Search results for: social network dynamics
14598 Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model
Authors: A. Clementking, C. Jothi Venkateswaran
Abstract:
Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources.Keywords: master-slave back propagation neural network model(MSBPNNM), water quality analysis, multivariate analysis, environmental mining
Procedia PDF Downloads 47814597 The Impact of Socioeconomic Status on Citizens’ Perceptions of Social Justice in China
Authors: Yan Liu
Abstract:
The Gini coefficient indicates that the inequality of income distribution is rising in China. How individuals viewing the equality of current society is an important predicator of social turbulence. Perceptions of social justice may vary according to the social stratification. People usually use socioeconomic status to identify divisions between social stratifications. The objective of this study is to explore the potential influence of socioeconomic status on citizens’ perceptions of social justice in China. Socioeconomic status (SES) is usually reflected by either an SES indicator or a composite of three core dimensions: education, income and occupation. With data collected in the 2010 Chinese General Social Survey (CGSS), this study uses OLS regression analyses to examine the relationship between socioeconomic status (SES) and citizens’ perceptions of social justice. This study finds that most Chinese citizens believe that the current society is fair or more than fair. Socioeconomic status (SES) has a positive impact on citizens’ perceptions of social justice, which means individuals with higher indicator of socioeconomic status prefer to believe current society is fair. However, the three core dimensions which are used to measure socioeconomic status (SES) have different influences on perceptions of social justice: First, income helps enhance citizens’ sense of social justice. Second, education weakens citizens’ sense of social justice. Third, compared to the middle occupational status, people of both higher occupational status and lower occupational status have higher levels of perceptions of social justice. Though education creates a negative influence on perceptions of social justice, its effect is much weaker than that of income, which indicates income is a determining factor for enhancing people’s perceptions of social justice in China’s market society. Policy implications are discussed.Keywords: education, income, occupation, perceptions of social justice, social stratification, socioeconomic status
Procedia PDF Downloads 31314596 A Mathematical Model for Studying Landing Dynamics of a Typical Lunar Soft Lander
Authors: Johns Paul, Santhosh J. Nalluveettil, P. Purushothaman, M. Premdas
Abstract:
Lunar landing is one of the most critical phases of lunar mission. The lander is provided with a soft landing system to prevent structural damage of lunar module by absorbing the landing shock and also assure stability during landing. Presently available software are not capable to simulate the rigid body dynamics coupled with contact simulation and elastic/plastic deformation analysis. Hence a separate mathematical model has been generated for studying the dynamics of a typical lunar soft lander. Parameters used in the analysis includes lunar surface slope, coefficient of friction, initial touchdown velocity (vertical and horizontal), mass and moment of inertia of lander, crushing force due to energy absorbing material in the legs, number of legs and geometry of lander. The mathematical model is capable to simulate plastic and elastic deformation of honey comb, frictional force between landing leg and lunar soil, surface contact simulation, lunar gravitational force, rigid body dynamics and linkage dynamics of inverted tripod landing gear. The non linear differential equations generated for studying the dynamics of lunar lander is solved by numerical method. Matlab programme has been used as a computer tool for solving the numerical equations. The position of each kinematic joint is defined by mathematical equations for the generation of equation of motion. All hinged locations are defined by position vectors with respect to body fixed coordinate. The vehicle rigid body rotations and motions about body coordinate are only due to the external forces and moments arise from footpad reaction force due to impact, footpad frictional force and weight of vehicle. All these force are mathematically simulated for the generation of equation of motion. The validation of mathematical model is done by two different phases. First phase is the validation of plastic deformation of crushable elements by employing conservation of energy principle. The second phase is the validation of rigid body dynamics of model by simulating a lander model in ADAMS software after replacing the crushable elements to elastic spring element. Simulation of plastic deformation along with rigid body dynamics and contact force cannot be modeled in ADAMS. Hence plastic element of primary strut is replaced with a spring element and analysis is carried out in ADAMS software. The same analysis is also carried out using the mathematical model where the simulation of honeycomb crushing is replaced by elastic spring deformation and compared the results with ADAMS analysis. The rotational motion of linkages and 6 degree of freedom motion of lunar Lander about its CG can be validated by ADAMS software by replacing crushing element to spring element. The model is also validated by the drop test results of 4 leg lunar lander. This paper presents the details of mathematical model generated and its validation.Keywords: honeycomb, landing leg tripod, lunar lander, primary link, secondary link
