Search results for: catchment forest restoration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1532

Search results for: catchment forest restoration

92 Governing Ecosystem Services for Poverty Reduction: Empirical Evidences from Purulia District, India

Authors: Soma Sarkar

Abstract:

A number of authors have recently argued that there are strong links between ecosystem services and sustainable development, particularly development efforts that aim to reduce rural poverty. We see two distinct routes by which the science of ecosystem services can contribute to both nature conservation and sustainable development. First, a thorough accounting of ecosystem services and a better understanding of how and at what rates ecosystems produce these services can be used to motivate payment for nature conservation. At least part of the generated funds can be used to compensate people who suffer lost economic opportunities to protect these services. For example, if rural poor are asked to take actions that reduce farm productivity to protect and regulate water supply, those farmers could be compensated for the reduced productivity they experience. When the benefits of natural ecosystems are explicitly quantified, those benefits are more valued both by the people who directly interact with the ecosystems and the governmental and other agencies that would have to pay for substitute sources of these services if these ecosystems should become impaired. Appreciating the value of ecosystem services can motivate increased conservation investment to prevent having to pay for substitutes later. This approach could be characterized as a ‘‘government investment’’ approach because the payments will generally come from beneficiaries outside of the local area, and a governmental or other agency is typically responsible for collecting and redistributing the funds. Second, a focus on the conservation of ecosystem services could improve the success of projects that attempt to both conserve nature and improve the welfare of the rural poor by fostering markets for the goods and services that local people produce or extract from ecosystems. These projects could be characterized as more ‘‘community based’’ because the goal is to foster the more organic, or grassroots, development of cottage industries, such as ecotourism, or the production of non-timber forest products, that are enhanced by better protection of local ecosystems. Using this framework, we discuss the factors that may have contributed to failure or success for several projects in the district of Purulia, one of the most backward districts of India and inhabited by indigenous group of people. A large majority of people in this district are dependent on environment based incomes for their sustenance. The erosion of natural resource base owing to poor governance in the district has led to the reductions in the household incomes of these people. The scale of our analysis is local or project level. The plight of poor has little to do with the production functions of ecosystem services. But for rural poor, at the local level, the status of ecosystem services can make a big difference in their daily lives.

Keywords: ecosystem services, governance, rural poor, community based natural resource management

Procedia PDF Downloads 372
91 Antimicrobial Activity, Phytochemistry and Toxicity Of Extracts Of Naturally Growing and Cultivated Aloe Turkanensis

Authors: Zachary Muthii Rukenya, James Mbaria, Peter Mbaabu, Kiama Stephen Gitahi, Ronald Onzago

Abstract:

Aloe turkanensis is one of the widely used medicinal shrub and in Kenya the plant is mainly found in Baringo, Isiolo, Laikipia, Turkana and West Pokot Counties where it is used in ethno-medicine and ethno-veterinary medicine. The Turkana community uses the plant products to manage malaria, wounds, stomach ache, constipation, pain, skin infection, poultry diseases and retained afterbirth in cows. This evaluated the efficacy and safety of the plant obtained from Turkana County, Kenya. Preliminary data on the use of the plant in the county was collected through observation, photographing and interviews. A sample of the whole plant was harvested in Natira sublocation, in ex-Turkana west district in February 2012 after identification by Aloe-working group herbalists who voluntarily provided information on its medicinal uses. Botanical identification was done at Kenya Forest Research Centre in Karura where voucher specimen was deposited. Cold maceration using 70% methanol and distilled water was used for extraction. Bioassays were to determine the effects of the plant extracts on brine shrimp and selected bacterial and fungal cultures. The extracts were tested in-vitro activity against standard cultures of B. cereus (ATCC 11778), S. aureus (ATCC25923), P. aeroginosa (ATCC 27853), E. coli (ATCC 25922) and a human infections clinical isolate of C. albicans. The extracts of Aloe turkanensis inhibited the growth B. cereus (100-200 mg/ml), S. aureus (50-100 mg/ml), P. aeroginosa (200mg/ml), E. coli (400mg/ml) while C. albicans was not affected. The extracts also inhibited the growth of S. aureus and B. cereus with mean diameters of inhibition zones being 19.75±1 mm and 18.5±05 mm reapectively. Phytochemical screening showed the presence of alkaloids, tarpenoids, steroids, quinones, saponins and tannins in the plant extracts. The extract was found to be non-toxic at a concentration of 1000µg/ml with a 100% survival of Brine Shrimp larva. It was concluded that Aloe turkanensis growing the study area has metabolites that inhibit the growth of microorganisms and is however, there is need for further studies to validate the in-vivo bioactivity of the plant and more generate adequate toxicological data.to support conservation, value chain addition of its products and widespread use as a herbal remedy.

Keywords: Aloe turkanensis, bioactivity, cultivated, human infections

Procedia PDF Downloads 321
90 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard

Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni

Abstract:

The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.

Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model

Procedia PDF Downloads 143
89 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification

Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens

Abstract:

Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.

Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage

Procedia PDF Downloads 189
88 Improvement in Oral Health-Related Quality of Life of Adult Patients After Rehabilitation With Partial Dentures: A Systematic Review and Meta-Analysis

Authors: Adama NS Bah

Abstract:

Background: Loss of teeth has a negative influence on essential oral functions such as phonetics, mastication, and aesthetics. Dentists treat people with prosthodontic rehabilitation to recover essential oral functions. The oral health quality of life inventory reflects the success of prosthodontic rehabilitation. In many countries, the current conventional care delivered to replace missing teeth for adult patients involves the provision of removable partial dentures. Aim: The aim of this systematic review and meta-analysis is to gather the best available evidence to determine patients’ oral health-related quality of life improvement after treatment with partial dentures. Methods: We searched electronic databases from January 2010 to September 2019, including PubMed, ProQuest, Science Direct, Scopus and Google Scholar. In this paper, studies were included only if the average age was 30 years and above and also published in English. Two reviewers independently screened and selected all the references based on inclusion criteria using the PRISMA guideline, and assessed the quality of the included references using the Joanna Briggs Institute quality assessment tools. Data extracted were analyzed in RevMan 5.0 software, the heterogeneity between the studies was assessed using Forest plot, I2 statistics and chi-square test with a statistical P value less than 0.05 to indicate statistical significance. Random effect models were used in case of moderate or high heterogeneity. Four studies were included in the systematic review and three studies were pooled for meta-analysis. Results: Four studies included in the systematic review and three studies included in the meta-analysis with a total of 285 patients comparing the improvement in oral health-related quality of life before and after rehabilitation with partial denture, the pooled results showed a better improvement of oral health-related quality of life after treatment with partial dentures (mean difference 5.25; 95% CI [3.81, 6.68], p < 0.00001) favoring the wearing of partial dentures. In order to ascertain the reliability of the included studies for meta-analysis risk of bias was assessed and found to be low in all included studies for meta-analysis using the Cochrane collaboration tool for risk of bias assessment. Conclusion: There is high evidence that rehabilitation with partial dentures can improve the patient’s oral health-related quality of life measured with Oral Health Impact Profile 14. This review has clinical evidence value for dentists treating the expanding vulnerable adult population.

