Search results for: artificial emotions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2735

Search results for: artificial emotions

1295 Challenges beyond the Singapore Future-Ready School ‘LEADER’ Qualities

Authors: Zoe Boon Suan Loy

Abstract:

An exploratory research undertaken in 2000 at the beginning of the COVID-19 pandemic examined the changing roles of Singapore school leaders as they lead teachers in developing future-ready learners. While it is evident that ‘LEADER’ qualities epitomize the knowledge, competencies, and skills required, recent events in an increasing VUCA and BANI world characterized by massively disruptive Ukraine -Russian war, unabating tense US-Sino relations, issues related to sustainability, and rapid ageing will have an impact on school leadership. As an increasingly complex endeavour, this requires a relook as they lead teachers in nurturing holistically-developed future-ready students. Digitalisation, new technology, and the push for a green economy will be the key driving forces that will have an impact on job availability. Similarly, the rapid growth of artificial intelligence (AI) capabilities, including ChatGPT, will aggravate and add tremendous stress to the work of school leaders. This paper seeks to explore the key school leadership shifts required beyond the ‘LEADER’ qualities as school leaders respond to the changes, challenges, and opportunities in the 21st C new normal. The research findings for this paper are based on an exploratory qualitative study on the perceptions of 26 school leaders (vice-principals) who were attending a milestone educational leadership course at the National Institute of Education, Nanyang Technological University, Singapore. A structured questionnaire is designed to collect the data, which is then analysed using coding methodology. Broad themes on key competencies and skills of future-ready leaders in the Singapore education system are then identified. Key Findings: In undertaking their leadership roles as leaders of future-ready learners, school leaders need to demonstrate the ‘LEADER’ qualities. They need to have a long-term view, understand the educational imperatives, have a good awareness of self and the dispositions of a leader, be effective in optimizing external leverages and are clear about their role expectations. These ‘LEADER’ qualities are necessary and relevant in the post-Covid era. Beyond this, school leaders with ‘LEADER’ qualities are well supported by the Ministry of Education, which takes cognizance of emerging trends and continually review education policies to address related issues. Concluding Statement: Discussions within the education ecosystem and among other stakeholders on the implications of the use of artificial intelligence and ChatGPT on the school curriculum, including content knowledge, pedagogy, and assessment, are ongoing. This augurs well for school leaders as they undertake their responsibilities as leaders of future-ready learners.

Keywords: Singapore education system, ‘LEADER’ qualities, school leadership, future-ready leaders, future-ready learners

Procedia PDF Downloads 71
1294 Role of Artificial Intelligence in Nano Proteomics

Authors: Mehrnaz Mostafavi

Abstract:

Recent advances in single-molecule protein identification (ID) and quantification techniques are poised to revolutionize proteomics, enabling researchers to delve into single-cell proteomics and identify low-abundance proteins crucial for biomedical and clinical research. This paper introduces a different approach to single-molecule protein ID and quantification using tri-color amino acid tags and a plasmonic nanopore device. A comprehensive simulator incorporating various physical phenomena was designed to predict and model the device's behavior under diverse experimental conditions, providing insights into its feasibility and limitations. The study employs a whole-proteome single-molecule identification algorithm based on convolutional neural networks, achieving high accuracies (>90%), particularly in challenging conditions (95–97%). To address potential challenges in clinical samples, where post-translational modifications affecting labeling efficiency, the paper evaluates protein identification accuracy under partial labeling conditions. Solid-state nanopores, capable of processing tens of individual proteins per second, are explored as a platform for this method. Unlike techniques relying solely on ion-current measurements, this approach enables parallel readout using high-density nanopore arrays and multi-pixel single-photon sensors. Convolutional neural networks contribute to the method's versatility and robustness, simplifying calibration procedures and potentially allowing protein ID based on partial reads. The study also discusses the efficacy of the approach in real experimental conditions, resolving functionally similar proteins. The theoretical analysis, protein labeler program, finite difference time domain calculation of plasmonic fields, and simulation of nanopore-based optical sensing are detailed in the methods section. The study anticipates further exploration of temporal distributions of protein translocation dwell-times and the impact on convolutional neural network identification accuracy. Overall, the research presents a promising avenue for advancing single-molecule protein identification and quantification with broad applications in proteomics research. The contributions made in methodology, accuracy, robustness, and technological exploration collectively position this work at the forefront of transformative developments in the field.