Procedia PDF Downloads 35314595 Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration
Authors: Sakina Fatima, Joseph-Patrick W. E. Clarke, Patricia A. Thibault, Subha Kalyaanamoorthy, Michael Levin, Aravindhan Ganesan
Abstract:
Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs.Keywords: hnRNPA1, molecular docking, molecular dynamics, RNA-binding proteins
Procedia PDF Downloads 12114594 Rain Gauges Network Optimization in Southern Peninsular Malaysia
Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno
Abstract:
Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.Keywords: geostatistics, simulated annealing, semivariogram, optimization
Procedia PDF Downloads 30414593 Survey Based Data Security Evaluation in Pakistan Financial Institutions against Malicious Attacks
Authors: Naveed Ghani, Samreen Javed
Abstract:
In today’s heterogeneous network environment, there is a growing demand for distrust clients to jointly execute secure network to prevent from malicious attacks as the defining task of propagating malicious code is to locate new targets to attack. Residual risk is always there no matter what solutions are implemented or whet so ever security methodology or standards being adapted. Security is the first and crucial phase in the field of Computer Science. The main aim of the Computer Security is gathering of information with secure network. No one need wonder what all that malware is trying to do: It's trying to steal money through data theft, bank transfers, stolen passwords, or swiped identities. From there, with the help of our survey we learn about the importance of white listing, antimalware programs, security patches, log files, honey pots, and more used in banks for financial data protection but there’s also a need of implementing the IPV6 tunneling with Crypto data transformation according to the requirements of new technology to prevent the organization from new Malware attacks and crafting of its own messages and sending them to the target. In this paper the writer has given the idea of implementing IPV6 Tunneling Secessions on private data transmission from financial organizations whose secrecy needed to be safeguarded.Keywords: network worms, malware infection propagating malicious code, virus, security, VPN
Procedia PDF Downloads 35814592 Creating Smart and Healthy Cities by Exploring the Potentials of Emerging Technologies and Social Innovation for Urban Efficiency: Lessons from the Innovative City of Boston
Authors: Mohammed Agbali, Claudia Trillo, Yusuf Arayici, Terrence Fernando
Abstract:
The wide-spread adoption of the Smart City concept has introduced a new era of computing paradigm with opportunities for city administrators and stakeholders in various sectors to re-think the concept of urbanization and development of healthy cities. With the world population rapidly becoming urban-centric especially amongst the emerging economies, social innovation will assist greatly in deploying emerging technologies to address the development challenges in core sectors of the future cities. In this context, sustainable health-care delivery and improved quality of life of the people is considered at the heart of the healthy city agenda. This paper examines the Boston innovation landscape from the perspective of smart services and innovation ecosystem for sustainable development, especially in transportation and healthcare. It investigates the policy implementation process of the Healthy City agenda and eHealth economy innovation based on the experience of Massachusetts’s City of Boston initiatives. For this purpose, three emerging areas are emphasized, namely the eHealth concept, the innovation hubs, and the emerging technologies that drive innovation. This was carried out through empirical analysis on results of public sector and industry-wide interviews/survey about Boston’s current initiatives and the enabling environment. The paper highlights few potential research directions for service integration and social innovation for deploying emerging technologies in the healthy city agenda. The study therefore suggests the need to prioritize social innovation as an overarching strategy to build sustainable Smart Cities in order to avoid technology lock-in. Finally, it concludes that the Boston example of innovation economy is unique in view of the existing platforms for innovation and proper understanding of its dynamics, which is imperative in building smart and healthy cities where quality of life of the citizenry can be improved.Keywords: computing paradigm, emerging technologies, equitable healthcare, healthy cities, open data, smart city, social innovation
