. So, delamination in the interface between top coat and bond coat.

Keywords: gas turbine blade, Thermal Barrier Coating (TBC), thermal gradient, Finite Element Analysis (FEA)

Procedia PDF Downloads 607
695 Ceramide-PLGA Nanoparticle Formation to Apply to Atopic Dermatitis

Authors: Sang-Myung Jung, Gwang Heum Yoon, Hoo Chul Lee, Hwa Sung Shin

Abstract:

Ceramide, a component of stratum corneum at epidermis, helps to construct a rigid and dense skin barrier to prevent pathogens that cause atopic dermatitis. However, ceramide was too hydrophobic to be directly absorbed into stratum corneum and has risks of side effects by excessive treatment. To overcome the obstacles, ceramide was embedded into PLGA nanoparticles coated with chitosan. PLGA and chitosan have been known as biocompatible materials. PLGA was squeezed when faced with water and pumped ceramide out of PLGA nanoparticle. In addition, the chitosan coating layer helped initial adherence of nanoparticles to skin and regulate ceramide release until removed. This coating was degraded at weakly acid state like skin surface, finally ceramide release could be controlled. Finally, the nanoparticle was demonstrated to be non-cytotoxic and regenerate stratum corneum of atopic dermatitis model. Overall the nanoparticle is suggested as a novel and effective nanodrug to apply atopic dermatitis.

Keywords: nanoparticle, controlled release, atopic dermatitis, chitosan coating, ceramide

Procedia PDF Downloads 394
694 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 407
693 Impact of Climate Shifting-Change on Rural People and Agricultural Life

Authors: Arshad A. Narejo, M. Javed Sheikh, G. Mujtaba Khushk, Naeem A Qureshi, M. Ali Sheikh

Abstract:

Climate change not only influences on agriculture activities but also has certain effects on daily human activities, as well as on overall human health. Keeping in view the significance and huge research gap on the issues, the researchers have found an opportunity to conduct a study in Sindh province of Pakistan, in which the issue of climate shifting/change regarding temperature and precipitation were discussed with the local farmers of district Hyderabad. The quantified perception was gathered on a reliable and valid scale from 200 respondents and was analyzed through SPSS and AMOS software. The result of this study revealed that the significant changes are being occurred in summer (r²=0.96; M=6.78) and winter seasons (r²=0.71; M=6.57), therefore it is leaving bad effects on human health (r²=0.96) and behavior of the local population (r²=0.70). In addition, the change in the cropping calendar, i.e., timing of sowing (r²=0.69; M=8.42) and harvesting (r²=0.79; M=8.27) of different crops have been altered due to changes in local weather patterns. Since the local farmers are also facing seed germination (r²=0.57; M=7.98) problems, it is therefore recommended that concerned authorities/departments should revise the agricultural calendar. Besides this, respondents were in opinion that actual summer starts even before the vacation and cold season starts when winter vacations ended. Thus, the government and other concerned departments should reconsider or reschedule the vacation regulation policy (r²=0.70) at least at the provincial level.

Keywords: climate, climate shifting/change, impact on daily life, impact on agricultural activities

Procedia PDF Downloads 131
692 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications

Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas

Abstract:

Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.

Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM

Procedia PDF Downloads 338
691 Ti-Mo-N Nano-Grains Embedded into Thin MoSₓ-Based Amorphous Matrix: A Novel Structure for Superhardness and Ultra-Low Wear

Authors: Lina Yang, Mao Wen, Jianhong Chen, Kan Zhang

Abstract:

Molybdenum disulfide (MoS₂) represents a highly sought lubricant for reducing friction based on intrinsic layered structure, but for this reason, practical applications have been greatly restricted due to the fact that its low hardness would cause severe wear. Here, a novel TiMoN/MoSₓ composite coatings with TiMoN solid solution grains embedded into MoSₓ-based amorphous matrix has been successfully designed and synthesized, through magnetron co-sputtering technology. Desirably, in virtue of such special microstructure, superhardness and excellent toughness can be well achieved, along with an ultra-low wear rate at ~2×10⁻¹¹ mm³/Nm in the air environment, simultaneously, low friction at ~0.1 is maintained. It should be noted that this wear level is almost two orders of magnitude lower than that of pure TiN coating, and is, as we know, the lowest wear rate in dry sliding. Investigations of tribofilm reveal that it is amorphous MoS₂ in nature, and its formation arises directly from the MoSₓ amorphous matrix. Which contributes to effective lubrication behavior, coupled with excellent mechanical performances of such composite coating, exceptionally low wear can be guaranteed. The findings in this work suggest that the special composite structure makes it possible for the synthesis of super-hard and super-durable lubricative coating, offering guidance to synthesize ultrahigh performance protective coating for industrial application.

Keywords: hardness, MoS₂-containing composite coatings, toughness, tribological properties

Procedia PDF Downloads 152
690 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 162