Search results for: material removal rate
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14740

Search results for: material removal rate

310 Finite Element Simulation of Four Point Bending of Laminated Veneer Lumber (LVL) Arch

Authors: Eliska Smidova, Petr Kabele

Abstract:

This paper describes non-linear finite element simulation of laminated veneer lumber (LVL) under tensile and shear loads that induce cracking along fibers. For this purpose, we use 2D homogeneous orthotropic constitutive model of tensile and shear fracture in timber that has been recently developed and implemented into ATENA® finite element software by the authors. The model captures (i) material orthotropy for small deformations in both linear and non-linear range, (ii) elastic behavior until anisotropic failure criterion is fulfilled, (iii) inelastic behavior after failure criterion is satisfied, (iv) different post-failure response for cracks along and across the grain, (v) unloading/reloading behavior. The post-cracking response is treated by fixed smeared crack model where Reinhardt-Hordijk function is used. The model requires in total 14 input parameters that can be obtained from standard tests, off-axis test results and iterative numerical simulation of compact tension (CT) or compact tension-shear (CTS) test. New engineered timber composites, such as laminated veneer lumber (LVL), offer improved structural parameters compared to sawn timber. LVL is manufactured by laminating 3 mm thick wood veneers aligned in one direction using water-resistant adhesives (e.g. polyurethane). Thus, 3 main grain directions, namely longitudinal (L), tangential (T), and radial (R), are observed within the layered LVL product. The core of this work consists in 3 numerical simulations of experiments where Radiata Pine LVL and Yellow Poplar LVL were involved. The first analysis deals with calibration and validation of the proposed model through off-axis tensile test (at a load-grain angle of 0°, 10°, 45°, and 90°) and CTS test (at a load-grain angle of 30°, 60°, and 90°), both of which were conducted for Radiata Pine LVL. The second finite element simulation reproduces load-CMOD curve of compact tension (CT) test of Yellow Poplar with the aim of obtaining cohesive law parameters to be used as an input in the third finite element analysis. That is four point bending test of small-size arch of 780 mm span that is made of Yellow Poplar LVL. The arch is designed with a through crack between two middle layers in the crown. Curved laminated beams are exposed to high radial tensile stress compared to timber strength in radial tension in the crown area. Let us note that in this case the latter parameter stands for tensile strength in perpendicular direction with respect to the grain. Standard tests deliver most of the relevant input data whereas traction-separation law for crack along the grain can be obtained partly by inverse analysis of compact tension (CT) test or compact tension-shear test (CTS). The initial crack was modeled as a narrow gap separating two layers in the middle the arch crown. Calculated load-deflection curve is in good agreement with the experimental ones. Furthermore, crack pattern given by numerical simulation coincides with the most important observed crack paths.

Keywords: compact tension (CT) test, compact tension shear (CTS) test, fixed smeared crack model, four point bending test, laminated arch, laminated veneer lumber LVL, off-axis test, orthotropic elasticity, orthotropic fracture criterion, Radiata Pine LVL, traction-separation law, yellow poplar LVL, 2D constitutive model

Procedia PDF Downloads 261
309 Anticancer Potentials of Aqueous Tinospora cordifolia and Its Bioactive Polysaccharide, Arabinogalactan on Benzo(a)Pyrene Induced Pulmonary Tumorigenesis: A Study with Relevance to Blood Based Biomarkers

Authors: Vandana Mohan, Ashwani Koul

Abstract:

Aim: To evaluate the potential of Aqueous Tinospora cordifolia stem extract (Aq.Tc) and Arabinogalactan (AG) on pulmonary carcinogenesis and associated tumor markers. Background: Lung cancer is one of the most frequent malignancy with high mortality rate due to limitation of early detection resulting in low cure rates. Current research effort focuses on identifying some blood-based biomarkers like CEA, ctDNA and LDH which may have potential to detect cancer at an early stage, evaluation of therapeutic response and its recurrence. Medicinal plants and their active components have been widely investigated for their anticancer potentials. Aqueous preparation of T. Cordifolia extract is enriched in the polysaccharide fraction i.e., AG when compared with other types of extract. Moreover, reports are available of polysaccharide fraction of T. Cordifolia in in vitro lung cancer models which showed profound anti-metastatic activity against these cell lines. However, not much has been explored about its effect in in vivo lung cancer models and the underlying mechanism involved. Experimental Design: Mice were randomly segregated into six groups. Group I animals served as control. Group II animals were administered with Aq. Tc extract (200 mg/kg b.w.) p.o.on the alternate days. Group III animals were fed with AG (7.5 mg/kg b.w.) p.o. on the alternate days (thrice a week). Group IV animals were installed with Benzo(a)pyrene (50 mg/kg b.w.), i.p. twice within an interval of two weeks. Group V animals received Aq. Tc extract as in group II along with it B(a)P was installed after two weeks of Aq. Tc administration following the same protocol as for group IV. Group VI animals received AG as in group III along with it B(a)P was installed after two weeks of AG administration. Results: Administration of B(a)P to mice resulted in increased tumor incidence, multiplicity and pulmonary somatic index with concomitant increase in serum/plasma markers like CEA, ctDNA, LDH and TNF-α.Aq.Tc and AG supplementation significantly attenuated these alterations at different stages of tumorigenesis thereby showing potent anti-cancer effect in lung cancer. A pronounced decrease in serum/plasma markers were observed in animals treated with Aq.Tc as compared to those fed with AG. Also, extensive hyperproliferation of alveolar epithelium was prominent in B(a)P induced lung tumors. However, treatment of Aq.Tc and AG to lung tumor bearing mice exhibited reduced alveolar damage evident from decreased number of hyperchromatic irregular nuclei. A direct correlation between the concentration of tumor markers and the intensity of lung cancer was observed in animals bearing cancer co-treated with Aq.Tc and AG. Conclusion: These findings substantiate the chemopreventive potential of Aq.Tc and AG against lung tumorigenesis. Interestingly, Aq.Tc was found to be more effective in modulating the cancer as reflected by various observations which may be attributed to the synergism offered by various components of Aq.Tc. Further studies are in progress to understand the underlined mechanism in inhibiting lung tumorigenesis by Aq.Tc and AG.