Procedia PDF Downloads 33714591 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 30414590 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network
Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala
Abstract:
There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.Keywords: artificial neural network, high performance concrete, rebound hammer, strength prediction
Procedia PDF Downloads 15814589 Detecting Port Maritime Communities in Spain with Complex Network Analysis
Authors: Nicanor Garcia Alvarez, Belarmino Adenso-Diaz, Laura Calzada Infante
Abstract:
In recent years, researchers have shown an interest in modelling maritime traffic as a complex network. In this paper, we propose a bipartite weighted network to model maritime traffic and detect port maritime communities. The bipartite weighted network considers two different types of nodes. The first one represents Spanish ports, while the second one represents the countries with which there is major import/export activity. The flow among both types of nodes is modeled by weighting the volume of product transported. To illustrate the model, the data is segmented by each type of traffic. This will allow fine tuning and the creation of communities for each type of traffic and therefore finding similar ports for a specific type of traffic, which will provide decision-makers with tools to search for alliances or identify their competitors. The traffic with the greatest impact on the Spanish gross domestic product is selected, and the evolution of the communities formed by the most important ports and their differences between 2019 and 2009 will be analyzed. Finally, the set of communities formed by the ports of the Spanish port system will be inspected to determine global similarities between them, analyzing the sum of the membership of the different ports in communities formed for each type of traffic in particular.Keywords: bipartite networks, competition, infomap, maritime traffic, port communities
Procedia PDF Downloads 15014588 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 13014587 Visualizing the Commercial Activity of a City by Analyzing the Data Information in Layers
Authors: Taras Agryzkov, Jose L. Oliver, Leandro Tortosa, Jose Vicent
Abstract:
This paper aims to demonstrate how network models can be used to understand and to deal with some aspects of urban complexity. As it is well known, the Theory of Architecture and Urbanism has been using for decades’ intellectual tools based on the ‘sciences of complexity’ as a strategy to propose theoretical approaches about cities and about architecture. In this sense, it is possible to find a vast literature in which for instance network theory is used as an instrument to understand very diverse questions about cities: from their commercial activity to their heritage condition. The contribution of this research consists in adding one step of complexity to this process: instead of working with one single primal graph as it is usually done, we will show how new network models arise from the consideration of two different primal graphs interacting in two layers. When we model an urban network through a mathematical structure like a graph, the city is usually represented by a set of nodes and edges that reproduce its topology, with the data generated or extracted from the city embedded in it. All this information is normally displayed in a single layer. Here, we propose to separate the information in two layers so that we can evaluate the interaction between them. Besides, both layers may be composed of structures that do not have to coincide: from this bi-layer system, groups of interactions emerge, suggesting reflections and in consequence, possible actions.Keywords: graphs, mathematics, networks, urban studies
Procedia PDF Downloads 18414586 Security in Resource Constraints Network Light Weight Encryption for Z-MAC
Authors: Mona Almansoori, Ahmed Mustafa, Ahmad Elshamy
Abstract:
Wireless sensor network was formed by a combination of nodes, systematically it transmitting the data to their base stations, this transmission data can be easily compromised if the limited processing power and the data consistency from these nodes are kept in mind; there is always a discussion to address the secure data transfer or transmission in actual time. This will present a mechanism to securely transmit the data over a chain of sensor nodes without compromising the throughput of the network by utilizing available battery resources available in the sensor node. Our methodology takes many different advantages of Z-MAC protocol for its efficiency, and it provides a unique key by sharing the mechanism using neighbor node MAC address. We present a light weighted data integrity layer which is embedded in the Z-MAC protocol to prove that our protocol performs well than Z-MAC when we introduce the different attack scenarios.Keywords: hybrid MAC protocol, data integrity, lightweight encryption, neighbor based key sharing, sensor node dataprocessing, Z-MAC