Keywords: meta-analysis, oral health impact profile, partial dentures, systematic review

Procedia PDF Downloads 107
87 Reimagining Landscapes: Psychological Responses and Behavioral Shifts in the Aftermath of the Lytton Creek Fire

Authors: Tugba Altin

Abstract:

In an era where the impacts of climate change resonate more pronouncedly than ever, communities globally grapple with events bearing both tangible and intangible ramifications. Situating this within the evolving landscapes of Psychological and Behavioral Sciences, this research probes the profound psychological and behavioral responses evoked by such events. The Lytton Creek Fire of 2021 epitomizes these challenges. While tangible destruction is immediate and evident, the intangible repercussions—emotional distress, disintegration of cultural landscapes, and disruptions in place attachment (PA)—require meticulous exploration. PA, emblematic of the emotional and cognitive affiliations individuals nurture with their environments, emerges as a cornerstone for comprehending how environmental cataclysms influence cultural identity and bonds to land. This study, harmonizing the core tenets of an interpretive phenomenological approach with a hermeneutic framework, underscores the pivotal nature of this attachment. It delves deep into the realm of individuals' experiences post the Lytton Creek Fire, unraveling the intricate dynamics of PA amidst such calamity. The study's methodology deviates from conventional paradigms. Instead of traditional interview techniques, it employs walking audio sessions and photo elicitation methods, granting participants the agency to immerse, re-experience, and vocalize their sentiments in real-time. Such techniques shed light on spatial narratives post-trauma and capture the otherwise elusive emotional nuances, offering a visually rich representation of place-based experiences. Central to this research is the voice of the affected populace, whose lived experiences and testimonies form the nucleus of the inquiry. As they renegotiate their bonds with transformed environments, their narratives reveal the indispensable role of cultural landscapes in forging place-based identities. Such revelations accentuate the necessity of integrating both tangible and intangible trauma facets into community recovery strategies, ensuring they resonate more profoundly with affected individuals. Bridging the domains of environmental psychology and behavioral sciences, this research accentuates the intertwined nature of tangible restoration with the imperative of emotional and cultural recuperation post-environmental disasters. It advocates for adaptation initiatives that are rooted in the lived realities of the affected, emphasizing a holistic approach that recognizes the profundity of human connections to landscapes. This research advocates the interdisciplinary exchange of ideas and strategies in addressing post-disaster community recovery strategies. It not only enriches the climate change discourse by emphasizing the human facets of disasters but also reiterates the significance of an interdisciplinary approach, encompassing psychological and behavioral nuances, for fostering a comprehensive understanding of climate-induced traumas. Such a perspective is indispensable for shaping more informed, empathetic, and effective adaptation strategies.

Keywords: place attachment, community recovery, disaster response, restorative landscapes, sensory response, visual methodologies

Procedia PDF Downloads 59
86 Predicting the Impact of Scope Changes on Project Cost and Schedule Using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

In the dynamic landscape of project management, scope changes are an inevitable reality that can significantly impact project performance. These changes, whether initiated by stakeholders, external factors, or internal project dynamics, can lead to cost overruns and schedule delays. Accurately predicting the consequences of these changes is crucial for effective project control and informed decision-making. This study aims to develop predictive models to estimate the impact of scope changes on project cost and schedule using machine learning techniques. The research utilizes a comprehensive dataset containing detailed information on project tasks, including the Work Breakdown Structure (WBS), task type, productivity rate, estimated cost, actual cost, duration, task dependencies, scope change magnitude, and scope change timing. Multiple machine learning models are developed and evaluated to predict the impact of scope changes on project cost and schedule. These models include Linear Regression, Decision Tree, Ridge Regression, Random Forest, Gradient Boosting, and XGBoost. The dataset is split into training and testing sets, and the models are trained using the preprocessed data. Cross-validation techniques are employed to assess the robustness and generalization ability of the models. The performance of the models is evaluated using metrics such as Mean Squared Error (MSE) and R-squared. Residual plots are generated to assess the goodness of fit and identify any patterns or outliers. Hyperparameter tuning is performed to optimize the XGBoost model and improve its predictive accuracy. The feature importance analysis reveals the relative significance of different project attributes in predicting the impact on cost and schedule. Key factors such as productivity rate, scope change magnitude, task dependencies, estimated cost, actual cost, duration, and specific WBS elements are identified as influential predictors. The study highlights the importance of considering both cost and schedule implications when managing scope changes. The developed predictive models provide project managers with a data-driven tool to proactively assess the potential impact of scope changes on project cost and schedule. By leveraging these insights, project managers can make informed decisions, optimize resource allocation, and develop effective mitigation strategies. The findings of this research contribute to improved project planning, risk management, and overall project success.

Keywords: cost impact, machine learning, predictive modeling, schedule impact, scope changes

Procedia PDF Downloads 40
85 Effect of Pollutions on Mangrove Forests of Nayband National Marine Park

Authors: Esmaeil Kouhgardi, Elaheh Shakerdargah

Abstract:

The mangrove ecosystem is a complex of various inter-related elements in the land-sea interface zone which is linked with other natural systems of the coastal region such as corals, sea-grass, coastal fisheries and beach vegetation. The mangrove ecosystem consists of water, muddy soil, trees, shrubs, and their associated flora, fauna and microbes. It is a very productive ecosystem sustaining various forms of life. Its waters are nursery grounds for fish, crustacean, and mollusk and also provide habitat for a wide range of aquatic life, while the land supports a rich and diverse flora and fauna, but pollutions may affect these characteristics. Iran has the lowest share of Persian Gulf pollution among the eight littoral states; environmental experts are still deeply concerned about the serious consequences of the pollution in the oil-rich gulf. Prolongation of critical conditions in the Persian Gulf has endangered its aquatic ecosystem. Water purification equipment, refineries, wastewater emitted by onshore installations, especially petrochemical plans, urban sewage, population density and extensive oil operations of Arab states are factors contaminating the Persian Gulf waters. Population density has been the major cause of pollution and environmental degradation in the Persian Gulf. Persian Gulf is a closed marine environment which is connected to open waterways only from one way. It usually takes between three and four years for the gulf's water to be completely replaced. Therefore, any pollution entering the water will remain there for a relatively long time. Presently, the high temperature and excessive salt level in the water have exposed the marine creatures to extra threats, which mean they have to survive very tough conditions. The natural environment of the Persian Gulf is very rich with good fish grounds, extensive coral reefs and pearl oysters in abundance, but has become increasingly under pressure due to the heavy industrialization and in particular the repeated major oil spillages associated with the various recent wars fought in the region. Pollution may cause the mortality of mangrove forests by effect on root, leaf and soil of the area. Study was showed the high correlation between industrial pollution and mangrove forests health in south of Iran and increase of population, coupled with economic growth, inevitably caused the use of mangrove lands for various purposes such as construction of roads, ports and harbors, industries and urbanization.