Keywords: nano proteomics, nanopore-based optical sensing, deep learning, artificial intelligence

Procedia PDF Downloads 93
1293 The Effectiveness of Traditional Music as Therapy and Alternative to Traditional Forms of Therapy in Treatment of Anxiety and Depression

Authors: Helen Johnson-Egemba

Abstract:

This paper will discuss the current effectiveness of music therapy for a range of conditions, such as depression and anxiety. Indeed, traditional forms of therapy have often been effective in treating various mental and physical health conditions. However, they are not with their limitations. Music therapy, on the other hand, is a non-invasive and cost-effective alternative that can produce similar or even better results. Music therapy can produce longer-lasting results. The research also highlights the underlying mechanisms of traditional music therapy, such as its complementary treatment. A systematic review of existing literature was conducted to gather relevant studies and establish a comprehensive understanding of the topic. Various research methods, including experimental studies, qualitative research, surveys, were utilized to explore the therapeutic potential of traditional music interventions. The findings reveal that traditional music therapy shows promise in managing anxiety and depression symptoms, with positive outcomes impacting brain activity, emotions, and stress regulation. The outcomes of this study contribute to evidence-based practice, providing insights for clinicians and therapists to incorporate traditional music therapy into their treatment approaches. Furthermore, the research promotes awareness and acceptance of traditional music as a legitimate and effective therapeutic intervention for anxiety and depression, potentially enhancing access to alternative and complementary treatment options. Overall, this study demonstrates the potential benefits of traditional music therapy in addressing anxiety and depression, offering valuable implications for mental health care and improving the well-being of individuals struggling with these conditions.

Keywords: anxiety, effectiveness, depression, traditional music, therapy, treatment

Procedia PDF Downloads 44
1292 Exploring Psychosocial Factors That Enable Teachers to Cope with Workplace Adversity at a Rural District School Setting

Authors: K. R. Mukuna

Abstract:

Teachers are faced many challenges in the South African rural schools such as stress, depression, lack of resources, poor working relationships, inflexible curriculum etc. These could affect their wellbeing and effectiveness at the workplace. As a result, the study had a significance in the teacher’s lives, and community due teachers worked under conditions that are unfavourable to perform their jobs effectively. Despite these conditions, they still managed to do their jobs and the community is uplifted. However, this study aimed to explore factors that enable teachers to cope with workplace adversities at a rural school district in the Free State Province. It adopted a qualitative case study as a research design. Semi-structured interviews and colleges had employed as tools to collect data. Ten participants (n=10; 5 males and 5 females) were selected through purposive and convenience sampling. All participants selected from a South African rural school. Sesotho culture was their home language, and most of them had 5 years of teaching experiences. The thematic findings revealed that they developed abilities to cope with and adjust to the social and cultural environment. These included self-efficacy, developing problem-solving skills, awareness of strengths and asserts, self-managing of emotions, and self-confidence. This study concluded that these psychosocial factors contributed to coping with teacher’s diversities, and effectively stabilized their wellbeing in the schools.

Keywords: psychosocial factors, teachers counselling, teacher stress, workplace adversity, rural school, teachers’ wellbeing, teachers’ resilience, teachers’ self-efficacy, social interaction

Procedia PDF Downloads 126
1291 Neuropsychology of Social Awareness: A Research Study Applied to University Students in Greece

Authors: Argyris Karapetsas, Maria Bampou, Andriani Mitropoulou

Abstract:

The aim of the present work is to study the role of brain function in social awareness processing. Mind controls all the psychosomatic functions. Mind’s functioning enables individual not only to recognize one's own self and propositional attitudes, but also to assign such attitudes to other individuals, and to consider such observed mental states in the elucidation of behavior. Participants and Methods: Twenty (n=20) undergraduate students (mean age 18 years old) were involved in this study. Students participated in a clinical assessment, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment included both electrophysiological (i.e.Event Related Potentials (ERPs) esp.P300 waveform) and neuropsychological tests (Raven's Progressive Matrices (RPM) and Sally-Anne test). Results: Initial assessment’s results confirmed statistically significant differences between the males and females, as well as in score performance to the tests applied. Strong correlations emerged between prefrontal lobe functioning, RPM, Sally-Anne test and P300 latencies. Also, significant dysfunction of mind has been found, regarding its three dimensions (straight, circular and helical). At the end of the assessment, students received consultation and appropriate guidelines in order to improve their intrapersonal and interpersonal skills. Conclusions: Mind and social awareness phenomena play a vital role in human development and may act as determinants of the quality of one’s own life. Meanwhile, brain function is highly correlated with social awareness and it seems that different set of brain structures are involved in social behavior.