Procedia PDF Downloads 14414585 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 11014584 Saudi Human Awareness Needs: A Survey in How Human Causes Errors and Mistakes Leads to Leak Confidential Data with Proposed Solutions in Saudi Arabia
Authors: Amal Hussain Alkhaiwani, Ghadah Abdullah Almalki
Abstract:
Recently human errors have increasingly become a very high factor in security breaches that may affect confidential data, and most of the cyber data breaches are caused by human errors. With one individual mistake, the attacker will gain access to the entire network and bypass the implemented access controls without any immediate detection. Unaware employees will be vulnerable to any social engineering cyber-attacks. Providing security awareness to People is part of the company protection process; the cyber risks cannot be reduced by just implementing technology; the human awareness of security will significantly reduce the risks, which encourage changes in staff cyber-awareness. In this paper, we will focus on Human Awareness, human needs to continue the required security education level; we will review human errors and introduce a proposed solution to avoid the breach from occurring again. Recently Saudi Arabia faced many attacks with different methods of social engineering. As Saudi Arabia has become a target to many countries and individuals, we needed to initiate a defense mechanism that begins with awareness to keep our privacy and protect the confidential data against possible intended attacks.Keywords: cybersecurity, human aspects, human errors, human mistakes, security awareness, Saudi Arabia, security program, security education, social engineering
Procedia PDF Downloads 16214583 Evaluation of Digital Marketing Strategies by Behavioral Economics
Authors: Sajjad Esmaeili Aghdam
Abstract:
Economics typically conceptualizes individual behavior as the consequence of external states, for example, budgets and prices (or respective beliefs) and choices. As the main goal, we focus on the influence of a range of Behavioral Economics factors on Strategies of Digital Marketing, evaluation of strategies and deformation of it into highly prospective marketing strategies. The different forms of behavioral prospects all lead to the succeeding two main results. First, the steadiness of the economic dynamics in a currency union be contingent fatefully on the level of economic incorporation. More economic incorporation leads to more steady economic dynamics. Electronic word-of-mouth (eWOM) is “all casual communications focused at consumers through Internet-based technology connected to the usage or characteristics of specific properties and services or their venders.” eWOM can take many methods, the most significant one being online analyses. Writing this paper, 72 articles have been gathered, focusing on the title and the aim of the article from research search engines like Google Scholar, Web of Science, and PubMed. Recent research in strategic management and marketing proposes that markets should not be viewed as a given and deterministic setting, exogenous to the firm. Instead, firms are progressively abstracted as dynamic inventors of market prospects. The use of new technologies touches all spheres of the modern lifestyle. Social and economic life becomes unbearable without fast, applicable, first-class and fitting material. Psychology and economics (together known as behavioral economics) are two protruding disciplines underlying many theories in marketing. The wide marketing works papers consumers’ none balanced behavior even though behavioral biases might not continuously be steadily called or officially labeled.Keywords: behavioral economics, digital marketing, marketing strategy, high impact strategies
Procedia PDF Downloads 18414582 Prosody of Text Communication: Inducing Synchronization and Coherence in Chat Conversations
Authors: Karolina Ziembowicz, Andrzej Nowak
Abstract:
In the current study, we examined the consequences of adding prosodic cues to text communication by allowing users to observe the process of message creation while engaged in dyadic conversations. In the first condition, users interacted through a traditional chat that requires pressing ‘enter’ to make a message visible to an interlocutor. In another, text appeared on the screen simultaneously as the sender was writing it, letter after letter (Synchat condition), so that users could observe the varying rhythm of message production, precise timing of message appearance, typos and their corrections. The results show that the ability to observe the dynamics of message production had a twofold effect on the social interaction process. First, it enhanced the relational aspect of communication – interlocutors synchronized their emotional states during the interaction, their communication included more statements on relationship building, and they evaluated the Synchat medium as more personal and emotionally engaging. Second, it increased the coherence of communication, reflected in greater continuity of the topics raised in Synchat conversations. The results are discussed from the interaction design (IxD) perspective.Keywords: chat communication, online conversation, prosody, social synchronization, interaction incoherence, relationship building
