Search results for: penalized logistic regression
1991 Evaluation of Medication Administration Process in a Paediatric Ward
Authors: Zayed Alsulami, Asma Aldosseri, Ahmed Ezziden, Abdulrahman Alonazi
Abstract:
Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding the medication administration process should be improved.Keywords: medication sasfety, paediatric, medication errors, paediatric ward
Procedia PDF Downloads 3971990 Stability Analysis of Tumor-Immune Fractional Order Model
Authors: Sadia Arshad, Yifa Tang, Dumitru Baleanu
Abstract:
A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results.Keywords: cancer model, fractional calculus, numerical simulations, stability analysis
Procedia PDF Downloads 3171989 Morphological Investigation of Sprawling Along Emerging Peri-Urban Transit Corridor of Mowe-Ibafo Axis of the Lagos Megacity Region
Authors: Folayele Oluyemi Akindeju, Tobi Joseph Ajoro
Abstract:
The city as a complex system exhibiting chaotic behaviour is in a state of constant change, in response to prevailing social, economic, environmental and technological factors. Without adequate investigation and control mechanisms to tame the sporadic nature of growth in most urban areas of cities in developing regions, organic sprawling visibly manifests with its attendant problems, most especially at peri-urban areas. The Lagos Megacity region in southwest Nigeria, as one of the largest megacities in the world contends with the challenges of sprawling at the peri-urban areas especially along emerging transit corridors. Due to the seemingly unpredictable nature of this growth, this paper attempts a morphological investigation into the growth of peri-urban settlements along the Mowe-Ibafo transit corridor of the Megacity region over a temporal space of three decades (1984-2014). This study adopts the application of the Fractal Analysis and Regression Analysis methods through the correlation of population density and fractal dimension values to establish the pattern and nature of growth, due to the inadequacies of conventional methods of urban analysis which cannot deal with the unpredictability of such complex urban forms as the peri-urban areas. It was deduced that the dynamic urban expansion in the last three decades resulted in about 74.2% urban change rate between 1984 and 2000 and 63.4% urban change rate between 2000 and 2014. With the R2 value between the fractal dimension and population density been 1, the regression model indicates a positive correlation between Fractal Dimension (D) and Population Density (pop/km2), where the increase in the population density from 5740 pop/km2 to 8060 pop/km2 and later decrease to 7580 pop/km2 leads to an increase in the fractal dimension of urban growth from 1.451 in 1984 to 1.853 in 2014. This, therefore, justifies the ability to predict and determine the nature and direction of growth of complex entities and is sufficient to substantially suggest the need for adequate policy framework towards sustainable urban planning and infrastructural provision in the Peri-urban areas.Keywords: fractal analysis, Lagos Megacity, peri-urban, sprawling, urban morphology
Procedia PDF Downloads 1761988 Economic Analysis of Post-Harvest Losses in Plantain (and Banana): A Case Study of South Western Nigeria
Authors: O. R. Adeniyi, A. Ayandiji
Abstract:
Losses are common in most vegetables because the fruit ripens rapidly and most plantain products can only be stored for a few days thereby limiting their utilization. Plantain (and banana) is highly perishable at the ambient temperature prevalent in the tropics. The specific objective of this study is to identify the socioeconomic characteristics of banana/plantain dealers and determine the perceived effect of the losses incurred in the process of marketing banana/plantain. The study was carried out in Ondo and Lagos states of south-western Nigeria. Purposive sampling technique was used to collect information from “Kolawole plantain depot”, the point of purchase in Ondo State and “Alamutu plantain market” in Mushin the point of sales in Lagos state. Preliminary study was conducted with the use of primary data collected through well-structured questionnaires administered on 60 respondents and 55 fully completed ones analysed. Budgeting, gross margin and multiple linear regression were used for analyses. Most merchants were found to be in the middle age class (30-50 years), majority of whom were female and completed their secondary school education, with eighty percent having more than 5 years’ experience of in banana/plantain marketing. The highest losses were incurred during transportation and these losses constitute about 5.62 percent of the potential total revenue. On the average, loss in gross margin is about ₦6,000.00 per merchant. The impacts of these losses are reflected in the continuously reducing level of their income. Age of the respondents played a major role in determining the level of care in the handling of the fruits. The middle age class tends to be more favoured. In conclusion, the merchants need adequate and sustainable transportation and storage facilities as a matter of utmost urgency. There is the need for government to encourage producers of the product (farmers) by giving them motivating incentives and ensuring that the environment is made conducive also for dealers by providing adequate storage facilities and ready markets locally and possibly for export.Keywords: post-harvest, losses, plantain, banana, simple regression
Procedia PDF Downloads 3201987 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4161986 Factors Influencing the Logistics Services Providers' Performance: A Literature Overview
Authors: A. Aguezzoul
Abstract:
The Logistics Services Providers (LSPs) selection and performance is a strategic decision that affects the overall performance of any company as well as its supply chain. It is a complex process, which takes into account various conflicting quantitative and qualitative factors, as well as outsourced logistics activities. This article focuses on the evolution of the weights associated to these factors over the last years in order to better understand the change in the importance that logistics professionals place on them criteria when choosing their LSPs. For that, an analysis of 17 main studies published during 2014-2017 period was carried out and the results are compared to those of a previous literature review on this subject. Our analysis allowed us to deduce the following observations: 1) the LSPs selection is a multi-criteria process; 2) the empirical character of the majority of studies, conducted particularly in Asian countries; 3) the criteria importance has undergone significant changes following the emergence of information technologies that have favored the work in close collaboration and in partnership between the LSPs and their customers, even on a worldwide scale; 4) the cost criterion is relatively less important than in the past; and finally 5) with the development of sustainable supply chains, the factors associated with the logistic activities of return and waste processing (reverse logistics) are becoming increasingly important in this multi-criteria process of selection and evaluation of LSPs performance.Keywords: logistics outsourcing, logistics providers, multi-criteria decision making, performance
Procedia PDF Downloads 1581985 Research Regarding Resistance Characteristics of Biscuits Assortment Using Cone Penetrometer
Authors: G.–A. Constantin, G. Voicu, E.–M. Stefan, P. Tudor, G. Paraschiv, M.–G. Munteanu
Abstract:
In the activity of handling and transport of food products, the products may be subjected to mechanical stresses that may lead to their deterioration by deformation, breaking, or crushing. This is the case for biscuits, regardless of their type (gluten-free or sugary), the addition of ingredients or flour from which they are made. However, gluten-free biscuits have a higher mechanical resistance to breakage or crushing compared to easily shattered sugar biscuits (especially those for children). The paper presents the results of the experimental evaluation of the texture for four varieties of commercial biscuits, using the penetrometer equipped with needle cone at five different additional weights on the cone-rod. The assortments of biscuits tested in the laboratory were Petit Beurre, Picnic, and Maia (all three manufactured by RoStar, Romania) and Sultani diet biscuits, manufactured by Eti Burcak Sultani (Turkey, in packs of 138 g). For the four varieties of biscuits and the five additional weights (50, 77, 100, 150 and 177 g), the experimental data obtained were subjected to regression analysis in the MS Office Excel program, using Velon's relationship (h = a∙ln(t) + b). The regression curves were analysed comparatively in order to identify possible differences and to highlight the variation of the penetration depth h, in relation to the time t. Based on the penetration depth between two-time intervals (every 5 seconds), the curves of variation of the penetration speed in relation to time were then drawn. It was found that Velon's law verifies the experimental data for all assortments of biscuits and for all five additional weights. The correlation coefficient R2 had in most of the analysed cases values over 0.850. The values recorded for the penetration depth were framed, in general, within 45-55 p.u. (penetrometric units) at an additional mass of 50 g, respectively between 155-168 p.u., at an additional mass of 177 g, at Petit Beurre biscuits. For Sultani diet biscuits, the values of the penetration depth were within the limits of 32-35 p.u., at an additional weight of 50 g and between 80-114 p.u., at an additional weight of 177g. The data presented in the paper can be used by both operators on the manufacturing technology flow, as well as by the traders of these food products, in order to establish the most efficient parametric of the working regimes (when packaging and handling).Keywords: biscuits resistance/texture, penetration depth, penetration velocity, sharp pin penetrometer
Procedia PDF Downloads 1301984 Anxiety and Self-Perceived L2 Proficiency: A Comparison of Which Can Better Predict L2 Pronunciation Performance
Authors: Jiexuan Lin, Huiyi Chen
Abstract:
The development of L2 pronunciation competence remains understudied in the literature and it is not clear what may influence learners’ development of L2 pronunciation. The present study was an attempt to find out which of the two common factors in L2 acquisition, i.e., foreign language anxiety or self-perceived L2 proficiency, can better predict Chinese EFL learners’ pronunciation performance. 78 first-year English majors, who had received a three-month pronunciation training course, were asked to 1) fill out a questionnaire on foreign language classroom anxiety, 2) self-report their L2 proficiency in general, in speaking and in pronunciation, and 3) complete an oral and a written test on their L2 pronunciation (the score of the oral part indicates participants’ pronunciation proficiency in oral production, and the score of the written part indexes participants’ ability in applying pronunciation knowledge in comprehension.) Results showed that the pronunciation scores were negatively correlated with the anxiety scores, and were positively correlated with the self-perceived pronunciation proficiency. But only the written scores in the L2 pronunciation test, not the oral scores, were positively correlated with the L2 self-perceived general proficiency. Neither the oral nor the written scores in the L2 pronunciation test had a significant correlation with the self-perceived speaking proficiency. Given the fairly strong correlations, the anxiety scores and the self-perceived pronunciation proficiency were put in regression models to predict L2 pronunciation performance. The anxiety factor alone accounted for 13.9% of the variance and the self-perceived pronunciation proficiency alone explained 12.1% of the variance. But when both anxiety scores and self-perceived pronunciation proficiency were put in a stepwise regression model, only the anxiety scores had a significant and unique contribution to the L2 pronunciation performance (4.8%). Taken together, the results suggested that the learners’ anxiety level could better predict their L2 pronunciation performance, compared with the self-perceived proficiency levels. The obtained data have the following pedagogical implications. 1) Given the fairly strong correlation between anxiety and L2 pronunciation performance, the instructors who are interested in predicting learners’ L2 pronunciation proficiency may measure their anxiety level, instead of their proficiency, as the predicting variable. 2) The correlation of oral scores (in the pronunciation test) with pronunciation proficiency, rather than with speaking proficiency, indicates that a) learners after receiving some amounts of training are to some extent able to evaluate their own pronunciation ability, implying the feasibility of incorporating self-evaluation and peer comments in course instruction; b) the ‘proficiency’ measure used to predict pronunciation performance should be used with caution. The proficiency of specific skills seemingly highly related to pronunciation (i.e., speaking in this case) may not be taken for granted as an effective predictor for pronunciation performance. 3) The correlation between the written scores with general L2 proficiency is interesting.Keywords: anxiety, Chinese EFL learners, L2 pronunciation, self-perceived L2 proficiency
Procedia PDF Downloads 3621983 Crack Growth Life Prediction of a Fighter Aircraft Wing Splice Joint Under Spectrum Loading Using Random Forest Regression and Artificial Neural Networks with Hyperparameter Optimization
Authors: Zafer Yüce, Paşa Yayla, Alev Taşkın
Abstract:
There are heaps of analytical methods to estimate the crack growth life of a component. Soft computing methods have an increasing trend in predicting fatigue life. Their ability to build complex relationships and capability to handle huge amounts of data are motivating researchers and industry professionals to employ them for challenging problems. This study focuses on soft computing methods, especially random forest regressors and artificial neural networks with hyperparameter optimization algorithms such as grid search and random grid search, to estimate the crack growth life of an aircraft wing splice joint under variable amplitude loading. TensorFlow and Scikit-learn libraries of Python are used to build the machine learning models for this study. The material considered in this work is 7050-T7451 aluminum, which is commonly preferred as a structural element in the aerospace industry, and regarding the crack type; corner crack is used. A finite element model is built for the joint to calculate fastener loads and stresses on the structure. Since finite element model results are validated with analytical calculations, findings of the finite element model are fed to AFGROW software to calculate analytical crack growth lives. Based on Fighter Aircraft Loading Standard for Fatigue (FALSTAFF), 90 unique fatigue loading spectra are developed for various load levels, and then, these spectrums are utilized as inputs to the artificial neural network and random forest regression models for predicting crack growth life. Finally, the crack growth life predictions of the machine learning models are compared with analytical calculations. According to the findings, a good correlation is observed between analytical and predicted crack growth lives.Keywords: aircraft, fatigue, joint, life, optimization, prediction.