Keywords: Mangrove forest, pollution, Persian Gulf, population, environment

Procedia PDF Downloads 399
84 Investigating the Aerosol Load of Eastern Mediterranean Basin with Sentinel-5p Satellite

Authors: Deniz Yurtoğlu

Abstract:

Aerosols directly affect the radiative balance of the earth by absorbing and/or scattering the sun rays reaching the atmosphere and indirectly affect the balance by acting as a nucleus in cloud formation. The composition, physical, and chemical properties of aerosols vary depending on their sources and the time spent in the atmosphere. The Eastern Mediterranean Basin has a high aerosol load that is formed from different sources; such as anthropogenic activities, desert dust outbreaks, and the spray of sea salt; and the area is subjected to atmospheric transport from other locations on the earth. This region, which includes the deserts of Africa, the Middle East, and the Mediterranean sea, is one of the most affected areas by climate change due to its location and the chemistry of the atmosphere. This study aims to investigate the spatiotemporal deviation of aerosol load in the Eastern Mediterranean Basin between the years 2018-2022 with the help of a new pioneer satellite of ESA (European Space Agency), Sentinel-5P. The TROPOMI (The TROPOspheric Monitoring Instrument) traveling on this low-Earth orbiting satellite is a UV (Ultraviolet)-sensing spectrometer with a resolution of 5.5 km x 3.5 km, which can make measurements even in a cloud-covered atmosphere. By using Absorbing Aerosol Index data produced by this spectrometer and special scripts written in Python language that transforms this data into images, it was seen that the majority of the aerosol load in the Eastern Mediterranean Basin is sourced from desert dust and anthropogenic activities. After retrieving the daily data, which was separated from the NaN values, seasonal analyses match with the normal aerosol variations expected, which are high in warm seasons and lower in cold seasons. Monthly analyses showed that in four years, there was an increase in the amount of Absorbing Aerosol Index in spring and winter by 92.27% (2019-2021) and 39.81% (2019-2022), respectively. On the other hand, in the summer and autumn seasons, a decrease has been observed by 20.99% (2018-2021) and 0.94% (2018-2021), respectively. The overall variation of the mean absorbing aerosol index from TROPOMI between April 2018 to April 2022 reflects a decrease of 115.87% by annual mean from 0.228 to -0.036. However, when the data is analyzed by the annual mean values of the years which have the data from January to December, meaning from 2019 to 2021, there was an increase of 57.82% increase (0.108-0.171). This result can be interpreted as the effect of climate change on the aerosol load and also, more specifically, the effect of forest fires that happened in the summer months of 2021.

Keywords: aerosols, eastern mediterranean basin, sentinel-5p, tropomi, aerosol index, remote sensing

Procedia PDF Downloads 67
83 Comparing Deep Architectures for Selecting Optimal Machine Translation

Authors: Despoina Mouratidis, Katia Lida Kermanidis

Abstract:

Machine translation (MT) is a very important task in Natural Language Processing (NLP). MT evaluation is crucial in MT development, as it constitutes the means to assess the success of an MT system, and also helps improve its performance. Several methods have been proposed for the evaluation of (MT) systems. Some of the most popular ones in automatic MT evaluation are score-based, such as the BLEU score, and others are based on lexical similarity or syntactic similarity between the MT outputs and the reference involving higher-level information like part of speech tagging (POS). This paper presents a language-independent machine learning framework for classifying pairwise translations. This framework uses vector representations of two machine-produced translations, one from a statistical machine translation model (SMT) and one from a neural machine translation model (NMT). The vector representations consist of automatically extracted word embeddings and string-like language-independent features. These vector representations used as an input to a multi-layer neural network (NN) that models the similarity between each MT output and the reference, as well as between the two MT outputs. To evaluate the proposed approach, a professional translation and a "ground-truth" annotation are used. The parallel corpora used are English-Greek (EN-GR) and English-Italian (EN-IT), in the educational domain and of informal genres (video lecture subtitles, course forum text, etc.) that are difficult to be reliably translated. They have tested three basic deep learning (DL) architectures to this schema: (i) fully-connected dense, (ii) Convolutional Neural Network (CNN), and (iii) Long Short-Term Memory (LSTM). Experiments show that all tested architectures achieved better results when compared against those of some of the well-known basic approaches, such as Random Forest (RF) and Support Vector Machine (SVM). Better accuracy results are obtained when LSTM layers are used in our schema. In terms of a balance between the results, better accuracy results are obtained when dense layers are used. The reason for this is that the model correctly classifies more sentences of the minority class (SMT). For a more integrated analysis of the accuracy results, a qualitative linguistic analysis is carried out. In this context, problems have been identified about some figures of speech, as the metaphors, or about certain linguistic phenomena, such as per etymology: paronyms. It is quite interesting to find out why all the classifiers led to worse accuracy results in Italian as compared to Greek, taking into account that the linguistic features employed are language independent.

Keywords: machine learning, machine translation evaluation, neural network architecture, pairwise classification

Procedia PDF Downloads 132
82 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies

Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo

Abstract:

Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.

Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants

Procedia PDF Downloads 302
81 Stromal Vascular Fraction Regenerative Potential in a Muscle Ischemia/Reperfusion Injury Mouse Model

Authors: Anita Conti, Riccardo Ossanna, Lindsey A. Quintero, Giamaica Conti, Andrea Sbarbati

Abstract:

Ischemia/reperfusion (IR) injury induces muscle fiber atrophy and skeletal muscle fiber death with subsequently functionality loss. The heterogeneous pool of cells, especially mesenchymal stem cells, contained in the stromal vascular fraction (SVF) of adipose tissue could promote muscle fiber regeneration. To prevent SVF dispersion, it has been proposed the use of injectable biopolymers that work as cells carrier. A significant element of the extracellular matrix is hyaluronic acid (HA), which has been widely used in regenerative medicine as a cell scaffold given its biocompatibility, degradability, and the possibility of chemical functionalization. Connective tissue micro-fragments enriched with SVF obtained from mechanical disaggregation of adipose tissue were evaluated for IR muscle injury regeneration using low molecular weight HA as a scaffold. IR induction. Hindlimb ischemia was induced in 9 athymic nude mice through the clamping of the right quadriceps using a plastic band. Reperfusion was induced by cutting the plastic band after 3 hours of ischemic period. Contralateral (left) muscular tissue was used as healthy control. Treatment. Twenty-four hours after the IR induction, animals (n=3) were intramuscularly injected with 100 µl of SVF mixed with HA (SVF-HA). Animals treated with 100 µl of HA (n=3) and 100 µl saline solution (n=3) were used as control. Treatment monitoring. All animals were in vivo monitored by magnetic resonance imaging (MRI) at 5, 7, 14 and 18 days post-injury (dpi). High-resolution morphological T2 weighed, quantitative T2 map and Dynamic Contrast-Enhanced (DCE) images were acquired in order to assess the regenerative potential of SVF-HA treatment. Ex vivo evaluation. After 18 days from IR induction, animals were sacrificed, and the muscles were harvested for histological examination. At 5 dpi T2 high-resolution MR images clearly reveal the presence of an extensive edematous area due to IR damage for all groups identifiable as an increase of signal intensity (SI) of muscular and surrounding tissue. At 7 dpi, animals of the SVF-HA group showed a reduction of SI, and the T2relaxation time of muscle tissue of the HA-SVF group was 29±0.5ms, comparable with the T2relaxation time of contralateral muscular tissue (30±0.7ms). These suggest a reduction of edematous overflow and swelling. The T2relaxation time at 7dpi of HA and saline groups were 84±2ms and 90±5ms, respectively, which remained elevated during the rest of the study. The evaluation of vascular regeneration showed similar results. Indeed, DCE-MRI analysis revealed a complete recovery of muscular tissue perfusion after 14 dpi for the SVF-HA group, while for the saline and HA group, controls remained in a damaged state. Finally, the histological examination of SVF-HA treated animals exhibited well-defined and organized fibers morphology with a lateralized nucleus, similar to contralateral healthy muscular tissue. On the contrary, HA and saline-treated animals presented inflammatory infiltrates, with HA slightly improving the diameter of the fibers and less degenerated tissue. Our findings show that connective tissue micro-fragments enriched with SVF induce higher muscle homeostasis and perfusion restoration in contrast to control groups.

Keywords: ischemia/reperfusion injury, regenerative medicine, resonance imaging, stromal vascular fraction

Procedia PDF Downloads 127
80 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics

Authors: Nothando Gwazani, K. R. Marembo

Abstract:

An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.

Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink

Procedia PDF Downloads 151
79 Understanding the Dynamics of Human-Snake Negative Interactions: A Study of Indigenous Perceptions in Tamil Nadu, Southern India

Authors: Ramesh Chinnasamy, Srishti Semalty, Vishnu S. Nair, Thirumurugan Vedagiri, Mahesh Ganeshan, Gautam Talukdar, Karthy Sivapushanam, Abhijit Das

Abstract:

Snakes form an integral component of ecological systems. Human population explosion and associated acceleration of habitat destruction and degradation, has led to a rapid increase in human-snake encounters. The study aims at understanding the level of awareness, knowledge, and attitude of the people towards human-snake negative interaction and role of awareness programmes in the Moyar river valley, Tamil Nadu. The study area is part of the Mudumalai and the Sathyamangalam Tiger Reserves, which are significant wildlife corridors between the Western Ghats and the Eastern Ghats in the Nilgiri Biosphere Reserve. The data was collected using questionnaire covering 644 respondents spread across 18 villages between 2018 and 2019. The study revealed that 86.5% of respondents had strong negative perceptions towards snakes which were propelled by fear, superstitions, and threat of snakebite which was common and did not vary among different villages (F=4.48; p = <0.05) and age groups (X2 = 1.946; p = 0.962). Cobra 27.8% (n = 294) and rat snake 21.3% (n = 225) were the most sighted species and most snake encounter occurred during the monsoon season i.e., July 35.6 (n = 218), June 19.1% (n = 117) and August 18.4% (n = 113). At least 1 out of 5 respondents was reportedly bitten by snakes during their lifetime. The most common species of snakes that were the cause of snakebite were Saw scaled viper (32.6%, n = 42) followed by Cobra 17.1% (n = 22). About 21.3% (n = 137) people reported livestock loss due to pythons and other snakes 21.3% (n = 137). Most people, preferred medical treatment for snakebite (87.3%), whereas 12.7%, still believed in traditional methods. The majority (82.3%) used precautionary measure by keeping traditional items such as garlic, kerosene, and snake plant to avoid snakes. About 30% of the respondents expressed need for technical and monetary support from the forest department that could aid in reducing the human-snake conflict. It is concluded that the general perception in the study area is driven by fear and negative attitude towards snakes. Though snakes such as Cobra were widely worshiped in the region, there are still widespread myths and misconceptions that have led to the irrational killing of snakes. Awareness and innovative education programs rooted in the local context and language should be integrated at the village level, to minimize risk and the associated threat of snakebite among the people. Results from this study shall help policy makers to devise appropriate conservation measures to reduce human-snake conflicts in India.

Keywords: Envenomation, Health-Education, Human-Wildlife Conflict, Neglected Tropical Disease, Snakebite Mitigation, Traditional Practitioners

Procedia PDF Downloads 227
78 Grassland Development on Evacuated Sites for Wildlife Conservation in Satpura Tiger Reserve, India

Authors: Anjana Rajput, Sandeep Chouksey, Bhaskar Bhandari, Shimpi Chourasia

Abstract:

Ecologically, grassland is any plant community dominated by grasses, whether they exist naturally or because of management practices. Most forest grasslands are anthropogenic and established plant communities planted for forage production, though some are established for soil and water conservation and wildlife habitat. In Satpura Tiger Reserve, Madhya Pradesh, India, most of the grasslands have been established on evacuated village sites. Total of 42 villages evacuated, and study was carried out in 23 sites to evaluate habitat improvement. Grasslands were classified into three categories, i.e., evacuated sites, established sites, and controlled sites. During the present study impact of various management interventions on grassland health was assessed. Grasslands assessment was done for its composition, status of palatable and non-palatable grasses, the status of herbs and legumes, status of weeds species, and carrying capacity of particular grassland. Presence of wild herbivore species in the grasslands with their abundance, availability of water resources was also assessed. Grassland productivity is dependent mainly on the biotic and abiotic components of the area, but management interventions may also play an important role in grassland composition and productivity. Variation in the status of palatable and non-palatable grasses, legumes, and weeds was recorded and found effected by management intervention practices. Overall in all the studied grasslands, the most dominant grasses recorded are Themeda quadrivalvis, Dichanthium annulatum, Ischaemum indicum, Oplismenus burmanii, Setaria pumilla, Cynodon dactylon, Heteropogon contortus, and Eragrostis tenella. Presence of wild herbivores, i.e., Chital, Sambar, Bison, Bluebull, Chinkara, Barking deer in the grassland area has been recorded through the installation of camera traps and estimated their abundance. Assessment of developed grasslands was done in terms of habitat suitability for Chital (Axis axis) and Sambar (Rusa unicolor). The parameters considered for suitability modeling are biotic and abiotic life requisite components existing in the area, i.e., density of grasses, density of legumes, availability of water, site elevation, site distance from human habitation. Findings of the present study would be useful for further grassland management and animal translocation programmes.