Keywords: Arabinogalactan, Benzo(a)pyrene B(a)P, carcinoembryonic antigen (CEA), circulating tumor DNA (ctDNA), lactate dehydrogenase (LDH), Tinospora cordifolia

Procedia PDF Downloads 164
308 Distributed Listening in Intensive Care: Nurses’ Collective Alarm Responses Unravelled through Auditory Spatiotemporal Trajectories

Authors: Michael Sonne Kristensen, Frank Loesche, James Foster, Elif Ozcan, Judy Edworthy

Abstract:

Auditory alarms play an integral role in intensive care nurses’ daily work. Most medical devices in the intensive care unit (ICU) are designed to produce alarm sounds in order to make nurses aware of immediate or prospective safety risks. The utilisation of sound as a carrier of crucial patient information is highly dependent on nurses’ presence - both physically and mentally. For ICU nurses, especially the ones who work with stationary alarm devices at the patient bed space, it is a challenge to display ‘appropriate’ alarm responses at all times as they have to navigate with great flexibility in a complex work environment. While being primarily responsible for a small number of allocated patients they are often required to engage with other nurses’ patients, relatives, and colleagues at different locations inside and outside the unit. This work explores the social strategies used by a team of nurses to comprehend and react to the information conveyed by the alarms in the ICU. Two main research questions guide the study: To what extent do alarms from a patient bed space reach the relevant responsible nurse by direct auditory exposure? By which means do responsible nurses get informed about their patients’ alarms when not directly exposed to the alarms? A comprehensive video-ethnographic field study was carried out to capture and evaluate alarm-related events in an ICU. The study involved close collaboration with four nurses who wore eye-level cameras and ear-level binaural audio recorders during several work shifts. At all time the entire unit was monitored by multiple video and audio recorders. From a data set of hundreds of hours of recorded material information about the nurses’ location, social interaction, and alarm exposure at any point in time was coded in a multi-channel replay-interface. The data shows that responsible nurses’ direct exposure and awareness of the alarms of their allocated patients vary significantly depending on work load, social relationships, and the location of the patient’s bed space. Distributed listening is deliberately employed by the nursing team as a social strategy to respond adequately to alarms, but the patterns of information flow prompted by alarm-related events are not uniform. Auditory Spatiotemporal Trajectory (AST) is proposed as a methodological label to designate the integration of temporal, spatial and auditory load information. As a mixed-method metrics it provides tangible evidence of how nurses’ individual alarm-related experiences differ from one another and from stationary points in the ICU. Furthermore, it is used to demonstrate how alarm-related information reaches the individual nurse through principles of social and distributed cognition, and how that information relates to the actual alarm event. Thereby it bridges a long-standing gap in the literature on medical alarm utilisation between, on the one hand, initiatives to measure objective data of the medical sound environment without consideration for any human experience, and, on the other hand, initiatives to study subjective experiences of the medical sound environment without detailed evidence of the objective characteristics of the environment.

