Search results for: impact models
15434 Reliability Analysis of Glass Epoxy Composite Plate under Low Velocity
Authors: Shivdayal Patel, Suhail Ahmad
Abstract:
Safety assurance and failure prediction of composite material component of an offshore structure due to low velocity impact is essential for associated risk assessment. It is important to incorporate uncertainties associated with material properties and load due to an impact. Likelihood of this hazard causing a chain of failure events plays an important role in risk assessment. The material properties of composites mostly exhibit a scatter due to their in-homogeneity and anisotropic characteristics, brittleness of the matrix and fiber and manufacturing defects. In fact, the probability of occurrence of such a scenario is due to large uncertainties arising in the system. Probabilistic finite element analysis of composite plates due to low-velocity impact is carried out considering uncertainties of material properties and initial impact velocity. Impact-induced damage of composite plate is a probabilistic phenomenon due to a wide range of uncertainties arising in material and loading behavior. A typical failure crack initiates and propagates further into the interface causing de-lamination between dissimilar plies. Since individual crack in the ply is difficult to track. The progressive damage model is implemented in the FE code by a user-defined material subroutine (VUMAT) to overcome these problems. The limit state function is accordingly established while the stresses in the lamina are such that the limit state function (g(x)>0). The Gaussian process response surface method is presently adopted to determine the probability of failure. A comparative study is also carried out for different combination of impactor masses and velocities. The sensitivity based probabilistic design optimization procedure is investigated to achieve better strength and lighter weight of composite structures. Chain of failure events due to different modes of failure is considered to estimate the consequences of failure scenario. Frequencies of occurrence of specific impact hazards yield the expected risk due to economic loss.Keywords: composites, damage propagation, low velocity impact, probability of failure, uncertainty modeling
Procedia PDF Downloads 27915433 Machine Learning Analysis of Student Success in Introductory Calculus Based Physics I Course
Authors: Chandra Prayaga, Aaron Wade, Lakshmi Prayaga, Gopi Shankar Mallu
Abstract:
This paper presents the use of machine learning algorithms to predict the success of students in an introductory physics course. Data having 140 rows pertaining to the performance of two batches of students was used. The lack of sufficient data to train robust machine learning models was compensated for by generating synthetic data similar to the real data. CTGAN and CTGAN with Gaussian Copula (Gaussian) were used to generate synthetic data, with the real data as input. To check the similarity between the real data and each synthetic dataset, pair plots were made. The synthetic data was used to train machine learning models using the PyCaret package. For the CTGAN data, the Ada Boost Classifier (ADA) was found to be the ML model with the best fit, whereas the CTGAN with Gaussian Copula yielded Logistic Regression (LR) as the best model. Both models were then tested for accuracy with the real data. ROC-AUC analysis was performed for all the ten classes of the target variable (Grades A, A-, B+, B, B-, C+, C, C-, D, F). The ADA model with CTGAN data showed a mean AUC score of 0.4377, but the LR model with the Gaussian data showed a mean AUC score of 0.6149. ROC-AUC plots were obtained for each Grade value separately. The LR model with Gaussian data showed consistently better AUC scores compared to the ADA model with CTGAN data, except in two cases of the Grade value, C- and A-.Keywords: machine learning, student success, physics course, grades, synthetic data, CTGAN, gaussian copula CTGAN
Procedia PDF Downloads 4415432 Vibrations of Springboards: Mode Shape and Time Domain Analysis
Authors: Stefano Frassinelli, Alessandro Niccolai, Riccardo E. Zich
Abstract:
Diving is an important Olympic sport. In this sport, the effective performance of the athlete is related to his capability to interact correctly with the springboard. In fact, the elevation of the jump and the correctness of the dive are influenced by the vibrations of the board. In this paper, the vibrations of the springboard will be analyzed by means of typical tools for vibration analysis: Firstly, a modal analysis will be done on two different models of the springboard, then, these two model and another one will be analyzed with a time analysis, done integrating the equations of motion od deformable bodies. All these analyses will be compared with experimental data measured on a real springboard by means of a 6-axis accelerometer; these measurements are aimed to assess the models proposed. The acquired data will be analyzed both in frequency domain and in time domain.Keywords: springboard analysis, modal analysis, time domain analysis, vibrations
Procedia PDF Downloads 46015431 Predicting the Effect of Silicon Electrode Design Parameters on Thermal Performance of a Lithium-Ion Battery
Authors: Harika Dasari, Eric Eisenbraun