Procedia PDF Downloads 1781982 Application of Regularized Low-Rank Matrix Factorization in Personalized Targeting
Authors: Kourosh Modarresi
Abstract:
The Netflix problem has brought the topic of “Recommendation Systems” into the mainstream of computer science, mathematics, and statistics. Though much progress has been made, the available algorithms do not obtain satisfactory results. The success of these algorithms is rarely above 5%. This work is based on the belief that the main challenge is to come up with “scalable personalization” models. This paper uses an adaptive regularization of inverse singular value decomposition (SVD) that applies adaptive penalization on the singular vectors. The results show far better matching for recommender systems when compared to the ones from the state of the art models in the industry.Keywords: convex optimization, LASSO, regression, recommender systems, singular value decomposition, low rank approximation
Procedia PDF Downloads 4591981 Cybersecurity Breaches and Audit Outcomes: An Analysis of Auditor Changes and Going Concern Opinions
Authors: Sara Dehaiman Alqahtani
Abstract:
This study investigates the effects of cybersecurity breaches on critical audit outcomes, specifically focusing on auditor changes, engagement partner rotations, and the issuance of going concern opinions. Utilizing an extensive dataset of U.S.-based firms spanning from 2006 to 2023, the research employs propensity score matching (PSM) to address selection bias and control for confounding variables. The analysis reveals that, contrary to conventional expectations, firms that experience cybersecurity breaches are less likely to change their audit firms and engagement partners. Additionally, these breached firms are less likely to receive going concern opinions from their auditors. However, an exception is noted within the technology sector, where breached firms show a higher propensity to switch auditors, potentially to demonstrate a commitment to enhanced cybersecurity measures. The findings suggest a strong preference for continuity in auditor-client relationships following cybersecurity incidents. This preference underscores the importance of auditors' existing knowledge of a firm's systems and controls, which is deemed valuable during periods of heightened risk. The study extends the existing literature by moving beyond the well-documented impact of breaches on audit fees to explore other significant dimensions of the auditor-client relationship. It challenges the traditional assumption that increased risk from breaches leads to higher auditor turnover or more conservative audit opinions, highlighting instead a tendency towards maintaining stability. Methodologically, the research leverages PSM to create a balanced comparison between breached and non-breached firms, ensuring robustness in the findings. Logistic regression analyses further substantiate the associations between breaches and audit outcomes, controlling for various firm-specific characteristics such as size, financial performance, and industry classification. Supplemental analyses explore additional factors, including litigation risk, breach frequency, and industry-specific responses, providing a nuanced understanding of the dynamics at play. The study’s main contributions are threefold. First, it broadens the scope of research on cybersecurity breaches by examining their impact on auditor changes and going concern opinions, areas previously underexplored. Second, it offers empirical evidence that breached firms tend to retain their auditors and engagement partners, suggesting that continuity is valued over potential audit quality improvements through auditor changes. Third, it highlights sector-specific behaviors, particularly within the technology industry, where breaches do lead to higher auditor turnover, indicating industry-specific risk management strategies. Implications of this research are significant for auditors, clients, and regulators. Auditors may need to enhance their risk assessment frameworks to better incorporate cybersecurity risks, ensuring that audit practices remain robust in the face of evolving cyber threats. Clients should evaluate the benefits of retaining existing auditors against the potential advantages of engaging new auditors who might offer fresh perspectives and specialized cybersecurity expertise. Regulators might consider updating auditing standards to more explicitly address cybersecurity risks, ensuring that such threats are adequately reflected in audit procedures and disclosures. Overall, this study provides a comprehensive analysis of how cybersecurity breaches influence audit outcomes, revealing a preference for auditor continuity and questioning whether current auditing frameworks sufficiently account for cyber risks. By highlighting these trends, the research calls for a reassessment of audit practices and regulatory standards to better address the complexities introduced by the increasing prevalence of cyber threats in the digital age.Keywords: cybersecurity breaches, auditor changes, engagement partner rotations, going concern opinions, auditor-client relationships, audit risk assessment
Procedia PDF Downloads 141980 Quantified Metabolomics for the Determination of Phenotypes and Biomarkers across Species in Health and Disease
Authors: Miroslava Cuperlovic-Culf, Lipu Wang, Ketty Boyle, Nadine Makley, Ian Burton, Anissa Belkaid, Mohamed Touaibia, Marc E. Surrette
Abstract:
Metabolic changes are one of the major factors in the development of a variety of diseases in various species. Metabolism of agricultural plants is altered the following infection with pathogens sometimes contributing to resistance. At the same time, pathogens use metabolites for infection and progression. In humans, metabolism is a hallmark of cancer development for example. Quantified metabolomics data combined with other omics or clinical data and analyzed using various unsupervised and supervised methods can lead to better diagnosis and prognosis. It can also provide information about resistance as well as contribute knowledge of compounds significant for disease progression or prevention. In this work, different methods for metabolomics quantification and analysis from Nuclear Magnetic Resonance (NMR) measurements that are used for investigation of disease development in wheat and human cells will be presented. One-dimensional 1H NMR spectra are used extensively for metabolic profiling due to their high reliability, wide