Keywords: auditory spatiotemporal trajectory, medical alarms, social cognition, video-ethography

Procedia PDF Downloads 175
307 Electroactive Ferrocenyl Dendrimers as Transducers for Fabrication of Label-Free Electrochemical Immunosensor

Authors: Sudeshna Chandra, Christian Gäbler, Christian Schliebe, Heinrich Lang

Abstract:

Highly branched dendrimers provide structural homogeneity, controlled composition, comparable size to biomolecules, internal porosity and multiple functional groups for conjugating reactions. Electro-active dendrimers containing multiple redox units have generated great interest in their use as electrode modifiers for development of biosensors. The electron transfer between the redox-active dendrimers and the biomolecules play a key role in developing a biosensor. Ferrocenes have multiple and electrochemically equivalent redox units that can act as electron “pool” in a system. The ferrocenyl-terminated polyamidoamine dendrimer is capable of transferring multiple numbers of electrons under the same applied potential. Therefore, they can be used for dual purposes: one in building a film over the electrode for immunosensors and the other for immobilizing biomolecules for sensing. Electrochemical immunosensor, thus developed, exhibit fast and sensitive analysis, inexpensive and involve no prior sample pre-treatment. Electrochemical amperometric immunosensors are even more promising because they can achieve a very low detection limit with high sensitivity. Detection of the cancer biomarkers at an early stage can provide crucial information for foundational research of life science, clinical diagnosis and prevention of disease. Elevated concentration of biomarkers in body fluid is an early indication of some type of cancerous disease and among all the biomarkers, IgG is the most common and extensively used clinical cancer biomarkers. We present an IgG (=immunoglobulin) electrochemical immunosensor using a newly synthesized redox-active ferrocenyl dendrimer of generation 2 (G2Fc) as glassy carbon electrode material for immobilizing the antibody. The electrochemical performance of the modified electrodes was assessed in both aqueous and non-aqueous media using varying scan rates to elucidate the reaction mechanism. The potential shift was found to be higher in an aqueous electrolyte due to presence of more H-bond which reduced the electrostatic attraction within the amido groups of the dendrimers. The cyclic voltammetric studies of the G2Fc-modified GCE in 0.1 M PBS solution of pH 7.2 showed a pair of well-defined redox peaks. The peak current decreased significantly with the immobilization of the anti-goat IgG. After the immunosensor is blocked with BSA, a further decrease in the peak current was observed due to the attachment of the protein BSA to the immunosensor. A significant decrease in the current signal of the BSA/anti-IgG/G2Fc/GCE was observed upon immobilizing IgG which may be due to the formation of immune-conjugates that blocks the tunneling of mass and electron transfer. The current signal was found to be directly related to the amount of IgG captured on the electrode surface. With increase in the concentration of IgG, there is a formation of an increasing amount of immune-conjugates that decreased the peak current. The incubation time and concentration of the antibody was optimized for better analytical performance of the immunosensor. The developed amperometric immunosensor is sensitive to IgG concentration as low as 2 ng/mL. Tailoring of redox-active dendrimers provides enhanced electroactivity to the system and enlarges the sensor surface for binding the antibodies. It may be assumed that both electron transfer and diffusion contribute to the signal transformation between the dendrimers and the antibody.

Keywords: ferrocenyl dendrimers, electrochemical immunosensors, immunoglobulin, amperometry

Procedia PDF Downloads 316
306 The Optimization of Topical Antineoplastic Therapy Using Controlled Release Systems Based on Amino-functionalized Mesoporous Silica

Authors: Lacramioara Ochiuz, Aurelia Vasile, Iulian Stoleriu, Cristina Ghiciuc, Maria Ignat

Abstract:

Topical administration of chemotherapeutic agents (eg. carmustine, bexarotene, mechlorethamine etc.) in local treatment of cutaneous T-cell lymphoma (CTCL) is accompanied by multiple side effects, such as contact hypersensitivity, pruritus, skin atrophy or even secondary malignancies. A known method of reducing the side effects of anticancer agent is the development of modified drug release systems using drug incapsulation in biocompatible nanoporous inorganic matrices, such as mesoporous MCM-41 silica. Mesoporous MCM-41 silica is characterized by large specific surface, high pore volume, uniform porosity, and stable dispersion in aqueous medium, excellent biocompatibility, in vivo biodegradability and capacity to be functionalized with different organic groups. Therefore, MCM-41 is an attractive candidate for a wide range of biomedical applications, such as controlled drug release, bone regeneration, protein immobilization, enzymes, etc. The main advantage of this material lies in its ability to host a large amount of the active substance in uniform pore system with adjustable size in a mesoscopic range. Silanol groups allow surface controlled functionalization leading to control of drug loading and release. This study shows (I) the amino-grafting optimization of mesoporous MCM-41 silica matrix by means of co-condensation during synthesis and post-synthesis using APTES (3-aminopropyltriethoxysilane); (ii) loading the therapeutic agent (carmustine) obtaining a modified drug release systems; (iii) determining the profile of in vitro carmustine release from these systems; (iv) assessment of carmustine release kinetics by fitting on four mathematical models. Obtained powders have been described in terms of structure, texture, morphology thermogravimetric analysis. The concentration of the therapeutic agent in the dissolution medium has been determined by HPLC method. In vitro dissolution tests have been done using cell Enhancer in a 12 hours interval. Analysis of carmustine release kinetics from mesoporous systems was made by fitting to zero-order model, first-order model Higuchi model and Korsmeyer-Peppas model, respectively. Results showed that both types of highly ordered mesoporous silica (amino grafted by co-condensation process or post-synthesis) are thermally stable in aqueous medium. In what regards the degree of loading and efficiency of loading with the therapeutic agent, there has been noticed an increase of around 10% in case of co-condensation method application. This result shows that direct co-condensation leads to even distribution of amino groups on the pore walls while in case of post-synthesis grafting many amino groups are concentrated near the pore opening and/or on external surface. In vitro dissolution tests showed an extended carmustine release (more than 86% m/m) both from systems based on silica functionalized directly by co-condensation and after synthesis. Assessment of carmustine release kinetics revealed a release through diffusion from all studied systems as a result of fitting to Higuchi model. The results of this study proved that amino-functionalized mesoporous silica may be used as a matrix for optimizing the anti-cancer topical therapy by loading carmustine and developing prolonged-release systems.