Keywords: brain activity, emotions, ERP's, social awareness

Procedia PDF Downloads 191
1290 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms

Authors: A. Majidian

Abstract:

The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.

Keywords: life prediction, condenser tube, neural network, fuzzy logic

Procedia PDF Downloads 350
1289 Forecasting Solid Waste Generation in Turkey

Authors: Yeliz Ekinci, Melis Koyuncu

Abstract:

Successful planning of solid waste management systems requires successful prediction of the amount of solid waste generated in an area. Waste management planning can protect the environment and human health, hence it is tremendously important for countries. The lack of information in waste generation can cause many environmental and health problems. Turkey is a country that plans to join European Union, hence, solid waste management is one of the most significant criteria that should be handled in order to be a part of this community. Solid waste management system requires a good forecast of solid waste generation. Thus, this study aims to forecast solid waste generation in Turkey. Artificial Neural Network and Linear Regression models will be used for this aim. Many models will be run and the best one will be selected based on some predetermined performance measures.

Keywords: forecast, solid waste generation, solid waste management, Turkey

Procedia PDF Downloads 505
1288 Cryptographic Protocol for Secure Cloud Storage

Authors: Luvisa Kusuma, Panji Yudha Prakasa

Abstract:

Cloud storage, as a subservice of infrastructure as a service (IaaS) in Cloud Computing, is the model of nerworked storage where data can be stored in server. In this paper, we propose a secure cloud storage system consisting of two main components; client as a user who uses the cloud storage service and server who provides the cloud storage service. In this system, we propose the protocol schemes to guarantee against security attacks in the data transmission. The protocols are login protocol, upload data protocol, download protocol, and push data protocol, which implement hybrid cryptographic mechanism based on data encryption before it is sent to the cloud, so cloud storage provider does not know the user's data and cannot analysis user’s data, because there is no correspondence between data and user.

Keywords: cloud storage, security, cryptographic protocol, artificial intelligence

Procedia PDF Downloads 355
1287 Artificial Intelligence Based Meme Generation Technology for Engaging Audience in Social Media

Authors: Andrew Kurochkin, Kostiantyn Bokhan

Abstract:

In this study, a new meme dataset of ~650K meme instances was created, a technology of meme generation based on the state of the art deep learning technique - GPT-2 model was researched, a comparative analysis of machine-generated memes and human-created was conducted. We justified that Amazon Mechanical Turk workers can be used for the approximate estimating of users' behavior in a social network, more precisely to measure engagement. It was shown that generated memes cause the same engagement as human memes that produced low engagement in the social network (historically). Thus, generated memes are less engaging than random memes created by humans.

Keywords: content generation, computational social science, memes generation, Reddit, social networks, social media interaction

Procedia PDF Downloads 137
1286 Dinitrotoluene and Trinitrotoluene Measuring in Double-Base Solid Propellants

Authors: Z. H. Safari, M. Anbia, G. H. Kouzegari, R. Amirkhani

Abstract:

Toluene and Nitro derivatives are widely used in industry particularly in various defense applications. Tri-nitro-toluene derivative is a powerful basic explosive material that is a basis upon which to compare equivalent explosive power of similar materials. The aim of this paper is to measure the explosive power of these hazardous substances in fuels having different shelf-life and therefore optimizing their storage and maintenance. The methodology involves measuring the amounts of di- nitro- toluene and tri-nitro-toluene in the aged samples at 90 ° C by gas chromatography. Results show no significant difference in the concentration of the TNT compound over a given time while there was a significant difference in DNT compound over the same period. The underlying reason is attributed to the simultaneous production of the material with destruction of stabilizer.