range of applicability, speed, trivial sample preparation and low cost. This presentation will describe a new method for metabolite quantification from NMR data that combines alignment of spectra of standards to sample spectra followed by multivariate linear regression optimization of spectra of assigned metabolites to samples’ spectra. Several different alignment methods were tested and multivariate linear regression result has been compared with other quantification methods. Quantified metabolomics data can be analyzed in the variety of ways and we will present different clustering methods used for phenotype determination, network analysis providing knowledge about the relationships between metabolites through metabolic network as well as biomarker selection providing novel markers. These analysis methods have been utilized for the investigation of fusarium head blight resistance in wheat cultivars as well as analysis of the effect of estrogen receptor and carbonic anhydrase activation and inhibition on breast cancer cell metabolism. Metabolic changes in spikelet’s of wheat cultivars FL62R1, Stettler, MuchMore and Sumai3 following fusarium graminearum infection were explored. Extensive 1D 1H and 2D NMR measurements provided information for detailed metabolite assignment and quantification leading to possible metabolic markers discriminating resistance level in wheat subtypes. Quantification data is compared to results obtained using other published methods. Fusarium infection induced metabolic changes in different wheat varieties are discussed in the context of metabolic network and resistance. Quantitative metabolomics has been used for the investigation of the effect of targeted enzyme inhibition in cancer. In this work, the effect of 17 β -estradiol and ferulic acid on metabolism of ER+ breast cancer cells has been compared to their effect on ER- control cells. The effect of the inhibitors of carbonic anhydrase on the observed metabolic changes resulting from ER activation has also been determined. Metabolic profiles were studied using 1D and 2D metabolomic NMR experiments, combined with the identification and quantification of metabolites, and the annotation of the results is provided in the context of biochemical pathways.Keywords: metabolic biomarkers, metabolic network, metabolomics, multivariate linear regression, NMR quantification, quantified metabolomics, spectral alignment
Procedia PDF Downloads 3391979 The Impacts of Civil War on Import and Export in Ethiopia: A Case Study of the Tigray Region Conflict
Authors: Simegn Alemayehu Ayele
Abstract:
Abstract: On November 4, 2020, the Ethiopian government launched a military operation against the Tigray People's Liberation Front (TPLF) in Ethiopia's Tigray Province, sparking the beginning of the Tigray War. This study focuses on the most recent Tigray War as it explores the effects of the civil war on Ethiopia's import and export activity. This study examines the consequences of violence on Ethiopia's trade relations, including its trading partners, export volume, and import requirements, using a combination of qualitative and quantitative data. The research outcome showed that Ethiopia's trade activities have suffered significantly as a result of the Tigray conflict, with both imports and exports declining. Particularly, the violence has hampered logistics and transportation networks, which has reduced the number of products exported and imported. Furthermore, the conflict has weakened Ethiopia's trading relationships and reduced demand for Ethiopian commodities. The survey also reveals that some of Ethiopia's major trade routes have been closed as a result of the conflict, severely restricting trade activities. These findings underline the necessity for political stability and conflict resolution procedures to support the nation's import and export activity by indicating that civil war has substantial repercussions for Ethiopia's economic development and trade activities.Keywords: import demands, logistic networks, trade partiners, trade relatinships
Procedia PDF Downloads 861978 Investigating the Glass Ceiling Phenomenon: An Empirical Study of Glass Ceiling's Effects on Selection, Promotion and Female Effectiveness
Authors: Sharjeel Saleem
Abstract:
The glass ceiling has been a burning issue for many researchers. In this research, we examine gender of the BOD, training and development, workforce diversity, positive attitude towards women, and employee acts as antecedents of glass ceiling. Furthermore, we also look for effects of glass ceiling on likelihood of female selection and promotion and on female effectiveness. Multiple linear regression conducted on data drawn from different public and private sector organizations support our hypotheses. The research, however, is limited to Faisalabad city and only females from minority group are targeted here.Keywords: glass ceiling, stereotype attitudes, female effectiveness
Procedia PDF Downloads 2921977 Democracy as a Curve: A Study on How Democratization Impacts Economic Growth
Authors: Henrique Alpalhão
Abstract:
This paper attempts to model the widely studied relationship between a country's economic growth and its level of democracy, with an emphasis on possible non-linearities. We adopt the concept of 'political capital' as a measure of democracy, which is extremely uncommon in the literature and brings considerable advantages both in terms of dynamic considerations and plausibility. While the literature is not consensual on this matter, we obtain, via panel Arellano-Bond regression analysis on a database of more than 60 countries over 50 years, significant and robust results that indicate that the impact of democratization on economic growth varies according to the stage of democratic development each country is in.Keywords: democracy, economic growth, political capital, political economy
Procedia PDF Downloads 3231976 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 951975 Dividend Payout and Capital Structure: A Family Firm Perspective
Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra
Abstract:
Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.Keywords: dividend, family firms, leverage, ownership structure
Procedia PDF Downloads 2811974 Foot Self-Monitoring Knowledge, Attitude, Practice, and Related Factors among Diabetic Patients: A Descriptive and Correlational Study in a Taiwan Teaching Hospital
Authors: Li-Ching Lin, Yu-Tzu Dai
Abstract:
Recurrent foot ulcers or foot amputation have a major impact on patients with diabetes mellitus (DM), medical professionals, and society. A critical procedure for foot care is foot self-monitoring. Medical professionals’ understanding of patients’ foot self-monitoring knowledge, attitude, and practice is beneficial for raising patients’ disease awareness. This study investigated these and related factors among patients with DM through a descriptive study of the correlations. A scale for measuring the foot self-monitoring knowledge, attitude, and practice of patients with DM was used. Purposive sampling was adopted, and 100 samples were collected from the respondents’ self-reports or from interviews. The statistical methods employed were an independent-sample t-test, one-way analysis of variance, Pearson correlation coefficient, and multivariate regression analysis. The findings were as follows: the respondents scored an average of 12.97 on foot self-monitoring knowledge, and the correct answer rate was 68.26%. The respondents performed relatively lower in foot health screenings and recording, and awareness of neuropathy in the foot. The respondents held a positive attitude toward self-monitoring their feet and a negative attitude toward having others check the soles of their feet. The respondents scored an average of 12.64 on foot self-monitoring practice. Their scores were lower in their frequency of self-monitoring their feet, recording their self-monitoring results, checking their pedal pulse, and examining if their soles were red immediately after taking off their shoes. Significant positive correlations were observed among foot self-monitoring knowledge, attitude, and practice. The correlation coefficient between self-monitoring knowledge and self-monitoring practice was 0.20, and that between self-monitoring attitude and self-monitoring practice was 0.44. Stepwise regression analysis revealed that the main predictive factors of the foot self-monitoring practice in patients with DM were foot self-monitoring attitude, prior experience in foot care, and an educational attainment of college or higher. These factors predicted 33% of the variance. This study concludes that patients with DM lacked foot self-monitoring practice and advises that the patients’ self-monitoring abilities be evaluated first, including whether patients have poor eyesight, difficulties in bending forward due to obesity, and people who can assist them in self-monitoring. In addition, patient education should emphasize self-monitoring knowledge and practice, such as perceptions regarding the symptoms of foot neurovascular lesions, pulse monitoring methods, and new foot self-monitoring equipment. By doing so, new or recurring ulcers may be discovered in their early stages.Keywords: diabetic foot, foot self-monitoring attitude, foot self-monitoring knowledge, foot self-monitoring practice
Procedia PDF Downloads 1971973 High School Gain Analytics From National Assessment Program – Literacy and Numeracy and Australian Tertiary Admission Rankin Linkage
Authors: Andrew Laming, John Hattie, Mark Wilson
Abstract:
Nine Queensland Independent high schools provided deidentified student-matched ATAR and NAPLAN data for all 1217 ATAR graduates since 2020 who also sat NAPLAN at the school. Graduating cohorts from the nine schools contained a mean 100 ATAR graduates with previous NAPLAN data from their school. Excluded were vocational students (mean=27) and any ATAR graduates without NAPLAN data (mean=20). Based on Index of Community Socio-Educational Access (ICSEA) prediction, all schools had larger that predicted proportions of their students graduating with ATARs. There were an additional 173 students not releasing their ATARs to their school (14%), requiring this data to be inferred by schools. Gain was established by first converting each student’s strongest NAPLAN domain to a statewide percentile, then subtracting this result from final ATAR. The resulting ‘percentile shift’ was corrected for plausible ATAR participation at each NAPLAN level. Strongest NAPLAN domain had the highest correlation with ATAR (R2=0.58). RESULTS School mean NAPLAN scores fitted ICSEA closely (R2=0.97). Schools achieved a mean cohort gain of two ATAR rankings, but only 66% of students gained. This ranged from 46% of top-NAPLAN decile students gaining, rising to 75% achieving gains outside the top decile. The 54% of top-decile students whose ATAR fell short of prediction lost a mean 4.0 percentiles (or 6.2 percentiles prior to correction for regression to the mean). 71% of students in smaller schools gained, compared to 63% in larger schools. NAPLAN variability in each of the 13 ICSEA1100 cohorts was 17%, with both intra-school and inter-school variation of these values extremely low (0.3% to 1.8%). Mean ATAR change between years in each school was just 1.1 ATAR ranks. This suggests consecutive school cohorts and ICSEA-similar schools share very similar distributions and outcomes over time. Quantile analysis of the NAPLAN/ATAR revealed heteroscedasticity, but splines offered little additional benefit over simple linear regression. The NAPLAN/ATAR R2 was 0.33. DISCUSSION Standardised data like NAPLAN and ATAR offer educators a simple no-cost progression metric to analyse performance in conjunction with their internal test results. Change is expressed in percentiles, or ATAR shift per student, which is layperson intuitive. Findings may also reduce ATAR/vocational stream mismatch, reveal proportions of cohorts meeting or falling short of expectation and demonstrate by how much. Finally, ‘crashed’ ATARs well below expectation are revealed, which schools can reasonably work to minimise. The percentile shift method is neither value-add nor a growth percentile. In the absence of exit NAPLAN testing, this metric is unable to discriminate academic gain from legitimate ATAR-maximizing strategies. But by controlling for ICSEA, ATAR proportion variation and student mobility, it uncovers progression to ATAR metrics which are not currently publicly available. However achieved, ATAR maximisation is a sought-after private good. So long as standardised nationwide data is available, this analysis offers useful analytics for educators and reasonable predictivity when counselling subsequent cohorts about their ATAR prospects.Keywords: NAPLAN, ATAR, analytics, measurement, gain, performance, data, percentile, value-added, high school, numeracy, reading comprehension, variability, regression to the mean