Keywords: carmustine, silica, controlled, release

Procedia PDF Downloads 237
305 Women's Entrepreneurship in Mena Region: Gem Key Learnings

Authors: Fatima Boutaleb

Abstract:

Entrepreneurship proves to be crucial for the economic growth and development, since it contributes to job creation and the improvement of the overall productivity thus generating a positive impact upon society at various levels. Promoting entrepreneurship stimulates therefore economic diversity that is key to the betterment and/or maintaining of the standard of living. In fact, recent research suggests that entrepreneurship contributes to development by creating businesses and jobs, stimulating innovation, creating social capital across borders, and channeling political and financial capital. However, different research studies indicate that among the main factors impeding the entrepreneurship are politico-economic as socio-cultural problems, with an intensity for those related to young people and to women. In the MENA region, discrimination inherent in gender is alarming: Only one woman in eight runs her own business against 1 in 3 men. In most countries, young women and young men are facing problems involving access to finance, inadequate infrastructure, lack of support and, in general, an ecosystem that is rather unfavorable. According to the International Labor Organization, North Africa and the Middle East has the highest unemployment rate in all other regions of the world. In other hand, nearly a quarter of the population under 30 is unemployed and youth unemployment costs more than $40 billion each year to the region. In the current context, the situations in the Middle East and North Africa region are singular, both in terms of demographic trends and socio-economic issues around the employment of a large and better trained youth, but still strongly affected by unemployment and under-employment. According to a study published in 2015 by McKinsey, the world gain 26% of additional GDP (47% in the MENA region), more than 28 trillion dollars by 2025, if women came to participate, as well as men, to the economy. Promoting entrepreneurship represents an excellent alternative for the countries whose productive fabric fails to integrate the contingent of young people entering the job market each year. The MENA region, presenting entrepreneurial activity rates below those of other regions in terms of comparable development, has undoubtedly leeway at this level, even though the region displays large national heterogeneity, namely in the priority given to the promotion of entrepreneurship. The objective of this article is therefore to examine the women entrepreneurial vocation in the MENA region, to see to what extent research on the determinant of gender can provide information on the trend of the emerging entrepreneurial activity whether driven by necessity or by opportunity and, on this basis, to submit public policy proposals for the improvement of the mechanisms of inclusion among the youth women people. The objective is not to analyze the causality models but rather to identify the entrepreneurial construct specific to the MENA region via the analysis of GEM data from 2017 to 2019 among adults belonging to 10 countries of the MENA region. Notably, the study shows that inclusion of young women may be enhanced. These disadvantaged segments frequently intend to become entrepreneurs, but they tend not to enact their vocational intentions.

Keywords: economic development, entrepreneurial activity, GEM, gender, informal sector

Procedia PDF Downloads 79
304 Poly(Trimethylene Carbonate)/Poly(ε-Caprolactone) Phase-Separated Triblock Copolymers with Advanced Properties

Authors: Nikola Toshikj, Michel Ramonda, Sylvain Catrouillet, Jean-Jacques Robin, Sebastien Blanquer

Abstract:

Biodegradable and biocompatible block copolymers have risen as the golden materials in both medical and environmental applications. Moreover, if their architecture is of controlled manner, higher applications can be foreseen. In the meantime, organocatalytic ROP has been promoted as more rapid and immaculate route, compared to the traditional organometallic catalysis, towards efficient synthesis of block copolymer architectures. Therefore, herein we report novel organocatalytic pathway with guanidine molecules (TBD) for supported synthesis of trimethylene carbonate initiated by poly(caprolactone) as pre-polymer. Pristine PTMC-b-PCL-b-PTMC block copolymer structure, without any residual products and clear desired block proportions, was achieved under 1.5 hours at room temperature and verified by NMR spectroscopies and size-exclusion chromatography. Besides, when elaborating block copolymer films, further stability and amelioration of mechanical properties can be achieved via additional reticulation step of precedently methacrylated block copolymers. Subsequently, stimulated by the insufficient studies on the phase-separation/crystallinity relationship in these semi-crystalline block copolymer systems, their intrinsic thermal and morphology properties were investigated by differential scanning calorimetry and atomic force microscopy. Firstly, by DSC measurements, the block copolymers with χABN values superior to 20 presented two distinct glass transition temperatures, close to the ones of the respecting homopolymers, demonstrating an initial indication of a phase-separated system. In the interim, the existence of the crystalline phase was supported by the presence of melting temperature. As expected, the crystallinity driven phase-separated morphology predominated in the AFM analysis of the block copolymers. Neither crosslinking at melted state, hence creation of a dense polymer network, disturbed the crystallinity phenomena. However, the later revealed as sensible to rapid liquid nitrogen quenching directly from the melted state. Therefore, AFM analysis of liquid nitrogen quenched and crosslinked block copolymer films demonstrated a thermodynamically driven phase-separation clearly predominating over the originally crystalline one. These AFM films remained stable with their morphology unchanged even after 4 months at room temperature. However, as demonstrated by DSC analysis once rising the temperature above the melting temperature of the PCL block, neither the crosslinking nor the liquid nitrogen quenching shattered the semi-crystalline network, while the access to thermodynamical phase-separated structures was possible for temperatures under the poly (caprolactone) melting point. Precisely this coexistence of dual crosslinked/crystalline networks in the same copolymer structure allowed us to establish, for the first time, the shape-memory properties in such materials, as verified by thermomechanical analysis. Moreover, the response temperature to the material original shape depended on the block copolymer emplacement, hence PTMC or PCL as end-block. Therefore, it has been possible to reach a block copolymer with transition temperature around 40°C thus opening potential real-life medical applications. In conclusion, the initial study of phase-separation/crystallinity relationship in PTMC-b-PCL-b-PTMC block copolymers lead to the discovery of novel shape memory materials with superior properties, widely demanded in modern-life applications.

Keywords: biodegradable block copolymers, organocatalytic ROP, self-assembly, shape-memory

Procedia PDF Downloads 109
303 Preliminary Results on Marine Debris Classification in The Island of Mykonos (Greece) via Coastal and Underwater Clean up over 2016-20: A Successful Case of Recycling Plastics into Useful Daily Items

Authors: Eleni Akritopoulou, Katerina Topouzoglou

Abstract:

The last 20 years marine debris has been identified as one of the main marine pollution sources caused by anthropogenic activities. Plastics has reached the farthest marine areas of the planet affecting all marine trophic levels including the, recently discovered, amphipoda Eurythenes plasticus inhabiting Mariana Trench to large cetaceans, marine reptiles and sea birds causing immunodeficiency disorders, deteriorating health and death overtime. For the time period 2016-20, in the framework of the national initiative ‘Keep Aegean Blue”, All for Blue team has been collecting marine debris (coastline and underwater) following a modified in situ MEDSEALITTER monitoring protocol from eight Greek islands. After collection, marine debris was weighted, sorted and categorised according to material; plastic (PL), glass (G), metal (M), wood (W), rubber (R), cloth (CL), paper (P), mixed (MX). The goal of the project included the documentation of marine debris sources, human trends, waste management and public marine environmental awareness. Waste management was focused on plastics recycling and utilisation into daily useful products. This research is focused on the island of Mykonos due to its continuous touristic activity and lack of scientific information. In overall, a field work area of 1.832.856 m2 was cleaned up yielding 5092 kg of marine debris. The preliminary results indicated PL as main source of marine debris (62,8%) followed by M (15,5%), GL (13,2%) and MX (2,8%). Main items found were fishing tools (lines, nets), disposable cutlery, cups and straws, cigarette butts, flip flops and other items like plastic boat compartments. In collaboration with a local company for plastic management and the Circular Economy and Eco Innovation Institute (Sweden), all plastic debris was recycled. Granulation process was applied transforming plastic into building materials used for refugees’ houses, litter bins bought by municipalities and schools and, other items like shower components. In terms of volunteering and attendance in public awareness seminars, there was a raise of interest by 63% from different age ranges and professions. Regardless, the research being fairly new for Mykonos island and logistics issues potentially affected systemic sampling, it appeared that plastic debris is the main littering source attributed, possibly to the intense touristic activity of the island all year around. However, marine environmental awareness activities were pointed out to be an effective tool in forming public perception against marine debris and, alter the daily habits of local society. Since the beginning of this project, three new local environmental teams were formed against marine pollution supported by the local authorities and stakeholders. The continuous need and request for the production of items made by recycled marine debris appeared to be beneficial socio-economically to the local community and actions are taken to expand the project nationally. Finally, as an ongoing project and whilst, new scientific information is collected, further funding and research is needed.