Keywords: dinitrotoluene, trinitrotoluene, double-base solid propellants, artificial aging

Procedia PDF Downloads 401
1285 Enhancing AI for Global Impact: Conversations on Improvement and Societal Benefits

Authors: C. P. Chukwuka, E. V. Chukwuka, F. Ukwadi

Abstract:

This paper focuses on the advancement and societal impact of artificial intelligence (AI) systems. It explores the need for a theoretical framework in corporate governance, specifically in the context of 'hybrid' companies that have a mix of private and government ownership. The paper emphasizes the potential of AI to address challenges faced by these companies and highlights the importance of the less-explored state model in corporate governance. The aim of this research is to enhance AI systems for global impact and positive societal outcomes. It aims to explore the role of AI in refining corporate governance in hybrid companies and uncover nuanced insights into complex ownership structures. The methodology involves leveraging the capabilities of AI to address the challenges faced by hybrid companies in corporate governance. The researchers will analyze existing theoretical frameworks in corporate governance and integrate AI systems to improve problem-solving and understanding of intricate systems. The paper suggests that improved AI systems have the potential to shape a more informed and responsible corporate landscape. AI can uncover nuanced insights and navigate complex ownership structures in hybrid companies, leading to greater efficacy and positive societal outcomes. The theoretical importance of this research lies in the exploration of the role of AI in corporate governance, particularly in the context of hybrid companies. By integrating AI systems, the paper highlights the potential for improved problem-solving and understanding of intricate systems, contributing to a more informed and responsible corporate landscape. The data for this research will be collected from existing literature on corporate governance, specifically focusing on hybrid companies. Additionally, data on AI capabilities and their application in corporate governance will be collected. The collected data will be analyzed through a systematic review of existing theoretical frameworks in corporate governance. The researchers will also analyze the capabilities of AI systems and their potential application in addressing the challenges faced by hybrid companies. The findings will be synthesized and compared to identify patterns and potential improvements. The research concludes that AI systems have the potential to enhance corporate governance in hybrid companies, leading to greater efficacy and positive societal outcomes. By leveraging AI capabilities, nuanced insights can be uncovered, and complex ownership structures can be navigated, shaping a more informed and responsible corporate landscape. The findings highlight the importance of integrating AI in refining problem-solving and understanding intricate systems for global impact.

Keywords: advancement, artificial intelligence, challenges, societal impact

Procedia PDF Downloads 54
1284 Links Between Maternal Trauma, Response to Distress, and Toddler Internalizing and Externalizing Behaviors: A Mediational Analysis

Authors: Zena Ebrahim, Susan Woodhouse

Abstract:

Previous research shows that mothers’ experiences of trauma are linked to their child’s later socioemotional functioning. However, the mechanisms involved are not well understood. One potential mediator is maternal insensitive responses to child distress. This study examined the link between maternal trauma, mothers’ responses to toddler distress, and toddlers’ socioemotional outcomes among a socioeconomically diverse sample of 110 mothers and their 12- to 35-month-old toddlers. It was hypothesized that a mother’s difficulty in responding sensitively to her child’s distress would mediate the relations between maternal trauma and child internalizing and externalizing behaviors. Two mediational models were tested to examine non-supportive responses to distress as a potential mediator of the relation between maternal trauma and toddler mental health outcomes; one model focused on predicting child internalizing symptoms and the other focused on predicting child externalizing symptoms. Measures included assessment of maternal trauma (Life Stressor Checklist-Revised), mothers’ responses to child distress (Coping with Toddlers’ Negative Emotions Scale), and toddler socioemotional functioning (Infant-Toddler Social and Emotional Assessment). Results revealed that the relations between maternal trauma and toddler symptoms (internalizing and externalizing symptoms) were mediated by maternal non-supportive response to child distress for both internalizing and externalizing domains of child mental health. Findings suggest the importance of early intervention for trauma-exposed mothers and target areas for parenting interventions.

Keywords: trauma, parenting, child mental health, transgenerational effects of trauma

Procedia PDF Downloads 154
1283 Improvement Image Summarization using Image Processing and Particle swarm optimization Algorithm

Authors: Hooman Torabifard

Abstract:

In the last few years, with the progress of technology and computers and artificial intelligence entry into all kinds of scientific and industrial fields, the lifestyles of human life have changed and in general, the way of humans live on earth has many changes and development. Until now, some of the changes has occurred in the context of digital images and image processing and still continues. However, besides all the benefits, there have been disadvantages. One of these disadvantages is the multiplicity of images with high volume and data; the focus of this paper is on improving and developing a method for summarizing and enhancing the productivity of these images. The general method used for this purpose in this paper consists of a set of methods based on data obtained from image processing and using the PSO (Particle swarm optimization) algorithm. In the remainder of this paper, the method used is elaborated in detail.