Abstract:
The present study models the role of electrode structural characteristics on the thermal behavior of lithium-ion batteries. Preliminary modeling runs have employed a 1D lithium-ion battery coupled to a two-dimensional axisymmetric model using silicon as the battery anode material. The two models are coupled by the heat generated and the average temperature. Our study is focused on the silicon anode particle sizes and it is observed that silicon anodes with nano-sized particles reduced the temperature of the battery in comparison to anodes with larger particles. These results are discussed in the context of the relationship between particle size and thermal transport properties in the electrode.Keywords: particle size, NMC, silicon, heat generation, separator
Procedia PDF Downloads 28915430 Stability Analysis of Two-delay Differential Equation for Parkinson's Disease Models with Positive Feedback
Authors: M. A. Sohaly, M. A. Elfouly
Abstract:
Parkinson's disease (PD) is a heterogeneous movement disorder that often appears in the elderly. PD is induced by a loss of dopamine secretion. Some drugs increase the secretion of dopamine. In this paper, we will simply study the stability of PD models as a nonlinear delay differential equation. After a period of taking drugs, these act as positive feedback and increase the tremors of patients, and then, the differential equation has positive coefficients and the system is unstable under these conditions. We will present a set of suggested modifications to make the system more compatible with the biodynamic system. When giving a set of numerical examples, this research paper is concerned with the mathematical analysis, and no clinical data have been used.Keywords: Parkinson's disease, stability, simulation, two delay differential equation
Procedia PDF Downloads 13015429 Selection of Variogram Model for Environmental Variables
Authors: Sheikh Samsuzzhan Alam
Abstract:
The present study investigates the selection of variogram model in analyzing spatial variations of environmental variables with the trend. Sometimes, the autofitted theoretical variogram does not really capture the true nature of the empirical semivariogram. So proper exploration and analysis are needed to select the best variogram model. For this study, an open source data collected from California Soil Resource Lab1 is used to explain the problems when fitting a theoretical variogram. Five most commonly used variogram models: Linear, Gaussian, Exponential, Matern, and Spherical were fitted to the experimental semivariogram. Ordinary kriging methods were considered to evaluate the accuracy of the selected variograms through cross-validation. This study is beneficial for selecting an appropriate theoretical variogram model for environmental variables.Keywords: anisotropy, cross-validation, environmental variables, kriging, variogram models
Procedia PDF Downloads 33415428 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability
Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli
Abstract:
Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability
Procedia PDF Downloads 14715427 Chemometric Analysis of Raw Milk Quality Originating from Conventional and Organic Dairy Farming in AP Vojvodina, Serbia
Authors: Sanja Podunavac-Kuzmanović, Denis Kučević, Strahinja Kovačević, Milica Karadžić, Lidija Jevrić
Abstract:
The present study describes the application of chemometric methods in analysis of milk samples which were collected in a conventional dairy farm and an organic dairy farm in AP Vojvodina, Republic of Serbia. The chemometric analysis included the application of univariate regression modeling and Analysis of Variance (ANOVA) method. The ANOVA was used in order to determine the differences in fatty acids content in the milk samples from conventional and organic farm. The results of the ANOVA testing indicate that there is a highly statistically significant difference between the content of fatty acid (saturated fatty acid vs. unsaturated fatty acids) in different dairy farming. Besides, the linear univariate models have been obtained as a result of modeling the linear relationships between the milk fat content and saturated fatty acids content, and the linear relationships between the milk fat content and unsaturated fatty acids content. The models obtained on the basis of the milk samples which originate from the organic farming are statistically better than the models based on the milk samples from conventional farming.Keywords: hemometrics, milk, organic farming, quality control
Procedia PDF Downloads 23615426 Exploring the Impact of Location on Urban and Peri-Urban Farming: A Case Study from Lusaka, Zambia
Authors: Cecilia Elisabeth Fåhraeus
Abstract:
In 2016, this author conducted a study on agricultural livelihoods in urban and peri-urban low-income settings in Lusaka, Zambia. The overarching aim was to determine the impact of physical space on agricultural activities, with a particular emphasis on geographical distinctions between urban and peri-urban environments. Agricultural activities among the areas’ residents were mapped through questionnaires, interviews and observations, and included variables such as type of activity and product; degree of marketization; inputs; location of production, storage and vending; labour distribution; production constraints, and associated mobility patterns, among others. The study confirmed that spatial idiosyncrasies of urban and peri-urban environments both enabled and constrained agricultural activity, but not always as anticipated. There were also cross-cutting issues on which physical space appeared to have a limited impact.Keywords: agricultural production systems, geography, low-income settlements, Lusaka, peri-urban, urban