Keywords: carrying capacity, dominant grasses, grassland, habitat suitability, management intervention, wild herbivore

Procedia PDF Downloads 127
77 The Evolution of Man through Cranial and Dental Remains: A Literature Review

Authors: Rishana Bilimoria

Abstract:

Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required.

Keywords: cranio-facial, dental remains, evolution, hominids

Procedia PDF Downloads 164
76 Evaluation of Polymerisation Shrinkage of Randomly Oriented Micro-Sized Fibre Reinforced Dental Composites Using Fibre-Bragg Grating Sensors and Their Correlation with Degree of Conversion

Authors: Sonam Behl, Raju, Ginu Rajan, Paul Farrar, B. Gangadhara Prusty

Abstract:

Reinforcing dental composites with micro-sized fibres can significantly improve the physio-mechanical properties of dental composites. The short fibres can be oriented randomly within dental composites, thus providing quasi-isotropic reinforcing efficiency unlike unidirectional/bidirectional fibre reinforced composites enhancing anisotropic properties. Thus, short fibres reinforced dental composites are getting popular among practitioners. However, despite their popularity, resin-based dental composites are prone to failure on account of shrinkage during photo polymerisation. The shrinkage in the structure may lead to marginal gap formation, causing secondary caries, thus ultimately inducing failure of the restoration. The traditional methods to evaluate polymerisation shrinkage using strain gauges, density-based measurements, dilatometer, or bonded-disk focuses on average value of volumetric shrinkage. Moreover, the results obtained from traditional methods are sensitive to the specimen geometry. The present research aims to evaluate the real-time shrinkage strain at selected locations in the material with the help of optical fibre Bragg grating (FBG) sensors. Due to the miniature size (diameter 250 µm) of FBG sensors, they can be easily embedded into small samples of dental composites. Furthermore, an FBG array into the system can map the real-time shrinkage strain at different regions of the composite. The evaluation of real-time monitoring of shrinkage values may help to optimise the physio-mechanical properties of composites. Previously, FBG sensors have been able to rightfully measure polymerisation strains of anisotropic (unidirectional or bidirectional) reinforced dental composites. However, very limited study exists to establish the validity of FBG based sensors to evaluate volumetric shrinkage for randomly oriented fibres reinforced composites. The present study aims to fill this research gap and is focussed on establishing the usage of FBG based sensors for evaluating the shrinkage of dental composites reinforced with randomly oriented fibres. Three groups of specimens were prepared by mixing the resin (80% UDMA/20% TEGDMA) with 55% of silane treated BaAlSiO₂ particulate fillers or by adding 5% of micro-sized fibres of diameter 5 µm, and length 250/350 µm along with 50% of silane treated BaAlSiO₂ particulate fillers into the resin. For measurement of polymerisation shrinkage strain, an array of three fibre Bragg grating sensors was embedded at a depth of 1 mm into a circular Teflon mould of diameter 15 mm and depth 2 mm. The results obtained are compared with the traditional method for evaluation of the volumetric shrinkage using density-based measurements. Degree of conversion was measured using FTIR spectroscopy (Spotlight 400 FT-IR from PerkinElmer). It is expected that the average polymerisation shrinkage strain values for dental composites reinforced with micro-sized fibres can directly correlate with the measured degree of conversion values, implying that more C=C double bond conversion to C-C single bond values also leads to higher shrinkage strain within the composite. Moreover, it could be established the photonics approach could help assess the shrinkage at any point of interest in the material, suggesting that fibre-Bragg grating sensors are a suitable means for measuring real-time polymerisation shrinkage strain for randomly fibre reinforced dental composites as well.

Keywords: dental composite, glass fibre, polymerisation shrinkage strain, fibre-Bragg grating sensors

Procedia PDF Downloads 154
75 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach

Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton

Abstract:

Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.

Keywords: competition, growth, model, thinning

Procedia PDF Downloads 128
74 Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)

Authors: Shiwani Bhatnagar, K. K. Srivastava, Sangeeta Singh, Ameen Ullah Khan, Bundesh Kumar, Lokendra Singh Rathore

Abstract:

From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed.

Keywords: azadirachta indica, alternaria leaf spot, laspeyresia koenigana, management

Procedia PDF Downloads 477
73 Assessment of Rainfall Erosivity, Comparison among Methods: Case of Kakheti, Georgia

Authors: Mariam Tsitsagi, Ana Berdzenishvili

Abstract:

Rainfall intensity change is one of the main indicators of climate change. It has a great influence on agriculture as one of the main factors causing soil erosion. Splash and sheet erosion are one of the most prevalence and harmful for agriculture. It is invisible for an eye at first stage, but the process will gradually move to stream cutting erosion. Our study provides the assessment of rainfall erosivity potential with the use of modern research methods in Kakheti region. The region is the major provider of wheat and wine in the country. Kakheti is located in the eastern part of Georgia and characterized quite a variety of natural conditions. The climate is dry subtropical. For assessment of the exact rate of rainfall erosion potential several year data of rainfall with short intervals are needed. Unfortunately, from 250 active metro stations running during the Soviet period only 55 of them are active now and 5 stations in Kakheti region respectively. Since 1936 we had data on rainfall intensity in this region, and rainfall erosive potential is assessed, in some old papers, but since 1990 we have no data about this factor, which in turn is a necessary parameter for determining the rainfall erosivity potential. On the other hand, researchers and local communities suppose that rainfall intensity has been changing and the number of haily days has also been increasing. However, finding a method that will allow us to determine rainfall erosivity potential as accurate as possible in Kakheti region is very important. The study period was divided into three sections: 1936-1963; 1963-1990 and 1990-2015. Rainfall erosivity potential was determined by the scientific literature and old meteorological stations’ data for the first two periods. And it is known that in eastern Georgia, at the boundary between steppe and forest zones, rainfall erosivity in 1963-1990 was 20-75% higher than that in 1936-1963. As for the third period (1990-2015), for which we do not have data of rainfall intensity. There are a variety of studies, where alternative ways of calculating the rainfall erosivity potential based on lack of data are discussed e.g.based on daily rainfall data, average annual rainfall data and the elevation of the area, etc. It should be noted that these methods give us a totally different results in case of different climatic conditions and sometimes huge errors in some cases. Three of the most common methods were selected for our research. Each of them was tested for the first two sections of the study period. According to the outcomes more suitable method for regional climatic conditions was selected, and after that, we determined rainfall erosivity potential for the third section of our study period with use of the most successful method. Outcome data like attribute tables and graphs was specially linked to the database of Kakheti, and appropriate thematic maps were created. The results allowed us to analyze the rainfall erosivity potential changes from 1936 to the present and make the future prospect. We have successfully implemented a method which can also be use for some another region of Georgia.