Procedia PDF Downloads 14214581 Amplifying Sine Unit-Convolutional Neural Network: An Efficient Deep Architecture for Image Classification and Feature Visualizations
Authors: Jamshaid Ul Rahman, Faiza Makhdoom, Dianchen Lu
Abstract:
Activation functions play a decisive role in determining the capacity of Deep Neural Networks (DNNs) as they enable neural networks to capture inherent nonlinearities present in data fed to them. The prior research on activation functions primarily focused on the utility of monotonic or non-oscillatory functions, until Growing Cosine Unit (GCU) broke the taboo for a number of applications. In this paper, a Convolutional Neural Network (CNN) model named as ASU-CNN is proposed which utilizes recently designed activation function ASU across its layers. The effect of this non-monotonic and oscillatory function is inspected through feature map visualizations from different convolutional layers. The optimization of proposed network is offered by Adam with a fine-tuned adjustment of learning rate. The network achieved promising results on both training and testing data for the classification of CIFAR-10. The experimental results affirm the computational feasibility and efficacy of the proposed model for performing tasks related to the field of computer vision.Keywords: amplifying sine unit, activation function, convolutional neural networks, oscillatory activation, image classification, CIFAR-10
Procedia PDF Downloads 11314580 Health Challenges of Unmarried Women over Thirty in Pakistan: A Public Health Perspective on Nutrition and Well-being
Authors: Anum Obaid, Iman Fatima, Wanisha Feroz, Haleema Imran, Hammad Tariq
Abstract:
In Pakistan, the health of unmarried women over thirty is an emerging public health concern due to its increasing prevalence. Achieving the Sustainable Development Goals (SDGs) requires addressing nutrition and public health issues. This research investigates these goals through the lens of nutrition and public health, specifically examining the challenges faced by unmarried women over thirty in Faisalabad, Pakistan. According to a recent United Nations report, there are 10 million unmarried women over the age of 35 in Pakistan. The United Nations defines health as "a state of complete physical, mental, and social well-being, and not merely the absence of disease or infirmity." Being unmarried and under constant societal pressure profoundly influences the dietary behaviors and nutritional status of these women, affecting their overall health, including physical, mental, and social well-being. A qualitative research approach was employed, involving interviews with both unmarried and married women over thirty. This research examines how marital status influences dietary practices, nutritional status, mental and social health, and their subsequent impacts. Factors such as physical health, mental and emotional status, societal pressure, social health, economic independence, and decision-making power were analyzed to understand the effect of singleness on overall wellness. Findings indicated that marital status significantly affects the dietary patterns and nutritional practices among women in Faisalabad. It was also revealed that unmarried women experienced more stress and had a less optimistic mindset compared to married women, due to loneliness or the absence of a spouse in their lives. Nutritional knowledge varied across marital status, impacting the overall health triangle, including physical, mental, and social health. Understanding these dynamics is crucial for developing targeted interventions to improve nutritional outcomes and overall health among unmarried women in Faisalabad. This study highlights the importance of fostering supportive environments and raising awareness about the health needs of unmarried women over thirty to enhance their overall well-being.Keywords: health triangle, unmarried woman over thirty, socio-cultural barriers, women’s health
Procedia PDF Downloads 3714579 Enhancing Throughput for Wireless Multihop Networks
Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis
Abstract:
Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network
Procedia PDF Downloads 51914578 The Use of Space Syntax in Urban Transportation Planning and Evaluation: Limits and Potentials
Authors: Chuan Yang, Jing Bie, Yueh-Lung Lin, Zhong Wang
Abstract:
Transportation planning is an academic integration discipline combining research and practice with the aim of mobility and accessibility improvements at both strategic-level policy-making and operational dimensions of practical planning. Transportation planning could build the linkage between traffic and social development goals, for instance, economic benefits and environmental sustainability. The transportation planning analysis and evaluation tend to apply empirical quantitative approaches with the guidance of the fundamental principles, such as efficiency, equity, safety, and sustainability. Space syntax theory has been applied in the spatial distribution of pedestrian movement or vehicle flow analysis, however rare has been written about its application in transportation planning. The correlated relationship between the variables of space syntax analysis and authentic observations have declared that the urban configurations have a significant effect on urban dynamics, for instance, land value, building density, traffic, crime. This research aims to explore the potentials of applying Space Syntax methodology to evaluate urban transportation planning through studying the effects of urban configuration on cities transportation performance. By literature review, this paper aims to discuss the effects that urban configuration with different degrees of integration and accessibility have on three elementary components of transportation planning - transportation efficiency, transportation safety, and economic agglomeration development - via intensifying and stabilising the nature movements generated by the street network. And then the potential and limits of Space Syntax theory to study the performance of urban transportation and transportation planning would be discussed in the paper. In practical terms, this research will help future research explore the effects of urban design on transportation performance, and identify which patterns of urban street networks would allow for most efficient and safe transportation performance with higher economic benefits.Keywords: transportation planning, space syntax, economic agglomeration, transportation efficiency, transportation safety
Procedia PDF Downloads 19814577 Optimizing the Location of Parking Areas Adapted for Dangerous Goods in the European Road Transport Network
Authors: María Dolores Caro, Eugenio M. Fedriani, Ángel F. Tenorio
Abstract:
The transportation of dangerous goods by lorries throughout Europe must be done by using the roads conforming the European Road Transport Network. In this network, there are several parking areas where lorry drivers can park to rest according to the regulations. According to the "European Agreement concerning the International Carriage of Dangerous Goods by Road", parking areas where lorries transporting dangerous goods can park to rest, must follow several security stipulations to keep safe the rest of road users. At this respect, these lorries must be parked in adapted areas with strict and permanent surveillance measures. Moreover, drivers must satisfy several restrictions about resting and driving time. Under these facts, one may expect that there exist enough parking areas for the transport of this type of goods in order to obey the regulations prescribed by the European Union and its member countries. However, the already-existing parking areas are not sufficient to cover all the stops required by drivers transporting dangerous goods. Our main goal is, starting from the already-existing parking areas and the loading-and-unloading location, to provide an optimal answer to the following question: how many additional parking areas must be built and where must they be located to assure that lorry drivers can transport dangerous goods following all the stipulations about security and safety for their stops? The sense of the word “optimal” is due to the fact that we give a global solution for the location of parking areas throughout the whole European Road Transport Network, adjusting the number of additional areas to be as lower as possible. To do so, we have modeled the problem using graph theory since we are working with a road network. As nodes, we have considered the locations of each already-existing parking area, each loading-and-unloading area each road bifurcation. Each road connecting two nodes is considered as an edge in the graph whose weight corresponds to the distance between both nodes in the edge. By applying a new efficient algorithm, we have found the additional nodes for the network representing the new parking areas adapted for dangerous goods, under the fact that the distance between two parking areas must be less than or equal to 400 km.Keywords: trans-european transport network, dangerous goods, parking areas, graph-based modeling
Procedia PDF Downloads 28214576 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular diseases caused by hypertension are extremely threatening to human health, and early diagnosis of hypertension can save a large number of lives. Traditional hypertension detection methods require special equipment and are difficult to detect continuous blood pressure changes. In this regard, this paper first analyzes the principle of heart rate variability (HRV) and introduces sliding window and power spectral density (PSD) to analyze the time domain features and frequency domain features of HRV, and secondly, designs an HRV-based hypertension prediction network by combining Resnet, attention mechanism, and multilayer perceptron, which extracts the frequency domain through the improved ResNet18 features through a modified ResNet18, its fusion with time-domain features through an attention mechanism, and the auxiliary prediction of hypertension through a multilayer perceptron. Finally, the network was trained and tested using the publicly available SHAREE dataset on PhysioNet, and the test results showed that this network achieved 92.06% prediction accuracy for hypertension and outperformed K Near Neighbor(KNN), Bayes, Logistic, and traditional Convolutional Neural Network(CNN) models in prediction performance.Keywords: feature extraction, heart rate variability, hypertension, residual networks