Procedia PDF Downloads 681972 Effects of Cash Transfers Mitigation Impacts in the Face of Socioeconomic External Shocks: Evidence from Egypt
Authors: Basma Yassa
Abstract:
Evidence on cash transfers’ effectiveness in mitigating macro and idiosyncratic shocks’ impacts has been mixed and is mostly concentrated in Latin America, Sub-Saharan Africa, and South Asia with very limited evidence from the MENA region. Yet conditional cash transfers schemes have been continually used, especially in Egypt, as the main social protection tool in response to the recent socioeconomic crises and macro shocks. We use 2 panel datasets and 1 cross-sectional dataset to estimate the effectiveness of cash transfers as a shock-mitigative mechanism in the Egyptian context. In this paper, the results from the different models (Panel Fixed Effects model and the Regression Discontinuity Design (RDD) model) confirm that micro and macro shocks lead to significant decline in several household-level welfare outcomes and that Takaful cash transfers have a significant positive impact in mitigating the negative shock impacts, especially on households’ debt incidence, debt levels, and asset ownership, but not necessarily on food, and non-food expenditure levels. The results indicate large positive significant effects on decreasing household incidence of debt by up to 12.4 percent and lowered the debt size by approximately 18 percent among Takaful beneficiaries compared to non-beneficiaries’. Similar evidence is found on asset ownership levels, as the RDD model shows significant positive effects on total asset ownership and productive asset ownership, but the model failed to detect positive impacts on per capita food and non-food expenditures. Further extensions are still in progress to compare the models’ results with the DID model results when using a nationally representative ELMPS panel data (2018/2024) rounds. Finally, our initial analysis suggests that conditional cash transfers are effective in buffering the negative shock impacts on certain welfare indicators even after successive macro-economic shocks in 2022 and 2023 in the Egyptian Context.Keywords: cash transfers, fixed effects, household welfare, household debt, micro shocks, regression discontinuity design
Procedia PDF Downloads 471971 Inbreeding and Its Effect on Growth Performance in a Closed Herd of New Zealand White Rabbits
Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi
Abstract:
The influence of inbreeding on growth traits in the New Zealand White rabbits maintained at Sheep Breeding and Research Station, Sandynallah, The Nilgiris, India was studied in a closed herd. Data were collected over a period of 15 years (1998 to 2012). The traits studied were body weights at weaning (W42), post-weaning (W70) and marketing (W135) age and growth efficiency traits viz., average daily gain (ADG), relative growth rate (RGR) and Kleiber ratio (KR) estimated on a daily basis at different age intervals (1=42 to 70 days; 2=70 to 135 days and 3=42 to 135 days) from weaning to marketing. The effects of inbreeding along with other non-genetic factors (sex of the kit, season and period of birth of the kit) were analyzed using least-squares method. The inbreeding (F) and equivalent inbreeding (EF) coefficients were taken as fixed classes as well as covariates in separate analyses. When taken as covariate, the effect was analyzed as partial regression of respective growth trait on individual inbreeding coefficient (F or EF). The mean body weights at weaning, post-weaning and marketing were 0.715, 1.276 and 2.187 kg, respectively. The maximum growth efficiency was noticed between weaning and post-weaning. Season and period had highly significant influence on all the growth parameters studied and sex of the kit had significant influence on certain growth efficiency traits only. The average coefficients of inbreeding and equivalent inbreeding in the population were 13.233 and 17.585 percent, respectively. About 11.17 percent of total matings were highly inbred in which full-sib, half-sib and parent-offspring matings were 1.20, 6.30 and 3.67 percent, respectively. The regression of body weight traits on F and EF showed negative effect whereas most of the growth efficiency traits showed positive effects. Significant inbreeding depression was observed in W42 and W70. The depression in W42 was 0.214 kg and 0.139 kg and in W70 was 0.269 kg and 0.172 kg for every one unit increase in F and EF, respectively. Though the trait W135 showed positive value and ADG1 showed depression, the effects of inbreeding and equivalent inbreeding were non-significant in these traits. Higher values of inbreeding depression could be due to more variance of F or EF in the population. The analysis of the effect of level of inbreeding on growth traits revealed that the inbreeding class was significant on W70, ADG2, RGR2 and KR2 while EF classes had significant influence only on ADG2, RGR2 and KR2. Obviously, inbreeding does not have a positive effect, therefore, these results suggest that inbreeding had no effect on these traits.Keywords: growth parameters, equivalent inbreeding, inbreeding effects, rabbit genetics
Procedia PDF Downloads 3671970 Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: smaw, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4541969 Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding
Authors: D. S. Nagesh, G. L. Datta
Abstract:
In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted.Keywords: SMAW, genetic algorithm, bead geometry, optimization/inverse mapping
Procedia PDF Downloads 4211968 ScRNA-Seq RNA Sequencing-Based Program-Polygenic Risk Scores Associated with Pancreatic Cancer Risks in the UK Biobank Cohort
Authors: Yelin Zhao, Xinxiu Li, Martin Smelik, Oleg Sysoev, Firoj Mahmud, Dina Mansour Aly, Mikael Benson
Abstract:
Background: Early diagnosis of pancreatic cancer is clinically challenging due to vague, or no symptoms, and lack of biomarkers. Polygenic risk score (PRS) scores may provide a valuable tool to assess increased or decreased risk of PC. This study aimed to develop such PRS by filtering genetic variants identified by GWAS using transcriptional programs identified by single-cell RNA sequencing (scRNA-seq). Methods: ScRNA-seq data from 24 pancreatic ductal adenocarcinoma (PDAC) tumor samples and 11 normal pancreases were analyzed to identify differentially expressed genes (DEGs) in in tumor and microenvironment cell types compared to healthy tissues. Pathway analysis showed that the DEGs were enriched for hundreds of significant pathways. These were clustered into 40 “programs” based on gene similarity, using the Jaccard index. Published genetic variants associated with PDAC were mapped to each program to generate program PRSs (pPRSs). These pPRSs, along with five previously published PRSs (PGS000083, PGS000725, PGS000663, PGS000159, and PGS002264), were evaluated in a European-origin population from the UK Biobank, consisting of 1,310 PDAC participants and 407,473 non-pancreatic cancer participants. Stepwise Cox regression analysis was performed to determine associations between pPRSs with the development of PC, with adjustments of sex and principal components of genetic ancestry. Results: The PDAC genetic variants were mapped to 23 programs and were used to generate pPRSs for these programs. Four distinct pPRSs (P1, P6, P11, and P16) and two published PRSs (PGS000663 and PGS002264) were significantly associated with an increased risk of developing PC. Among these, P6 exhibited the greatest hazard ratio (adjusted HR[95% CI] = 1.67[1.14-2.45], p = 0.008). In contrast, P10 and P4 were associated with lower risk of developing PC (adjusted HR[95% CI] = 0.58[0.42-0.81], p = 0.001, and adjusted HR[95% CI] = 0.75[0.59-0.96], p = 0.019). By comparison, two of the five published PRS exhibited an association with PDAC onset with HR (PGS000663: adjusted HR[95% CI] = 1.24[1.14-1.35], p < 0.001 and PGS002264: adjusted HR[95% CI] = 1.14[1.07-1.22], p < 0.001). Conclusion: Compared to published PRSs, scRNA-seq-based pPRSs may be used not only to assess increased but also decreased risk of PDAC.Keywords: cox regression, pancreatic cancer, polygenic risk score, scRNA-seq, UK biobank
Procedia PDF Downloads 1031967 Testing a Dose-Response Model of Intergenerational Transmission of Family Violence
Authors: Katherine Maurer
Abstract:
Background and purpose: Violence that occurs within families is a global social problem. Children who are victims or witness to family violence are at risk for many negative effects both proximally and distally. One of the most disconcerting long-term effects occurs when child victims become adult perpetrators: the intergenerational transmission of family violence (ITFV). Early identification of those children most at risk for ITFV is needed to inform interventions to prevent future family violence perpetration and victimization. Only about 25-30% of child family violence victims become perpetrators of adult family violence (either child abuse, partner abuse, or both). Prior research has primarily been conducted using dichotomous measures of exposure (yes; no) to predict ITFV, given the low incidence rate in community samples. It is often assumed that exposure to greater amounts of violence predicts greater risk of ITFV. However, no previous longitudinal study with a community sample has tested a dose-response model of exposure to physical child abuse and parental physical intimate partner violence (IPV) using count data of frequency and severity of violence to predict adult ITFV. The current study used advanced statistical methods to test if increased childhood exposure would predict greater risk of ITFV. Methods: The study utilized 3 panels of prospective data from a cohort of 15 year olds (N=338) from the Project on Human Development in Chicago Neighborhoods longitudinal study. The data were comprised of a stratified probability sample of seven ethnic/racial categories and three socio-economic status levels. Structural equation modeling was employed to test a hurdle regression model of dose-response to predict ITFV. A version of the Conflict Tactics Scale was used to measure physical violence victimization, witnessing parental IPV and young adult IPV perpetration and victimization. Results: Consistent with previous findings, past 12 months incidence rates severity and frequency of interpersonal violence were highly skewed. While rates of parental and young adult IPV were about 40%, an unusually high rate of physical child abuse (57%) was reported. The vast majority of a number of acts of violence, whether minor or severe, were in the 1-3 range in the past 12 months. Reported frequencies of more than 5 times in the past year were rare, with less than 10% of those reporting more than six acts of minor or severe physical violence. As expected, minor acts of violence were much more common than acts of severe violence. Overall, regression analyses were not significant for the dose-response model of ITFV. Conclusions and implications: The results of the dose-response model were not significant due to a lack of power in the final sample (N=338). Nonetheless, the value of the approach was confirmed for the future research given the bi-modal nature of the distributions which suggest that in the context of both child physical abuse and physical IPV, there are at least two classes when frequency of acts is considered. Taking frequency into account in predictive models may help to better understand the relationship of exposure to ITFV outcomes. Further testing using hurdle regression models is suggested.Keywords: intergenerational transmission of family violence, physical child abuse, intimate partner violence, structural equation modeling
Procedia PDF Downloads 2441966 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life
Authors: Desplanches Maxime
Abstract:
Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression
Procedia PDF Downloads 701965 Higher Freshwater Fish and Sea Fish Intake Is Inversely Associated with Liver Cancer in Patients with Hepatitis B
Authors: Maomao Cao
Abstract:
Background and aims While the association between higher consumption of fish and lower liver cancer risk has been confirmed, however, the association between specific fish intake and liver cancer risk remains unknown. We aimed to identify the association between specific fish consumption and the risk of liver cancer. Methods: Based on a community-based seropositive hepatitis B cohort involving 18404 individuals, face to face interview was conducted by a standardized questionnaire to acquire baseline information. Three common fish types in this study were analyzed, including freshwater fish, sea fish, and small fish (shrimp, crab, conch, and shell). All participants received liver cancer screening, and possible cases were identified by CT or MRI. Multivariable logistic models were applied to estimate the odds ratio (OR) and 95% confidence intervals (CI). Multivariate multiple imputations were utilized to impute observations with missing values. Results: 179 liver cancer cases were identified. Consumption of freshwater fish and sea fish at least once a week had a strong inverse association with liver cancer risk compared with the lowest intake level, with an adjusted OR of 0.53 (95% CI, 0.38-0.75) and 0.38 (95% CI, 0.19-0.73), respectively. This inverse association was also observed after the imputation. There was no statistically significant association between intake of small fish and liver cancer risk (OR=0.58, 95%, CI 0.32-1.08). Conclusions: Our findings suggest that consumption of freshwater fish and sea fish at least once a week could reduce liver cancer risk.Keywords: cross-sectional study, fish intake, liver cancer, risk factor