Keywords: image summarization, particle swarm optimization, image threshold, image processing

Procedia PDF Downloads 131
1282 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 121
1281 Automatic Detection and Filtering of Negative Emotion-Bearing Contents from Social Media in Amharic Using Sentiment Analysis and Deep Learning Methods

Authors: Derejaw Lake Melie, Alemu Kumlachew Tegegne

Abstract:

The increasing prevalence of social media in Ethiopia has exacerbated societal challenges by fostering the proliferation of negative emotional posts and comments. Illicit use of social media has further exacerbated divisions among the population. Addressing these issues through manual identification and aggregation of emotions from millions of users for swift decision-making poses significant challenges, particularly given the rapid growth of Amharic language usage on social platforms. Consequently, there is a critical need to develop an intelligent system capable of automatically detecting and categorizing negative emotional content into social, religious, and political categories while also filtering out toxic online content. This paper aims to leverage sentiment analysis techniques to achieve automatic detection and filtering of negative emotional content from Amharic social media texts, employing a comparative study of deep learning algorithms. The study utilized a dataset comprising 29,962 comments collected from social media platforms using comment exporter software. Data pre-processing techniques were applied to enhance data quality, followed by the implementation of deep learning methods for training, testing, and evaluation. The results showed that CNN, GRU, LSTM, and Bi-LSTM classification models achieved accuracies of 83%, 50%, 84%, and 86%, respectively. Among these models, Bi-LSTM demonstrated the highest accuracy of 86% in the experiment.

Keywords: negative emotion, emotion detection, social media filtering sentiment analysis, deep learning.

Procedia PDF Downloads 22
1280 Optimal Injected Current Control for Shunt Active Power Filter Using Artificial Intelligence

Authors: Brahim Berbaoui

Abstract:

In this paper, a new particle swarm optimization (PSO) based method is proposed for the implantation of optimal harmonic power flow in power systems. In this algorithm approach, proportional integral controller for reference compensating currents of active power filter is performed in order to minimize the total harmonic distortion (THD). The simulation results show that the new control method using PSO approach is not only easy to be implanted, but also very effective in reducing the unwanted harmonics and compensating reactive power. The studies carried out have been accomplished using the MATLAB Simulink Power System Toolbox.

Keywords: shunt active power filter, power quality, current control, proportional integral controller, particle swarm optimization

Procedia PDF Downloads 613
1279 Music Tourism for Identity and Cultural Communication in Qualitative Analysis with MAXQDA

Authors: Yixuan Peng

Abstract:

Music tourism is the phenomenon of people visiting a place because of their association with music, as well as the process of creating an emotional attachment to a place through the connection between people and music. Music offers people the opportunity to immerse themselves in the local culture. Music tourism is increasingly recognized as an industry with economic and social impacts. People often come together for a common purpose of music at a certain time and place, such as concert, opera, or music workshop. This is very similar to the act of pilgrimage: the process of participation evokes strong emotions; it takes time and money to get to the destination; the gathering, and the emotional co-frequency. This study conducted further qualitative research using MAXQDA by applying the musical topophilia model with East Asians as interview subjects. There are three steps to traveling: before, during and after the trip. To date, 53 individuals living in East Asia have been interviewed one-on-one (online/offline) about their travel experiences. This part of the interview is limited to the two stages that are before and after travel. Based on the results of the interviews above, and as Europe has the most representative music industry and the richest variety of music genres. The " during the trip" phase of the observations and interviews were conducted in Europe and involved on-site music in Salzburg and London, including musical theater, street music, and musical pilgrimages. Interviews with 24 people were conducted in English, Chinese and Japanese. This study will use data to demonstrate the followings: the irreplaceability of music in faraway places; the identity and sense of belonging that music brings; the ethnic barriers that music crosses; and the cultural communication that music enables.

Keywords: belongingness, gathering, modern pilgrimage, anthropology of music, sociology of music

Procedia PDF Downloads 80
1278 The Impact of Artificial Intelligence on Human Rights Development

Authors: Romany Wagih Farag Zaky

Abstract:

The relationship between development and human rights has long been the subject of academic debate. To understand the dynamics between these two concepts, various principles are adopted, from the right to development to development-based human rights. Despite the initiatives taken, the relationship between development and human rights remains unclear. However, the overlap between these two views and the idea that efforts should be made in the field of human rights have increased in recent years. It is then evaluated whether the right to sustainable development is acceptable or not. The article concludes that the principles of sustainable development are directly or indirectly recognized in various human rights instruments, which is a good answer to the question posed above. This book therefore cites regional and international human rights agreements such as , as well as the jurisprudence and interpretative guidelines of human rights institutions, to prove this hypothesis.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 53
1277 Constructions of Teaching English as a Second Language Teacher Trainees’ Professional Identities