Keywords: erosivity potential, Georgia, GIS, Kakheti, rainfall

Procedia PDF Downloads 224
72 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China

Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini

Abstract:

Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.

Keywords: healthcare, patient engagement, influencing factor, the mechanism

Procedia PDF Downloads 156
71 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 178
70 Innovative Practices That Have Significantly Scaled up Depot Medroxy Progesterone Acetate-SC Self-Inject Services

Authors: Oluwaseun Adeleke, Samuel O. Ikani, Fidelis Edet, Anthony Nwala, Mopelola Raji, Simeon Christian Chukwu

Abstract:

Background The Delivering Innovations in Selfcare (DISC) project promotes universal access to quality selfcare services beginning with subcutaneous depot medroxy progesterone acetate (DMPA-SC) contraceptive self-injection (SI) option. Self-inject (SI) offers women a highly effective and convenient option that saves them frequent trips to providers. Its increased use has the potential to improve the efficiency of an overstretched healthcare system by reducing provider workloads. State Social and Behavioral Change Communications (SBCC) Officers lead project demand creation and service delivery innovations that have resulted in significant increases in SI uptake among women who opt for injectables. Strategies Service Delivery Innovations The implementation of the "Moment of Truth (MoT)" innovation helped providers overcome biases and address client fear and reluctance to self-inject. Bi-annual program audits and supportive mentoring visits helped providers retain their competence and motivation. Proper documentation, tracking, and replenishment of commodities were ensured through effective engagement with State Logistics Units. The project supported existing state monitoring and evaluation structures to effectively record and report subcutaneous depot medroxy progesterone acetate (DMPA-SC) service utilization. Demand creation Innovations SBCC Officers provide oversight, routinely evaluate performance, trains, and provides feedback for the demand creation activities implemented by community mobilizers (CMs). The scope and intensity of training given to CMs affect the outcome of their work. The project operates a demand creation model that uses a schedule to inform the conduct of interpersonal and group events. Health education sessions are specifically designed to counter misinformation, address questions and concerns, and educate target audience in an informed choice context. The project mapped facilities and their catchment areas and enlisted the support of identified influencers and gatekeepers to enlist their buy-in prior to entry. Each mobilization event began with pre-mobilization sensitization activities, particularly targeting male groups. Context-specific interventions were informed by the religious, traditional, and cultural peculiarities of target communities. Mobilizers also support clients to engage with and navigate online digital Family Planning (FP) online portals such as DiscoverYourPower website, Facebook page, digital companion (chat bot), interactive voice response (IVR), radio and television (TV) messaging. This improves compliance and provides linkages to nearby facilities. Results The project recorded 136,950 self-injection (SI) visits and a self-injection (SI) proportion rate that increased from 13 percent before the implementation of interventions in 2021 to 62 percent currently. The project cost-effectively demonstrated catalytic impact by leveraging state and partner resources, institutional platforms, and geographic scope to scale up interventions. The project also cost effectively demonstrated catalytic impact by leveraging on the state and partner resources, institutional platforms, and geographic scope to sustainably scale-up these strategies. Conclusion Using evidence-informed iterations of service delivery and demand creation models have been useful to significantly drive self-injection (SI) uptake. It will be useful to consider this implementation model during program design. Contemplation should also be given to systematic and strategic execution of strategies to optimize impact.

Keywords: family planning, contraception, DMPA-SC, self-care, self-injection, innovation, service delivery, demand creation.

Procedia PDF Downloads 75
69 Monitoring Soil Moisture Dynamic in Root Zone System of Argania spinosa Using Electrical Resistivity Imaging

Authors: F. Ainlhout, S. Boutaleb, M. C. Diaz-Barradas, M. Zunzunegui

Abstract:

Argania spinosa is an endemic tree of the southwest of Morocco, occupying 828,000 Ha, distributed mainly between Mediterranean vegetation and the desert. This tree can grow in extremely arid regions in Morocco, where annual rainfall ranges between 100-300 mm where no other tree species can live. It has been designated as a UNESCO Biosphere reserve since 1998. Argania tree is of great importance in human and animal feeding of rural population as well as for oil production, it is considered as a multi-usage tree. Admine forest located in the suburbs of Agadir city, 5 km inland, was selected to conduct this work. The aim of the study was to investigate the temporal variation in root-zone moisture dynamic in response to variation in climatic conditions and vegetation water uptake, using a geophysical technique called Electrical resistivity imaging (ERI). This technique discriminates resistive woody roots, dry and moisture soil. Time-dependent measurements (from April till July) of resistivity sections were performed along the surface transect (94 m Length) at 2 m fixed electrode spacing. Transect included eight Argan trees. The interactions between the tree and soil moisture were estimated by following the tree water status variations accompanying the soil moisture deficit. For that purpose we measured midday leaf water potential and relative water content during each sampling day, and for the eight trees. The first results showed that ERI can be used to accurately quantify the spatiotemporal distribution of root-zone moisture content and woody root. The section obtained shows three different layers: middle conductive one (moistured); a moderately resistive layer corresponding to relatively dry soil (calcareous formation with intercalation of marly strata) on top, this layer is interspersed by very resistant layer corresponding to woody roots. Below the conductive layer, we find the moderately resistive layer. We note that throughout the experiment, there was a continuous decrease in soil moisture at the different layers. With the ERI, we can clearly estimate the depth of the woody roots, which does not exceed 4 meters. In previous work on the same species, analyzing the δ18O in water of xylem and in the range of possible water sources, we argued that rain is the main water source in winter and spring, but not in summer, trees are not exploiting deep water from the aquifer as the popular assessment, instead of this they are using soil water at few meter depth. The results of the present work confirm the idea that the roots of Argania spinosa are not growing very deep.