Procedia PDF Downloads 11114575 Analysis and Design Modeling for Next Generation Network Intrusion Detection and Prevention System
Authors: Nareshkumar Harale, B. B. Meshram
Abstract:
The continued exponential growth of successful cyber intrusions against today’s businesses has made it abundantly clear that traditional perimeter security measures are no longer adequate and effective. We evolved the network trust architecture from trust-untrust to Zero-Trust, With Zero Trust, essential security capabilities are deployed in a way that provides policy enforcement and protection for all users, devices, applications, data resources, and the communications traffic between them, regardless of their location. Information exchange over the Internet, in spite of inclusion of advanced security controls, is always under innovative, inventive and prone to cyberattacks. TCP/IP protocol stack, the adapted standard for communication over network, suffers from inherent design vulnerabilities such as communication and session management protocols, routing protocols and security protocols are the major cause of major attacks. With the explosion of cyber security threats, such as viruses, worms, rootkits, malwares, Denial of Service attacks, accomplishing efficient and effective intrusion detection and prevention is become crucial and challenging too. In this paper, we propose a design and analysis model for next generation network intrusion detection and protection system as part of layered security strategy. The proposed system design provides intrusion detection for wide range of attacks with layered architecture and framework. The proposed network intrusion classification framework deals with cyberattacks on standard TCP/IP protocol, routing protocols and security protocols. It thereby forms the basis for detection of attack classes and applies signature based matching for known cyberattacks and data mining based machine learning approaches for unknown cyberattacks. Our proposed implemented software can effectively detect attacks even when malicious connections are hidden within normal events. The unsupervised learning algorithm applied to network audit data trails results in unknown intrusion detection. Association rule mining algorithms generate new rules from collected audit trail data resulting in increased intrusion prevention though integrated firewall systems. Intrusion response mechanisms can be initiated in real-time thereby minimizing the impact of network intrusions. Finally, we have shown that our approach can be validated and how the analysis results can be used for detecting and protection from the new network anomalies.Keywords: network intrusion detection, network intrusion prevention, association rule mining, system analysis and design
Procedia PDF Downloads 22814574 Comprehensive Evaluation of Thermal Environment and Its Countermeasures: A Case Study of Beijing
Authors: Yike Lamu, Jieyu Tang, Jialin Wu, Jianyun Huang
Abstract:
With the development of economy and science and technology, the urban heat island effect becomes more and more serious. Taking Beijing city as an example, this paper divides the value of each influence index of heat island intensity and establishes a mathematical model – neural network system based on the fuzzy comprehensive evaluation index of heat island effect. After data preprocessing, the algorithm of weight of each factor affecting heat island effect is generated, and the data of sex indexes affecting heat island intensity of Shenyang City and Shanghai City, Beijing, and Hangzhou City are input, and the result is automatically output by the neural network system. It is of practical significance to show the intensity of heat island effect by visual method, which is simple, intuitive and can be dynamically monitored.Keywords: heat island effect, neural network, comprehensive evaluation, visualization
Procedia PDF Downloads 13414573 Social Health and Adaptation of Armenian Physicians
Authors: A. G. Margaryan
Abstract:
Ability of adaptation of the organism is considered as an important component of health in maintaining relative dynamic constancy of the hemostasis and functioning of all organs and systems. Among the various forms of adaptation (individual, species and mental), social adaptation of the organism has a particular role. The aim of this study was to evaluate the subjective perception of social factors, social welfare and the level of adaptability of Armenian physicians. The survey involved 2,167 physicians (592 men and 1,575 women). According to the survey, most physicians (75.1%) were married. It was found that 88.6% of respondents had harmonious family relationships, 7.6% of respondents – tense relationships, and 1.0% – marginal relationships. The results showed that the average monthly salary with all premium payments amounted to 88 263.6±5.0 drams, and 16.7% of physicians