Procedia PDF Downloads 33015425 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models
Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales
Abstract:
The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.Keywords: concrete bridges, deterioration, Markov chains, probability matrix
Procedia PDF Downloads 33615424 Finite Element Modeling of Ultrasonic Shot Peening Process using Multiple Pin Impacts
Authors: Chao-xun Liu, Shi-hong Lu
Abstract:
In spite of its importance to the aerospace and automobile industries, little or no attention has been devoted to the accurate modeling of the ultrasonic shot peening (USP) process. It is therefore the purpose of this study to conduct finite element analysis of the process using a realistic multiple pin impacts model with the explicit solver of ABAQUS. In this paper, we research the effect of several key parameters on the residual stress distribution within the target, including impact velocity, incident angle, friction coefficient between pins and target and impact number of times were investigated. The results reveal that the impact velocity and impact number of times have obvious effect and impacting vertically could produce the most perfect residual stress distribution. Then we compare the results with the date in USP experiment and verify the exactness of the model. The analysis of the multiple pin impacts date reveal the relationships between peening process parameters and peening quality, which are useful for identifying the parameters which need to be controlled and regulated in order to produce a more beneficial compressive residual stress distribution within the target.Keywords: ultrasonic shot peening, finite element, multiple pins, residual stress, numerical simulation
Procedia PDF Downloads 44815423 Perception of Young Consumers about SMS Marketing in Pakistan
Authors: Raja Irfan Sabir, Nargis Dewan
Abstract:
This study examines the role of SMS marketing on perception of young consumers and its impact on society by keeping in mind the culture, values and communication norms of Pakistan. The study focused on the consumer’s perception towards SMS Marketing of Entertainment, Informativeness, Credibility and Irritation factor which can have influence on the perception of young consumer positively or negatively. It’s also observed that some of the message contents do have good or bad impact on the society’s norm. The result derived from a sample of 200 consumers indicate that communication medium ‘SMS marketing’ positively influence the consumers perception but the messages that consumers receive from these companies are against the social norms and have bad impact. So Pakistani entrepreneurs of cellular industries should be more aware that there is need to somehow modify their message content strategies according to culture, norms and values of our society and environmental situation.Keywords: SMS marketing, messages content, consumers’ perception, cultural values and norms
Procedia PDF Downloads 39515422 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)
Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar
Abstract:
Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow
Procedia PDF Downloads 16315421 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 5515420 A Model for Academic Coaching for Success and Inclusive Excellence in Science, Technology, Engineering, and Mathematics Education
Authors: Sylvanus N. Wosu
Abstract:
Research shows that factors, such as low motivation, preparation, resources, emotional and social integration, and fears of risk-taking, are the most common barriers to access, matriculation, and retention into science, technology, engineering, and mathematics (STEM) disciplines for underrepresented (URM) students. These factors have been shown to impact students’ attraction and success in STEM fields. Standardized tests such as the SAT and ACT often used as predictor of success, are not always true predictors of success for African and Hispanic American students. Without an adequate academic support environment, even a high SAT score does not guarantee academic success in science and engineering. This paper proposes a model for Academic Coaching for building success and inclusive excellence in STEM education. Academic coaching is framed as a process of motivating students to be independent learners through relational mentorship, facilitating learning supports inside and outside of the classroom or school environment, and developing problem-solving skills and success attitudes that lead to higher performance in the specific subjects. The model is formulated based on best strategies and practices for enriching Academic Performance Impact skills and motivating students’ interests in STEM. A scaled model for measuring the Academic Performance Impact (API) index and STEM is discussed. The study correlates API with state standardized test and shows that the average impact of those skills can be predicted by the Academic Performance Impact (API) index or Academic Preparedness Index.Keywords: diversity, equity, graduate education, inclusion, inclusive excellence, model