Keywords: Argania spinosa, electrical resistivity imaging, root system, soil moisture

Procedia PDF Downloads 328
68 Sustainable Mining Fulfilling Constitutional Responsibilities: A Case Study of NMDC Limited Bacheli in India

Authors: Bagam Venkateswarlu

Abstract:

NMDC Limited, Indian multinational mining company operates under administrative control of Ministry of Steel, Government of India. This study is undertaken to evaluate how sustainable mining practiced by the company fulfils the provisions of Indian Constitution to secure to its citizen – justice, equality of status and opportunity, promoting social, economic, political, and religious wellbeing. The Constitution of India lays down a road map as to how the goal of being a “Welfare State” shall be achieved. The vision of sustainable mining being practiced is oriented along the constitutional responsibilities on Indian Citizens and the Corporate World. This qualitative study shall be backed by quantitative studies of National Mineral Development Corporation performances in various domains of sustainable mining and ESG, that is, environment, social and governance parameters. For example, Five Star Rating of mine is a comprehensive evaluation system introduced by Ministry of Mines, Govt. of India is one of the methodologies. Corporate Social Responsibilities is one of the thrust areas for securing social well-being. Green energy initiatives in and around the mines has given the title of “Eco-Friendly Miner” to NMDC Limited. While operating fully mechanized large scale iron ore mine (18.8 million tonne per annum capacity) in Bacheli, Chhattisgarh, M/s NMDC Limited caters to the needs of mineral security of State of Chhattisgarh and Indian Union. It preserves forest, wild-life, and environment heritage of richly endowed State of Chhattisgarh. In the remote and far-flung interiors of Chhattisgarh, NMDC empowers the local population by providing world class educational & medical facilities, transportation network, drinking water facilities, irrigational agricultural supports, employment opportunities, establishing religious harmony. All this ultimately results in empowered, educated, and improved awareness in population. Thus, the basic tenets of constitution of India- secularism, democracy, welfare for all, socialism, humanism, decentralization, liberalism, mixed economy, and non-violence is fulfilled. Constitution declares India as a welfare state – for the people, of the people and by the people. The sustainable mining practices by NMDC are in line with the objective. Thus, the purpose of study is fully met with. The potential benefit of the study includes replicating this model in existing or new establishments in various parts of country – especially in the under-privileged interiors and far-flung areas which are yet to see the lights of development.

Keywords: ESG values, Indian constitution, NMDC limited, sustainable mining, CSR, green energy

Procedia PDF Downloads 75
67 Occurrence and Habitat Status of Osmoderma barnabita in Lithuania

Authors: D. Augutis, M. Balalaikins, D. Bastyte, R. Ferenca, A. Gintaras, R. Karpuska, G. Svitra, U. Valainis

Abstract:

Osmoderma species complex (consisting of Osmoderma eremita, O. barnabita, O. lassallei and O. cristinae) is a scarab beetle serving as indicator species in nature conservation. Osmoderma inhabits cavities containing sufficient volume of wood mould usually caused by brown rot in veteran deciduous trees. As the species, having high demands for the habitat quality, they indicate the suitability of the habitat for a number of other specialized saproxylic species. Since typical habitat needed for Osmoderma and other species associated with hollow veteran trees is rapidly declining, the species complex is protected under various legislation, such as Bern Convention, EU Habitats Directive and the Red Lists of many European states. Natura 2000 sites are the main tool for conservation of O. barnabita in Lithuania, currently 17 Natura 2000 sites are designated for the species, where monitoring is implemented once in 3 years according to the approved methodologies. Despite these monitoring efforts in species reports, provided to EU according to the Article 17 of the Habitats Directive, it is defined on the national level, that overall assessment of O. barnabita is inadequate and future prospects are poor. Therefore, research on the distribution and habitat status of O. barnabita was launched on the national level in 2016, which was complemented by preparatory actions of LIFE OSMODERMA project. The research was implemented in the areas equally distributed in the whole area of Lithuania, where O. barnabita was previously not observed, or not observed in the last 10 years. 90 areas, such as Habitats of European importance (9070 Fennoscandian wooded pastures, 9180 Tilio-Acerion forests of slopes, screes, and ravines), Woodland key habitats (B1 broad-leaved forest, K1 single giant tree) and old manor parks, were chosen for the research after review of habitat data from the existing national databases. The first part of field inventory of the habitats was carried out in 2016 and 2017 autumn and winter seasons, when relative abundance of O. barnabita was estimated according to larval faecal pellets in the tree cavities or around the trees. The state of habitats was evaluated according to the density of suitable and potential trees, percentage of not overshadowed trees and amount of undergrowth. The second part of the field inventory was carried out in the summer with pheromone traps baited with (R)-(+)-γ –decalactone. Results of the research show not only occurrence and habitat status of O. barnabita, but also help to clarify O. barnabita habitat requirements in Lithuania, define habitat size, its structure and distribution. Also, it compares habitat needs between the regions in Lithuania and inside and outside Natura 2000 areas designated for the species.

Keywords: habitat status, insect conservation, Osmoderma barnabita, veteran trees

Procedia PDF Downloads 137
66 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning

Authors: Shayla He

Abstract:

Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.

Keywords: homeless, prediction, model, RNN

Procedia PDF Downloads 121
65 Large Scale Method to Assess the Seismic Vulnerability of Heritage Buidings: Modal Updating of Numerical Models and Vulnerability Curves

Authors: Claire Limoge Schraen, Philippe Gueguen, Cedric Giry, Cedric Desprez, Frédéric Ragueneau

Abstract:

Mediterranean area is characterized by numerous monumental or vernacular masonry structures illustrating old ways of build and live. Those precious buildings are often poorly documented, present complex shapes and loadings, and are protected by the States, leading to legal constraints. This area also presents a moderate to high seismic activity. Even moderate earthquakes can be magnified by local site effects and cause collapse or significant damage. Moreover the structural resistance of masonry buildings, especially when less famous or located in rural zones has been generally lowered by many factors: poor maintenance, unsuitable restoration, ambient pollution, previous earthquakes. Recent earthquakes prove that any damage to these architectural witnesses to our past is irreversible, leading to the necessity of acting preventively. This means providing preventive assessments for hundreds of structures with no or few documents. In this context we want to propose a general method, based on hierarchized numerical models, to provide preliminary structural diagnoses at a regional scale, indicating whether more precise investigations and models are necessary for each building. To this aim, we adapt different tools, being developed such as photogrammetry or to be created such as a preprocessor starting from pictures to build meshes for a FEM software, in order to allow dynamic studies of the buildings of the panel. We made an inventory of 198 baroque chapels and churches situated in the French Alps. Then their structural characteristics have been determined thanks field surveys and the MicMac photogrammetric software. Using structural criteria, we determined eight types of churches and seven types for chapels. We studied their dynamical behavior thanks to CAST3M, using EC8 spectrum and accelerogramms of the studied zone. This allowed us quantifying the effect of the needed simplifications in the most sensitive zones and choosing the most effective ones. We also proposed threshold criteria based on the observed damages visible in the in situ surveys, old pictures and Italian code. They are relevant in linear models. To validate the structural types, we made a vibratory measures campaign using vibratory ambient noise and velocimeters. It also allowed us validating this method on old masonry and identifying the modal characteristics of 20 churches. Then we proceeded to a dynamic identification between numerical and experimental modes. So we updated the linear models thanks to material and geometrical parameters, often unknown because of the complexity of the structures and materials. The numerically optimized values have been verified thanks to the measures we made on the masonry components in situ and in laboratory. We are now working on non-linear models redistributing the strains. So we validate the damage threshold criteria which we use to compute the vulnerability curves of each defined structural type. Our actual results show a good correlation between experimental and numerical data, validating the final modeling simplifications and the global method. We now plan to use non-linear analysis in the critical zones in order to test reinforcement solutions.