Keywords: Greece, marine debris, marine environmental awareness, Mykonos island, plastics debris, plastic granulation, recycled plastic, tourism, waste management

Procedia PDF Downloads 91
302 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 103
301 The Relationship between Depression, HIV Stigma and Adherence to Antiretroviral Therapy among Adult Patients Living with HIV at a Tertiary Hospital in Durban, South Africa: The Mediating Roles of Self-Efficacy and Social Support

Authors: Muziwandile Luthuli

Abstract:

Although numerous factors predicting adherence to antiretroviral therapy (ART) among people living with HIV/AIDS (PLWHA) have been broadly studied on both regional and global level, up-to-date adherence of patients to ART remains an overarching, dynamic and multifaceted problem that needs to be investigated over time and across various contexts. There is a rarity of empirical data in the literature on interactive mechanisms by which psychosocial factors influence adherence to ART among PLWHA within the South African context. Therefore, this study was designed to investigate the relationship between depression, HIV stigma, and adherence to ART among adult patients living with HIV at a tertiary hospital in Durban, South Africa, and the mediating roles of self-efficacy and social support. The health locus of control theory and the social support theory were the underlying theoretical frameworks for this study. Using a cross-sectional research design, a total of 201 male and female adult patients aged between 18-75 years receiving ART at a tertiary hospital in Durban, KwaZulu-Natal were sampled, using time location sampling (TLS). A self-administered questionnaire was employed to collect the data in this study. Data were analysed through SPSS version 27. Several statistical analyses were conducted in this study, namely univariate statistical analysis, correlational analysis, Pearson’s chi-square analysis, cross-tabulation analysis, binary logistic regression analysis, and mediational analysis. Univariate analysis indicated that the sample mean age was 39.28 years (SD=12.115), while most participants were females 71.0% (n=142), never married 74.2% (n=147), and most were also secondary school educated 48.3% (n=97), as well as unemployed 65.7% (n=132). The prevalence rate of participants who had high adherence to ART was 53.7% (n=108), and 46.3% (n=93) of participants had low adherence to ART. Chi-square analysis revealed that employment status was the only statistically significant socio-demographic influence of adherence to ART in this study (χ2 (3) = 8.745; p < .033). Chi-square analysis showed that there was a statistically significant difference found between depression and adherence to ART (χ2 (4) = 16.140; p < .003), while between HIV stigma and adherence to ART, no statistically significant difference was found (χ2 (1) = .323; p >.570). Binary logistic regression indicated that depression was statistically associated with adherence to ART (OR= .853; 95% CI, .789–.922, P < 001), while the association between self-efficacy and adherence to ART was statistically significant (OR= 1.04; 95% CI, 1.001– 1.078, P < .045) after controlling for the effect of depression. However, the findings showed that the effect of depression on adherence to ART was not significantly mediated by self-efficacy (Sobel test for indirect effect, Z= 1.01, P > 0.31). Binary logistic regression showed that the effect of HIV stigma on adherence to ART was not statistically significant (OR= .980; 95% CI, .937– 1.025, P > .374), but the effect of social support on adherence to ART was statistically significant, only after the effect of HIV stigma was controlled for (OR= 1.017; 95% CI, 1.000– 1.035, P < .046). This study promotes behavioral and social change effected through evidence-based interventions by emphasizing the need for additional research that investigates the interactive mechanisms by which psychosocial factors influence adherence to ART. Depression is a significant predictor of adherence to ART. Thus, to alleviate the psychosocial impact of depression on adherence to ART, effective interventions must be devised, along with special consideration of self-efficacy and social support. Therefore, this study is helpful in informing and effecting change in health policy and healthcare services through its findings

Keywords: ART adherence, depression, HIV/AIDS, PLWHA

Procedia PDF Downloads 163
300 Prevalence, Antimicrobial Susceptibility Pattern and Public Health Significance for Staphylococcus aureus of Isolated From Raw Red Meat at Butchery and Abattoir House in Mekelle, Northern Ethiopia

Authors: Haftay Abraha Tadesse

Abstract:

Background: Staphylococcus is a genus of worldwide distributed bacteria correlated to several infectious of different sites in human and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. Objective: The objective of this study was to determine the isolates, antimicrobial susceptibility patterns and public health significance for Staphylococcus aureus in raw meat from butchery and abattoir houses of Mekelle, Northern Ethiopia. Methodology: A cross-sectional study was conducted from April to October 2019. Sociodemographic data and public health significance were collected using predesigned questionnaire. The raw meat samples were collected aseptically in the butchery and abattoir houses and transported using ice box to Mekelle University, College of Veterinary Sciences for isolating and identification of Staphylococcus aureus. Antimicrobial susceptibility tests were determined by disc diffusion method. Data obtained were cleaned and entered in to STATA 22.0 and logistic regression model with odds ratio were calculated to assess the association of risk factors with bacterial contamination. P-value < 0.05 was considered as statistically significant. Results: In present study, 88 out of 250 (35.2%) were found to be contamination with Staphylococcus aureus. Among the raw meat specimens to be positivity rate of Staphylococcus aureus were 37.6% (n=47) and (32.8% (n=41), butchery and abattoir houses, respectively. Among the associated risk factories not using gloves reduces risk was found to (AOR=0.222; 95% CI: 0.104-0.473), Strict Separation b/n clean & dirty (AOR= 1.37; 95% CI: 0.66-2.86) and poor habit of hand washing (AOR=1.08; 95%CI: 0.35-3.35) were found to be statistically significant and ha ve associated with Staphylococcus aureus contamination. All isolates thirty sevevn of Staphyloco ccus aureus were checked displayed (100%) sensitive to doxycycline, trimethoprim, gentamicin, sulphamethoxazole, amikacin, CN, Co trimoxazole and nitrofurantoi. whereas the showed resistance of cefotaxime (100%), ampicillin (87.5%), Penicillin (75%), B (75%), and nalidixic acid (50%) from butchery houses. On the other hand, all isolates of Staphylococcus aur eu isolate 100% (n= 10) showed sensitive chloramphenicol, gentamicin and nitrofurantoin whereas the showed 100% resistance of Penicillin, B, AMX, ceftriaxone, ampicillin and cefotaxime from abattoirs houses. The overall multi drug resistance pattern for Staphylococcus aureus were 90% and 100% of butchery and abattoirs houses, respectively. Conclusion: 35.3% Staphylococcus aureus isolated were recovered from the raw meat samples collected from the butchery and abattoirs houses. More has to be done in the developed of hand washing behavior, and availability of safe water in the butchery houses to reduce burden of bacterial contamination. The results of the present finding highlight the need to implement protective measures against the levels of food contamination and alternative drug options. The development of antimicrobial resistance is nearly always as a result of repeated therapeutic and/or indiscriminate use of them. Regular antimicrobial sensitivity testing helps to select effective antibiotics and to reduce the problems of drug resistance development towards commonly used antibiotics. Key words: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia,

Keywords: abattoir houses, antimicrobial resistance, butchery houses, Ethiopia, staphylococcus aureuse, MDR

Procedia PDF Downloads 43
299 Surface Acoustic Waves Nebulisation of Liposomes Manufactured in situ for Pulmonary Drug Delivery

Authors: X. King, E. Nazarzadeh, J. Reboud, J. Cooper

Abstract:

Pulmonary diseases, such as asthma, are generally treated by the inhalation of aerosols that has the advantage of reducing the off-target (e.g., toxicity) effects associated with systemic delivery in blood. Effective respiratory drug delivery requires a droplet size distribution between 1 and 5 µm. Inhalation of aerosols with wide droplet size distribution, out of this range, results in deposition of drug in not-targeted area of the respiratory tract, introducing undesired side effects on the patient. In order to solely deliver the drug in the lower branches of the lungs and release it in a targeted manner, a control mechanism to produce the aerosolized droplets is required. To regulate the drug release and to facilitate the uptake from cells, drugs are often encapsulated into protective liposomes. However, a multistep process is required for their formation, often performed at the formulation step, therefore limiting the range of available drugs or their shelf life. Using surface acoustic waves (SAWs), a pulmonary drug delivery platform was produced, which enabled the formation of defined size aerosols and the formation of liposomes in situ. SAWs are mechanical waves, propagating along the surface of a piezoelectric substrate. They were generated using an interdigital transducer on lithium niobate with an excitation frequency of 9.6 MHz at a power of 1W. Disposable silicon superstrates were etched using photolithography and dry etch processes to create an array of cylindrical through-holes with different diameters and pitches. Superstrates were coupled with the SAW substrate through water-based gel. As the SAW propagates on the superstrate, it enables nebulisation of a lipid solution deposited onto it. The cylindrical cavities restricted the formation of large drops in the aerosol, while at the same time unilamellar liposomes were created. SAW formed liposomes showed a higher monodispersity compared to the control sample, as well as displayed, a faster production rate. To test the aerosol’s size, dynamic light scattering and laser diffraction methods were used, both showing the size control of the aerosolised particles. The use of silicon superstate with cavity size of 100-200 µm, produced an aerosol with a mean droplet size within the optimum range for pulmonary drug delivery, containing the liposomes in which the medicine could be loaded. Additionally, analysis of liposomes with Cryo-TEM showed formation of vesicles with narrow size distribution between 80-100 nm and optimal morphology in order to be used for drug delivery. Encapsulation of nucleic acids in liposomes through the developed SAW platform was also investigated. In vitro delivery of siRNA and DNA Luciferase were achieved using A549 cell line, lung carcinoma from human. In conclusion, SAW pulmonary drug delivery platform was engineered, in order to combine multiple time consuming steps (formation of liposomes, drug loading, nebulisation) into a unique platform with the aim of specifically delivering the medicament in a targeted area, reducing the drug’s side effects.