Procedia PDF Downloads 20115419 Future Design and Innovative Economic Models for Futuristic Markets in Developing Countries
Authors: Nessreen Y. Ibrahim
Abstract:
Designing the future according to realistic analytical study for the futuristic market needs can be a milestone strategy to make a huge improvement in developing countries economics. In developing countries, access to high technology and latest science approaches is very limited. The financial problems in low and medium income countries have negative effects on the kind and quality of imported new technologies and application for their markets. Thus, there is a strong need for shifting paradigm thinking in the design process to improve and evolve their development strategy. This paper discusses future possibilities in developing countries, and how they can design their own future according to specific future models FDM (Future Design Models), which established to solve certain economical problems, as well as political and cultural conflicts. FDM is strategic thinking framework provides an improvement in both content and process. The content includes; beliefs, values, mission, purpose, conceptual frameworks, research, and practice, while the process includes; design methodology, design systems, and design managements tools. In this paper the main objective was building an innovative economic model to design a chosen possible futuristic scenario; by understanding the market future needs, analyze real world setting, solve the model questions by future driven design, and finally interpret the results, to discuss to what extent the results can be transferred to the real world. The paper discusses Egypt as a potential case study. Since, Egypt has highly complex economical problems, extra-dynamic political factors, and very rich cultural aspects; we considered Egypt is a very challenging example for applying FDM. The paper results recommended using FDM numerical modeling as a starting point to design the future.Keywords: developing countries, economic models, future design, possible futures
Procedia PDF Downloads 26715418 Cognitive Models of Health Marketing Communication in the Digital Era: Psychological Factors, Challenges, and Implications
Authors: Panas Gerasimos, Kotidou Varvara, Halkiopoulos Constantinos, Gkintoni Evgenia
Abstract:
As a result of growing technology and briefing by the internet, users resort to the internet and subsequently to the opinion of an expert. In many cases, they take control of their health in their hand and make a decision without the contribution of a doctor. According to that, this essay intends to analyze the confidence of searching health issues on the internet. For the fulfillment of this study, there has been a survey among doctors in order to find out the reasons a patient uses the internet about their health problems and the consequences that health information could lead by searching on the internet, as well. Specifically, the results regarding the research of the users demonstrate: a) the majority of users make use of the internet about health issues once or twice a month, b) individuals that possess chronic disease make health search on the internet more frequently, c) the most important topics that the majority of users usually search are pathological, dietary issues and the search of issues that are associated with doctors and hospitals. However, it observed that topic search varies depending on the users’ age, d) the most common sources of information concern the direct contact with doctors, as there is a huge preference from the majority of users over the use of the electronic form for their briefing and e) it has been observed that there is large lack of knowledge about e-health services. From the doctor's point of view, the following conclusions occur: a) almost all doctors use the internet as their main source of information, b) the internet has great influence over doctors’ relationship with the patients, c) in many cases a patient first makes a visit to the internet and then to the doctor, d) the internet significantly has a psychological impact on patients in order to for them to reach a decision, e) the most important reason users choose the internet instead of the health professional is economic, f) the negative consequence that emerges is inaccurate information, g) and the positive consequences are about the possibility of online contact with the doctor and contributes to the easy comprehension of the doctor, as well. Generally, it’s observed from both sides that the use of the internet in health issues is intense, which declares that the new means the doctors have at their disposal, produce the conditions for radical changes in the way of providing services and in the doctor-patient relationship.Keywords: cognitive models, health marketing, e-health, psychological factors, digital marketing, e-health services
Procedia PDF Downloads 20615417 Rivers Drain Impact on the Black Sea Coastal Line Biocenosis within the Greater Sochi Area Assessed by Bioassay Method
Authors: Gorbunova Tatiana L.