Procedia PDF Downloads 2751964 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 321963 Interplay of Physical Activity, Hypoglycemia, and Psychological Factors: A Longitudinal Analysis in Diabetic Youth
Authors: Georges Jabbour
Abstract:
Background and aims: This two-year follow-up study explores the long-term sustainability of physical activity (PA) levels in young people with type 1 diabetes, focusing on the relationship between PA, hypoglycemia, and behavioral scores. The literature highlights the importance of PA and its health benefits, as well as the barriers to engaging in PA practices. Studies have shown that individuals with high levels of vigorous physical activity have higher fear of hypoglycemia (FOH) scores and more hypoglycemia episodes. Considering that hypoglycemia episodes are a major barrier to physical activity, and many studies reported a negative association between PA and high FOH scores, it cannot be guaranteed that those experiencing hypoglycemia over a long period will remain active. Building on that, the present work assesses whether high PA levels, despite elevated hypoglycemia risk, can be maintained over time. The study tracks PA levels at one and two years, correlating them with hypoglycemia instances and Fear of Hypoglycemia (FOH) scores. Materials and methods: A self-administered questionnaire was completed by 61 youth with T1D, and their PA was assessed. Hypoglycemia episodes, fear of hypoglycemia scores and HbA1C levels were collected. All assessments were realized at baseline (visit 0: V0), one year (V1) and two years later (V2). For the purpose of the present work, we explore the relationships between PA levels, hypoglycemia episodes, and FOH scores at each time point. We used multiple linear regression to model the mean outcomes for each exposure of interest. Results: Findings indicate no changes in total moderate to vigorous PA (MVPA) and VPA levels among visits, and HbA1c (%) was negatively correlated with the total amount of VPA per day in minutes (β= -0.44; p=0.01, β= -0.37; p=0.04, and β= -0.66; p=0.01 for V0, V1, and V2, respectively). Our linear regression model reported a significant negative correlation between VPA and FOH across the visits (β=-0.59, p=0.01; β= -0.44, p=0.01; and β= -0.34, p=0.03 for V0, V1, and V2, respectively), and HbA1c (%) was influenced by both the number of hypoglycemic episodes and FOH score at V2 (β=0.48; p=0.02 and β=0.38; p=0.03, respectively). Conclusion: The sustainability of PA levels and HbA1c (%) in young individuals with type 1 diabetes is influenced by various factors, including fear of hypoglycemia. Understanding these complex interactions is essential for developing effective interventions to promote sustained PA levels in this population. Our results underline the necessity of a multi-strategic approach to promoting active lifestyles among diabetic youths. This approach should synergize PA enhancement with vigilant glucose monitoring and effective FOH management.Keywords: physical activity, hypoglycemia, fear of hypoglycemia, youth
Procedia PDF Downloads 301962 The Incidence of Obesity among Adult Women in Pekanbaru City, Indonesia, Related to High Fat Consumption, Stress Level, and Physical Activity
Authors: Yudia Mailani Putri, Martalena Purba, B. J. Istiti Kandarina
Abstract:
Background: Obesity has been recognized as a global health problem. Individuals classified as overweight and obese are increasing at an alarming rate. This condition is associated with psychological and physiological problems. as a person reaches adulthood, somatic growth ceases. At this stage, the human body has developed fully, to a stable state. As the capital of Riau Province in Indonesia, Pekanbaru is dominated by Malay ethnic population habitually consuming cholesterol-rich fatty foods as a daily menu, a trigger to the onset of obesity resulting in high prevalence of degenerative diseases. Research objectives: The aim of this study is elaborating the relationship between high-fat consumption pattern, stress level, physical activity and the incidence of obesity in adult women in Pekanbaru city. Research Methods: Among the combined research methods applied in this study, the first stage is quantitative observational, analytical cross-sectional research design with adult women aged 20-40 living in Pekanbaru city. The sample consists of 200 women with BMI≥25. Sample data is processed with univariate, bivariate (correlation and simple linear regression) and multivariate (multiple linear regression) analysis. The second phase is qualitative descriptive study purposive sampling by in-depth interviews. six participants withdrew from the study. Results: According to the results of the bivariate analysis, there are relationships between the incidence of obesity and the pattern of high fat foods consumption (energy intake (p≤0.000; r = 0.536), protein intake (p≤0.000; r=0.307), fat intake (p≤0.000; r=0.416), carbohydrate intake (p≤0.000; r=0.430), frequency of fatty food consumption (p≤0.000; r=0.506) and frequency of viscera foods consumption (p≤0.000; r=0.535). There is a relationship between physical activity and incidence of obesity (p≤0.000; r=-0.631). However, there is no relationship between the level of stress (p=0.741; r=0.019-) and the incidence of obesity. Physical activity is a predominant factor in the incidence of obesity in adult women in Pekanbaru city. Conclusion: There are relationships between high-fat food consumption pattern, physical activity and the incidence of obesity in Pekanbaru city whereas physical activity is a predominant factor in the occurrence of obesity, supported by the unchangeable pattern of high-fat foods consumption.Keywords: obesity, adult, high in fat, stress, physical activity, consumption pattern
Procedia PDF Downloads 234