heavily relied on the material support of parents or other relatives. Low material welfare was also confirmed by the analysis of the living conditions. Analysis of the results showed that the degree of subjective perception of social factors of different specialties averaged 11.3±3.1 points, which corresponds to satisfactory results (a very good result – 4.0 points). The degree of social adaptation of physicians on average makes 4.13±1.9 points, which corresponds to poor results (allowable less than 3.0 points). The distribution of the results of social adaptation severity revealed that the majority of physicians (58.6%) showed low social adaptation, average social adaptation is observed in 22.4% of the physicians and high adaptation – in only 17.4% of physicians. In conclusions, the findings of this study suggest that the degree of social adaptation of currently practicing physicians is low.Keywords: physician's health, social adaptation, social factor, social health
Procedia PDF Downloads 30014572 Description of the Non-Iterative Learning Algorithm of Artificial Neuron
Authors: B. S. Akhmetov, S. T. Akhmetova, A. I. Ivanov, T. S. Kartbayev, A. Y. Malygin
Abstract:
The problem of training of a network of artificial neurons in biometric appendices is that this process has to be completely automatic, i.e. the person operator should not participate in it. Therefore, this article discusses the issues of training the network of artificial neurons and the description of the non-iterative learning algorithm of artificial neuron.Keywords: artificial neuron, biometrics, biometrical applications, learning of neuron, non-iterative algorithm
Procedia PDF Downloads 49614571 Language Development and Growing Spanning Trees in Children Semantic Network
Authors: Somayeh Sadat Hashemi Kamangar, Fatemeh Bakouie, Shahriar Gharibzadeh
Abstract:
In this study, we target to exploit Maximum Spanning Trees (MST) of children's semantic networks to investigate their language development. To do so, we examine the graph-theoretic properties of word-embedding networks. The networks are made of words children learn prior to the age of 30 months as the nodes and the links which are built from the cosine vector similarity of words normatively acquired by children prior to two and a half years of age. These networks are weighted graphs and the strength of each link is determined by the numerical similarities of the two words (nodes) on the sides of the link. To avoid changing the weighted networks to the binaries by setting a threshold, constructing MSTs might present a solution. MST is a unique sub-graph that connects all the nodes in such a way that the sum of all the link weights is maximized without forming cycles. MSTs as the backbone of the semantic networks are suitable to examine developmental changes in semantic network topology in children. From these trees, several parameters were calculated to characterize the developmental change in network organization. We showed that MSTs provides an elegant method sensitive to capture subtle developmental changes in semantic network organization.Keywords: maximum spanning trees, word-embedding, semantic networks, language development
Procedia PDF Downloads 14814570 Enablers of Total Quality Management for Social Enterprises: A Study of UAE Social Organizations
Authors: Farhat Sultana
Abstract:
Originality: TQM principles are considered the tools to enhance organizational performance for most organizations. The paper contributes to the literature on the social enterprise because social organizations are still far behind in implementing TQM as compared to other private, public, and nonprofit organizations. Study design: The study is based on the data and information provided by two case studies and one focus group of social enterprises. Purpose: The purpose of the study is to get a deep understating of TQM implementation and to recognize the enablers of TQM in social enterprises that enhance the organizational performance of social enterprises located in UAE. Findings: As per the findings of the study, key enablers of Total Quality management in the case enterprises are leadership support, strategic approach for quality, continuous improvement, process improvement, employee empowerment and customer focus practices, though some inhibitors for TQM implementation such as managerial structure for quality assurance and performance appraisal mechanism are also pointed out by the study. Research limitations: The study findings are only based on two case studies and one focus group, which is not enough to generalize the findings to all social organizations. Practical Implications: Identified TQM enablers can help management to implement TQM successfully in social enterprises. Social implications: The study provides enabling path for Social enterprises to implement TQM to seek quality output to build a better society.Keywords: TQM, social enterprise, enablers of TQM, UAE
Procedia PDF Downloads 11314569 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network
Authors: Amel Ourici
Abstract:
An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network
Procedia PDF Downloads 611