Abstract:
The research is dedicated to the study of the polluted river inflow impact on the Black Sea coastal marine environment within the watercourse’s plumes in the Greater Sochi area applying bioassay methods using freshwater and marine microalgae. River waters were analyzed using microalgae Chlorella vulgaris Beijer and sea waters were tested with marine diatoms Phaeodactylum tricornutum Bohlin. Experiments included algae cell abundancy growth assessments in acute (24 hours), sub-acute (72 hours) and chronic (168 hours / 7 days) tests. The increase in algal cell growth rates compared to the control in the summer period was detected as a consequence of the recreational activities intensification during the tourism seasonal peak. Most of the analyzed samples demonstrated a significant effect of algae cell growth stimulation compared to the control. It is established that under the impact of contaminants carried by river drain to the sea, the capacity of the coastal marine ecosystem is partially capable of compensating for its effect on the coastal biocenosis, but the general trends of the impact processes remain constant.Keywords: algae abundance growth, bioassay, microalgae, modeling
Procedia PDF Downloads 6315416 Forecasting Solid Waste Generation in Turkey
Authors: Yeliz Ekinci, Melis Koyuncu
Abstract:
Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.Keywords: forecast, solid waste generation, solid waste management, Turkey
Procedia PDF Downloads 50715415 CAD Tool for Parametric Design modification of Yacht Hull Surface Models
Authors: Shahroz Khan, Erkan Gunpinar, Kemal Mart
Abstract:
Recently parametric design techniques became a vital concept in the field of Computer Aided Design (CAD), which helps to provide sophisticated platform to the designer in order to automate the design process in efficient time. In these techniques, design process starts by parameterizing the important features of design models (typically the key dimensions), with the implementation of design constraints. The design constraints help to retain the overall shape of the model while modifying its parameters. However, the process of initializing an appropriate number of design parameters and constraints is the crucial part of parametric design techniques, especially for complex surface models such as yacht hull. This paper introduces a method to create complex surface models in favor of parametric design techniques, a method to define the right number of parameters and respective design constraints, and a system to implement design parameters in contract to design constraints schema. For this, in our proposed approach the design process starts by dividing the yacht hull into three sections. Each section consists of different shape lines, which form the overall shape of yacht hull. The shape lines are created using Cubic Bezier Curves, which allow larger design flexibility. Design parameters and constraints are defined on the shape lines in 3D design space to facilitate the designers for better and individual handling of parameters. Afterwards, shape modifiers are developed, which allow the modification of each parameter while satisfying the respective set of criteria and design constraints. Such as, geometric continuities should be maintained between the shape lines of the three sections, fairness of the hull surfaces should be preserved after modification and while design modification, effect of a single parameter should be negligible on other parameters. The constraints are defined individually on shape lines of each section and mutually between the shape lines of two connecting sections. In order to validate and visualize design results of our shape modifiers, a real time graphic interface is created.Keywords: design parameter, design constraints, shape modifies, yacht hull
Procedia PDF Downloads 30115414 Effects of Non-Diagnostic Haptic Information on Consumers' Product Judgments and Decisions
Authors: Eun Young Park, Jongwon Park
Abstract:
A physical touch of a product can provide ample diagnostic information about the product attributes and quality. However, consumers’ product judgments and purchases can be erroneously influenced by non-diagnostic haptic information. For example, consumers’ evaluations of the coffee they drink could be affected by the heaviness of a cup that is used for just serving the coffee. This important issue has received little attention in prior research. The present research contributes to the literature by identifying when and how non-diagnostic haptic information can have an influence and why such influence occurs. Specifically, five studies experimentally varied the content of non-diagnostic haptic information, such as the weight of a cup (heavy vs. light) and the texture of a cup holder (smooth vs. rough), and then assessed the impact of the manipulation on product judgments and decisions. Results show that non-diagnostic haptic information has a biasing impact on consumer judgments. For example, the heavy (vs. light) cup increases consumers’ perception of the richness of coffee in it, and the rough (vs. smooth) texture of