Authors: K. S. Kan

Abstract:

The main purpose of this paper is to deepen the current understanding of how a Teaching English as a Second Language (TESL) teacher trainee self is constructed. The present aim of Malaysian TESL teacher education is to train teacher trainees with established English Language Teaching methodologies of the four main language skills (listening, reading, writing and speaking) apart from building them up holistically. Therefore, it is crucial to learn more of the ways on how these teacher trainees construct their professional selves during their undergraduate years. The participants come from a class of 17 Semester 6 TESL students who had undergone a 3-month’s practicum practice during their fifth semester and going for their final 3 month’s practicum period from July 2018 onwards. Findings from a survey, interviews with the participants and lecturers, documentations such as the participants’ practicum record-books would be consolidated with the supervisory notes and comments. The findings suggest that these teacher trainees negotiate their identities and emotions that react with the socio-cultural factors. Periodical reflections on the teacher trainees’ practicum practices influence transformation.The findings will be further aligned to the courses that these teacher trainees have to take in order to equip them as future second language practitioners. It is hoped that the findings will be able to fill the gap from the teacher trainees’ perspectives on identity construction dealing. This study is much more significant now, in view of the new English Language Curriculum for Primary School (widely known as KSSR, its Malay acronym) which had been introduced and implemented in Malaysian primary schools recently. This research will benefit second language practitioners who is in the language education field, as well as, TESL undergraduates, on the knowledge of how teacher trainees respond to and negotiate their professional teaching identities as future second language educators.

Keywords: construction of selves, professional identities, second language, TEST teacher trainees

Procedia PDF Downloads 226
1276 Review on Rainfall Prediction Using Machine Learning Technique

Authors: Prachi Desai, Ankita Gandhi, Mitali Acharya

Abstract:

Rainfall forecast is mainly used for predictions of rainfall in a specified area and determining their future rainfall conditions. Rainfall is always a global issue as it affects all major aspects of one's life. Agricultural, fisheries, forestry, tourism industry and other industries are widely affected by these conditions. The studies have resulted in insufficient availability of water resources and an increase in water demand in the near future. We already have a new forecast system that uses the deep Convolutional Neural Network (CNN) to forecast monthly rainfall and climate changes. We have also compared CNN against Artificial Neural Networks (ANN). Machine Learning techniques that are used in rainfall predictions include ARIMA Model, ANN, LR, SVM etc. The dataset on which we are experimenting is gathered online over the year 1901 to 20118. Test results have suggested more realistic improvements than conventional rainfall forecasts.

Keywords: ANN, CNN, supervised learning, machine learning, deep learning

Procedia PDF Downloads 199
1275 Automatic Algorithm for Processing and Analysis of Images from the Comet Assay

Authors: Yeimy L. Quintana, Juan G. Zuluaga, Sandra S. Arango

Abstract:

The comet assay is a method based on electrophoresis that is used to measure DNA damage in cells and has shown important results in the identification of substances with a potential risk to the human population as innumerable physical, chemical and biological agents. With this technique is possible to obtain images like a comet, in which the tail of these refers to damaged fragments of the DNA. One of the main problems is that the image has unequal luminosity caused by the fluorescence microscope and requires different processing to condition it as well as to know how many optimal comets there are per sample and finally to perform the measurements and determine the percentage of DNA damage. In this paper, we propose the design and implementation of software using Image Processing Toolbox-MATLAB that allows the automation of image processing. The software chooses the optimum comets and measuring the necessary parameters to detect the damage.

Keywords: artificial vision, comet assay, DNA damage, image processing

Procedia PDF Downloads 309
1274 Understanding the Manifestation of Psychosocial Difficulties in Children with Developmental Language Disorder, with a Focus on Anxiety and Social Frustration

Authors: Annabel Burnley, Michelle St. Clair, Charlotte Dack, Yvonne Wren

Abstract:

Children with Developmental Language Disorder (DLD) are well documented to experience social and emotional difficulties. Despite this, there is little consensus as to how these difficulties manifest, without which the ability to develop prevention initiatives is limited. An online survey was completed by 107 parents of either child with DLD (‘DLD sample’; n=57), or typically developing children (‘typical sample’; n=50), all aged 6-12 years old. Psychosocial symptom measures were used, alongside 11 psychosocial statements generated from previous qualitative work. Qualitative interviews were then held to understand the manifestation of key difficulties in more depth (n=4). The DLD sample scored significantly higher on all psychosocial statements than the typical sample. Experiencing anxiety (80.7%), requiring routine and sameness (75.4%) and struggling to regulate their emotions (75.4%) were the most common difficulties for a majority of children with DLD. For this DLD sample, family communication and coping styles were found not to contribute to the manifestation of these difficulties. Two separate mediation models were run to understand the role of other psychosocial difficulties in the manifestation of (1) anxiety and (2) social frustration. ‘Intolerance of uncertainty was found to strongly mediate the relationship between DLD diagnosis and symptoms of anxiety. Emotion regulation was found to moderately mediate the relationship between DLD diagnosis and social frustration. Parents appear to cope well with their children’s complex psychosocial needs, but further external intervention is needed. Intervention focussing on intolerance of uncertainty and emotion dysregulation may help the management of anxiety and social frustration. Further research is needed to understand the children’s routined behaviors.

Keywords: psychosocial difficulties, developmental language disorder, specific language impairment, parent, anxiety

Procedia PDF Downloads 110
1273 Childhood Trauma and Borderline Personality: An Analysis of the Root Causes and Treatment Plans

Authors: Sidika McNeil

Abstract:

Borderline personality disorder (BPD) is a personality disorder that has been found to have strong origins in childhood trauma. One of the key symptoms of BPD is an association with irregular moods swings, as well as suicidal ideation (SI). Owing to the typically severe trauma patients experience during childhood, it is hard for them to control their emotions and thus makes it hard to emotionally regulate. It is then very common for those suffering from BPD to turn to unhealthy coping mechanisms, such as substance use, unhealthy relationships, and more, often unsuccessfully creating experiences that facilitate safety which leads to further negative experiences. With the high suicide rating among children, adolescents, and teens, and an ever-increasing number of children being diagnosed with BPD, it is very important that more research is done to find further treatments for patients who are currently suffering. Methods: Utilizing data found in prior studies, this paper will analyze the literature to focus on a comprehensive treatment plan for those with DBT. It is currently suggested that with the use of dialectical behavioral therapy (DBT), a therapy that focuses on changing negative thinking patterns and pushes for more positive ones is helpful for treatment for those with BPD. Though this therapy is not a cure to BPD, it does help mitigate the risk; this essay will explore other options that can further the treatment process, such as cognitive analytical therapy (CAT), which focuses on delving into the past to find the root causes of an issue to create coping strategies and harm reduction, a type of therapy used to aid patients in lowering the use of substances without complete cessation. Results: The research provides enough evidence to link between the treatment of BPD with the utilization of CAT.

Keywords: borderline personality disorder, cognitive analytical therapy, dialectical behavioral therapy, harm reduction, suicidal ideation

Procedia PDF Downloads 175
1272 Innovations in the Lithium Chain Value

Authors: Fiúza A., Góis J. Leite M., Braga H., Lima A., Jorge P., Moutela P., Martins L., Futuro A.

Abstract:

Lepidolite is an important lithium mineral that, to the author’s best knowledge, has not been used to produce lithium hydroxide, necessary for energy conversion to electric vehicles. Alkaline leaching of lithium concentrates allows the establishment of a production diagram avoiding most of the environmental drawbacks that are associated with the usage of acid reagents. The tested processes involve a pretreatment by digestion at high temperatures with additives, followed by leaching at hot atmospheric pressure. The solutions obtained must be compatible with solutions from the leaching of spodumene concentrates, allowing the development of a common treatment diagram, an important accomplishment for the feasible exploitation of Portuguese resources. Statistical programming and interpretation techniques are used to minimize the laboratory effort required by conventional approaches and also allow phenomenological comprehension.

Keywords: artificial intelligence, tailings free process, ferroelectric electrolyte battery, life cycle assessment

Procedia PDF Downloads 120
1271 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 547
1270 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap

Authors: Sabri Serkan Gulluoglu

Abstract:

It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.