Keywords: heritage structures, masonry numerical modeling, seismic vulnerability assessment, vibratory measure

Procedia PDF Downloads 492
64 The Aspect of the Digital Formation in the Solar Community as One Prototype to Find the Algorithmic Sustainable Conditions in the Global Environment

Authors: Kunihisa Kakumoto

Abstract:

Purpose: The global environmental problem is now raised in the global dimension. The sprawl phenomenon over the natural limitation is to be made a forecast beforehand in an algorithmic way so that the condition of our social life can hopefully be protected under the natural limitation. The sustainable condition in the globe is now to be found to keep the balance between the capacity of nature and the possibility of our social lives. The amount of water on the earth is limited. Therefore, on the reason, sustainable conditions are strongly dependent on the capacity of water. The amount of water can be considered in relation to the area of the green planting because a certain volume of the water can be obtained in the forest, where the green planting can be preserved. We can find the sustainable conditions of the water in relation to the green planting area. The reduction of CO₂ by green planting is also possible. Possible Measure and the Methods: Until now, by the opportunity of many international conferences, the concept of the solar community as one prototype has been introduced by technical papers. The algorithmic trial calculation on the basic concept of the solar community can be taken into consideration. The concept of the solar community is based on the collected data of the solar model house. According to the algorithmic results of the prototype, the simulation work in the globe can be performed as the algorithmic conversion results. This algorithmic study can be simulated by the amount of water, also in relation to the green planting area. Additionally, the submission of CO₂ in the solar community and the reduction of CO₂ by green planting can be calculated. On the base of these calculations in the solar community, the sustainable conditions on the globe can be simulated as the conversion results in an algorithmic way. The digital formation in the solar community can also be taken into consideration by this opportunity. Conclusion: For the finding of sustainable conditions around the globe, the solar community as one prototype has been taken into consideration. The role of the water is very important because the capacity of the water supply is very limited. But, at present, the cycle of the social community is not composed by the point of the natural mechanism. The simulative calculation of this study can be shown by the limitation of the total water supply. According to this process, the total capacity of the water supply and the capable residential number of the population and the areas can be taken into consideration by the algorithmic calculation. For keeping enough water, the green planting areas are very important. The planting area is also very important to keep the balance of CO₂. The simulative calculation can be performed by the relation between the submission and the reduction of CO₂ in the solar community. For the finding of this total balance and the sustainable conditions, the green planting area and the total amount of water can be recognized by the algorithmic simulative calculation. The study for the finding of sustainable conditions can be performed by the simulative calculations on the algorithmic model in the solar community as one prototype. The example of one prototype can be in balance. The activity of the social life must be in the capacity of the natural mechanism. The capable capacity of the natural environment in our world is very limited.

Keywords: the solar community, the sustainable condition, the natural limitation, the algorithmic calculation

Procedia PDF Downloads 110
63 Assessing Organizational Resilience Capacity to Flooding: Index Development and Application to Greek Small & Medium-Sized Enterprises

Authors: Antonis Skouloudis, Konstantinos Evangelinos, Walter Leal-Filho, Panagiotis Vouros, Ioannis Nikolaou

Abstract:

Organizational resilience capacity to extreme weather events (EWEs) has sparked a growth in scholarly attention over the past decade as an essential aspect in business continuity management, with supporting evidence for this claim to suggest that it retains a key role in successful responses to adverse situations, crises and shocks. Small and medium-sized enterprises (SMEs) are more vulnerable to face floods compared to their larger counterparts, so they are disproportionately affected by such extreme weather events. The limited resources at their disposal, the lack of time and skills all conduce to inadequate preparedness to challenges posed by floods. SMEs tend to plan in the short-term, reacting to circumstances as they arise and focussing on their very survival. Likewise, they share less formalised structures and codified policies while they are most usually owner-managed, resulting in a command-and-control management culture. Such characteristics result in them having limited opportunities to recover from flooding and quickly turnaround their operation from a loss making to a profit making one. Scholars frame the capacity of business entities to be resilient upon an EWE disturbance (such as flash floods) as the rate of recovery and restoration of organizational performance to pre-disturbance conditions, the amount of disturbance (i.e. threshold level) a business can absorb before losing structural and/or functional components that will alter or cease operation, as well as the extent to which the organization maintains its function (i.e. impact resistance) before performance levels are driven to zero. Nevertheless, while it seems to be accepted as an essential trait of firms effectively transcending uncertain conditions, research deconstructing the enabling conditions and/or inhibitory factors of SMEs resilience capacity to natural hazards is still sparse, fragmentary and mostly fuelled by anecdotal evidence or normative assumptions. Focusing on the individual level of analysis, i.e. the individual enterprise and its endeavours to succeed, the emergent picture from this relatively new research strand delineates the specification of variables, conceptual relationships or dynamic boundaries of resilience capacity components in an attempt to provide prescriptions for policy-making as well as business management. This study will present the development of a flood resilience capacity index (FRCI) and its application to Greek SMEs. The proposed composite indicator pertains to cognitive, behavioral/managerial and contextual factors that influence an enterprise’s ability to shape effective responses to meet flood challenges. Through the proposed indicator-based approach, an analytical framework is set forth that will help standardize such assessments with the overarching aim of reducing the vulnerability of SMEs to flooding. This will be achieved by identifying major internal and external attributes explaining resilience capacity which is particularly important given the limited resources these enterprises have and that they tend to be primary sources of vulnerabilities in supply chain networks, generating Single Points of Failure (SPOF).

Keywords: Floods, Small & Medium-Sized enterprises, organizational resilience capacity, index development

Procedia PDF Downloads 189