a cup holder increases the perception of the healthfulness of fruit juice in it, which in turn increases consumers’ purchase intentions of the product. When consumers are cognitively distracted during the touch experience, the impact of the content of haptic information is no longer evident, but the valence (positive vs. negative) of the haptic experience influences product judgments. However, consumers are able to avoid the impact of non-diagnostic haptic information, if and only if they are both knowledgeable about the product category and undistracted from processing the touch experience. In sum, the nature of the influence by non-diagnostic haptic information (i.e., assimilation effect vs. contrast effect vs. null effect) is determined by the content and valence of haptic information, the relative impact of which depends on whether consumers can identify the content and source of the haptic information. Theoretically, to our best knowledge, this research is the first to document the empirical evidence of the interplay between cognitive and affective processes that determines the impact of non-diagnostic haptic information. Managerial implications are discussed.Keywords: consumer behavior, haptic information, product judgments, touch effect
Procedia PDF Downloads 17415413 An Assessment of the Impact of Safe Motherhood Initiative on Maternal Health of Women in Gumel Local Government Area of Jigawa State, Nigeria
Authors: Ahmed Mudi, Bala Zakar
Abstract:
The paper assesses the impact of safe motherhood initiative on maternal health of women in Gumel Local Government Area of Jigawa State. The work will specifically concentrate on the background on safe motherhood scheme and maternal health of women. The objective of this paper is to assess the level of safe motherhood scheme in Gumel local government area, to find out the level of maternal health in Gumel local government as well as to determine the impact of safe motherhood scheme on maternal health on women in Gumel Local Government Area Jigawa State. Various literature on the topic are reviewed, the paper adopts survey design and use questionnaire to collect data from the respondent. The study comprises 350 women selected from six rural communities in Gumel using random sampling techniques, and the data was analysed by simple frequency and percentage. The research concluded that safe motherhood initiative has a significant impact on the maternal health of women in Gumel Local Government Area of Jigawa State. Finally, suitable recommendations were given on how to improve the scheme to ensure better maternal health in the region.Keywords: action, assessment, maternal health, safe motherhood, surgery
Procedia PDF Downloads 26615412 Modelling of Damage as Hinges in Segmented Tunnels
Authors: Gelacio JuáRez-Luna, Daniel Enrique GonzáLez-RamíRez, Enrique Tenorio-Montero
Abstract:
Frame elements coupled with springs elements are used for modelling the development of hinges in segmented tunnels, the spring elements modelled the rotational, transversal and axial failure. These spring elements are equipped with constitutive models to include independently the moment, shear force and axial force, respectively. These constitutive models are formulated based on damage mechanics and experimental test reported in the literature review. The mesh of the segmented tunnels was discretized in the software GID, and the nonlinear analyses were carried out in the finite element software ANSYS. These analyses provide the capacity curve of the primary and secondary lining of a segmented tunnel. Two numerical examples of segmented tunnels show the capability of the spring elements to release energy by the development of hinges. The first example is a segmental concrete lining discretized with frame elements loaded until hinges occurred in the lining. The second example is a tunnel with primary and secondary lining, discretized with a double ring frame model. The outer ring simulates the segmental concrete lining and the inner ring simulates the secondary cast-in-place concrete lining. Spring elements also modelled the joints between the segments in the circumferential direction and the ring joints, which connect parallel adjacent rings. The computed load vs displacement curves are congruent with numerical and experimental results reported in the literature review. It is shown that the modelling of a tunnel with primary and secondary lining with frame elements and springs provides reasonable results and save computational cost, comparing with 2D or 3D models equipped with smeared crack models.Keywords: damage, hinges, lining, tunnel
Procedia PDF Downloads 39015411 The Creation of a Yeast Model for 5-oxoproline Accumulation
Authors: Pratiksha Dubey, Praveen Singh, Shantanu Sen Gupta, Anand K. Bachhawat
Abstract:
5-oxoproline (pyroglutamic acid) is a cyclic lactam of glutamic acid. In the cell, it can be produced by several different pathways and is metabolized into glutamate with the help of the 5-oxoprolinase enzyme (OPLAH or OXP1). The inhibition of 5-oxoprolinase enzyme in mammals was found to result in heart failure and is thought to be a consequence of oxidative stress [1]. To analyze the consequences of 5-oxoproline accumulation more clearly, we are generating models for 5-oxoproline accumulation in yeast. The 5-oxoproline accumulation model in yeast is being developed by two different strategies. The first one is by overexpression of the mouse -glutamylcyclotransferase enzyme. It degrades -glu-met dipeptide into 5-oxoproline and methionine taken by the cell from the medium. The second strategy is by providing high concentration of 5-oxoproline externally to the yeast cells. The intracellular 5-oxoproline levels in both models are being evaluated. In addition, the metabolic and cellular consequences are being investigated.Keywords: 5-oxoproline, pyroglutamic acid, yeast, genetics
Procedia PDF Downloads 8715410 [Keynote Speech]: Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).Keywords: housing data, feature selection, random forest, Boruta algorithm, root mean square error
Procedia PDF Downloads 32315409 Overview on Effectiveness of Learning Contract in Architecture Design Studios
Authors: Badiossadat Hassanpour, Reza Sirjani, Nangkuala Utaberta
Abstract:
The avant-garde educational systems are striving to find a life long learning methods. Different fields and majors have test variety of proposed models, and found their difficulties and strengths. Architecture as a critical stage of education due to its characteristics which are learning by doing and critique based education and evaluation is out of this study procedure. Learning contracts is a new alternative form of evaluation of students’ achievements, while it acts as agreement about learning goals. Obtained results from studies in different fields which confirm its positive impact on students' learning in those fields and positively affected students' motivation and confidence in meeting their own learning needs, prompted us to implement this model in architecture design studio. In this implemented contract to the studio, students were asked to use the existing possibility of contract to have self assessment and examine their professional development to identify whether they are deficient or they would like to develop more expertise. The evidences of this research as well indicate that students feel positive about the learning contract and see it accommodating their individual learning needs.Keywords: contract (LC), architecture design studio, education, student-centered learning
Procedia PDF Downloads 43915408 The Impact of the Knowledge-Sharing Factors on Improving Decision Making at Sultan Qaboos University Libraries
Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi
Abstract:
Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. As a result, the International Federation of Library Association (IFLA) established a department “Knowledge Management” in December 2003 to provide a deep understanding of the KM concept for professionals. These are implemented through different programs, workshops, and activities. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the (SQU) libraries (Main Library, Medical Library, College of Economic and political science library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge-sharing positively affects the decision making process.Keywords: knowledge sharing, decision-making, information technology, management support, corroboration, Sultan Qaboos University
Procedia PDF Downloads 7915407 Detecting Earnings Management via Statistical and Neural Networks Techniques
Authors: Mohammad Namazi, Mohammad Sadeghzadeh Maharluie
Abstract:
Predicting earnings management is vital for the capital market participants, financial analysts and managers. The aim of this research is attempting to respond to this query: Is there a significant difference between the regression model and neural networks’ models in predicting earnings management, and which one leads to a superior prediction of it? In approaching this question, a Linear Regression (LR) model was compared with two neural networks including Multi-Layer Perceptron (MLP), and Generalized Regression Neural Network (GRNN). The population of this study includes 94 listed companies in Tehran Stock Exchange (TSE) market from 2003 to 2011. After the results of all models were acquired, ANOVA was exerted to test the hypotheses. In general, the summary of statistical results showed that the precision of GRNN did not exhibit a significant difference in comparison with MLP. In addition, the mean square error of the MLP and GRNN showed a significant difference with the multi variable LR model. These findings support the notion of nonlinear behavior of the earnings management. Therefore, it is more appropriate for capital market participants to analyze earnings management based upon neural networks techniques, and not to adopt linear regression models.Keywords: earnings management, generalized linear regression, neural networks multi-layer perceptron, Tehran stock exchange
Procedia PDF Downloads 42115406 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 37115405 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 48