Keywords: remote sensing, satellite imaging, gis, computer science, information

Procedia PDF Downloads 317
1269 Effectiveness of Enhancing Positive Emotion Program of Patients with Lung Cancer

Authors: Pei-Fan Mu

Abstract:

Background: Lung cancer is the most common cancer with the highest mortality rate. Patients with lung cancer under chemotherapy treatment experience life-threatening uncertainty. This study was based on the broaden-and-build theory using intentionality reflection of the body and internalization of positive prioritization strategies to enhance positive emotions of patients with lung cancer. Purpose: The purpose of this study was to use a quasi-experimental research design to examine the effectiveness of the enhancing positive emotion program. Method: Data were collected from a medical center in Taiwan. Fifty-four participants with lung cancer were recruited. Thirty participants were in the experiential group receiving the two weeks program. The content of the program includes awareness and understanding of the symptom experience, co-existing with illness and establishing self-identity, cognitive-emotion adjustment and establishing a new body schema, and symptom management to reach spiritual well-being. Twenty-four participants were in the control group receiving regular nursing care. Baseline, one month later and two months later, programmed measurements of symptoms of distress, positive emotion, and psychological well-being. Results: These two weeks of enhancing the positive emotion program resulted in a significantly improved positive emotion score for the experimental group compared to the control group. The findings of this study indicated that the positive emotion had significant differences between the two groups. There were no differences in symptom distress between the two groups. Discussion: The findings indicated that the enhancing positive emotion program could help patients enhance their life-threatening facing conditions.

Keywords: positive emotion, lung cancer, experimental design, symptom distress

Procedia PDF Downloads 99
1268 Suicide, Help-Seeking and LGBT Youth: A Mixed Methods Study

Authors: Elizabeth McDermott, Elizabeth Hughes, Victoria Rawlings

Abstract:

Globally, suicide is the second leading cause of death among 15–29 year-olds. Young people who identify as lesbian, gay, bisexual and transgender (LGBT) have elevated rates of suicide and self-harm. Despite the increased risk, there is a paucity of research on LGBT help-seeking and suicidality. This is the first national study to investigate LGBT youth help-seeking for suicidal feelings and self-harm. We report on a UK sequential exploratory mixed method study that employed face-to-face and online methods in two stages. Stage one involved 29 online (n=15) and face-to-face (n=14) semi-structured interviews with LGBT youth aged under 25 years old. Stage two utilized an online LGBT youth questionnaire employing a community-based sampling strategy (n=789). We found across the sample that LGBT youth who self-harmed or felt suicidal were reluctant to seek help. Results indicated that participants were normalizing their emotional distress and only asked for help when they reached crisis point and were no longer coping. Those who self-harmed (p<0.001, OR=2.82), had attempted or planned suicide (p<0.05, OR=1.48), or had experience of abuse related to their sexuality or gender (p<0.01, OR=1.80), were most likely to seek help. There were a number of interconnecting reasons that contributed to participants’ problems accessing help. The most prominent of these were: negotiating norms in relation to sexuality, gender, mental health and age; being unable to talk about emotions, and coping and self-reliance. It is crucial that policies and practices that aim to prevent LGBT youth suicide recognize that norms and normalizing processes connected to sexual orientation and gender identity are additional difficulties that LGBT youth have accessing mental health support.

Keywords: help-seeking, LGBT, suicide, youth

Procedia PDF Downloads 272
1267 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 229
1266 Psychological Assessment of Living Kidney Donors: A Systematic Review

Authors: Valentina Colonnello, Paolo Maria Russo

Abstract:

Living kidney donation requires psychological evaluation and ongoing follow-up. A crucial aspect of this evaluation is assessing the social functioning of donors after donation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we conducted a review of quantitative and qualitative studies on the psychological assessment of living kidney donors' social functioning. The majority of quantitative studies examining the long-term social health post-donation have primarily utilized the Short Form Health Survey (SF) and the World Health Organization Quality of Life-BREF (WHOQoL-BREF) questionnaires. These studies have indicated that donors' social functioning and relationships either remained stable post-donation or returned to pre-donation levels. In some instances, donors' social functioning even surpassed that of the general population. Qualitative studies, conducted through interviews and focus groups, have revealed donors' experiences and emotional concerns that are often overlooked in quantitative analyses. Specifically, qualitative analysis has identified two main themes: "connecting to others" and "acknowledgment and social support." Our review highlights that the majority of published quantitative studies on donors have employed measures of social functioning that may not fully capture donors' experiences and needs. It underscores the importance of further investigation in quantitative studies to assess donors' actual social health and psychological needs accurately. Overall, this review provides valuable insights into specific constructs that warrant deeper exploration in quantitative studies concerning the assessment of donors' social health and psychological well-being.

Keywords: reported outcomes, personalized medicine, individual differences, emotions, psychological assessment

Procedia PDF Downloads 64