Keywords: acoustics, drug delivery, liposomes, surface acoustic waves

Procedia PDF Downloads 101
298 Ethnic Andean Concepts of Health and Illness in the Post-Colombian World and Its Relevance Today

Authors: Elizabeth J. Currie, Fernando Ortega Perez

Abstract:

—‘MEDICINE’ is a new project funded under the EC Horizon 2020 Marie-Sklodowska Curie Actions, to determine concepts of health and healing from a culturally specific indigenous context, using a framework of interdisciplinary methods which integrates archaeological-historical, ethnographic and modern health sciences approaches. The study will generate new theoretical and methodological approaches to model how peoples survive and adapt their traditional belief systems in a context of alien cultural impacts. In the immediate wake of the conquest of Peru by invading Spanish armies and ideology, native Andeans responded by forming the Taki Onkoy millenarian movement, which rejected European philosophical and ontological teachings, claiming “you make us sick”. The study explores how people’s experience of their world and their health beliefs within it, is fundamentally shaped by their inherent beliefs about the nature of being and identity in relation to the wider cosmos. Cultural and health belief systems and related rituals or behaviors sustain a people’s sense of identity, wellbeing and integrity. In the event of dislocation and persecution these may change into devolved forms, which eventually inter-relate with ‘modern’ biomedical systems of health in as yet unidentified ways. The development of new conceptual frameworks that model this process will greatly expand our understanding of how people survive and adapt in response to cultural trauma. It will also demonstrate the continuing role, relevance and use of TM in present-day indigenous communities. Studies will first be made of relevant pre-Colombian material culture, and then of early colonial period ethnohistorical texts which document the health beliefs and ritual practices still employed by indigenous Andean societies at the advent of the 17th century Jesuit campaigns of persecution - ‘Extirpación de las Idolatrías’. Core beliefs drawn from these baseline studies will then be used to construct a questionnaire about current health beliefs and practices to be taken into the study population of indigenous Quechua peoples in the northern Andean region of Ecuador. Their current systems of knowledge and medicine have evolved within complex historical contexts of both the conquest by invading Inca armies in the late 15th century, followed a generation later by Spain, into new forms. A new model will be developed of contemporary  Andean concepts of health, illness and healing demonstrating  the way these have changed through time. With this, a ‘policy tool’ will be constructed as a bridhging facility into contemporary global scenarios relevant to other Indigenous, First Nations, and migrant peoples to provide a means through which their traditional health beliefs and current needs may be more appropriately understood and met. This paper presents findings from the first analytical phases of the work based upon the study of the literature and the archaeological records. The study offers a novel perspective and methods in the development policies sensitive to indigenous and minority people’s health needs.

Keywords: Andean ethnomedicine, Andean health beliefs, health beliefs models, traditional medicine

Procedia PDF Downloads 327
297 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms

Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli

Abstract:

Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.

Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning

Procedia PDF Downloads 58
296 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 41
295 Density Determination of Liquid Niobium by Means of Ohmic Pulse-Heating for Critical Point Estimation

Authors: Matthias Leitner, Gernot Pottlacher

Abstract:

Experimental determination of critical point data like critical temperature, critical pressure, critical volume and critical compressibility of high-melting metals such as niobium is very rare due to the outstanding experimental difficulties in reaching the necessary extreme temperature and pressure regimes. Experimental techniques to achieve such extreme conditions could be diamond anvil devices, two stage gas guns or metal samples hit by explosively accelerated flyers. Electrical pulse-heating under increased pressures would be another choice. This technique heats thin wire samples of 0.5 mm diameter and 40 mm length from room temperature to melting and then further to the end of the stable phase, the spinodal line, within several microseconds. When crossing the spinodal line, the sample explodes and reaches the gaseous phase. In our laboratory, pulse-heating experiments can be performed under variation of the ambient pressure from 1 to 5000 bar and allow a direct determination of critical point data for low-melting, but not for high-melting metals. However, the critical point also can be estimated by extrapolating the liquid phase density according to theoretical models. A reasonable prerequisite for the extrapolation is the existence of data that cover as much as possible of the liquid phase and at the same time exhibit small uncertainties. Ohmic pulse-heating was therefore applied to determine thermal volume expansion, and from that density of niobium over the entire liquid phase. As a first step, experiments under ambient pressure were performed. The second step will be to perform experiments under high-pressure conditions. During the heating process, shadow images of the expanding sample wire were captured at a frame rate of 4 × 105 fps to monitor the radial expansion as a function of time. Simultaneously, the sample radiance was measured with a pyrometer operating at a mean effective wavelength of 652 nm. To increase the accuracy of temperature deduction, spectral emittance in the liquid phase is also taken into account. Due to the high heating rates of about 2 × 108 K/s, longitudinal expansion of the wire is inhibited which implies an increased radial expansion. As a consequence, measuring the temperature dependent radial expansion is sufficient to deduce density as a function of temperature. This is accomplished by evaluating the full widths at half maximum of the cup-shaped intensity profiles that are calculated from each shadow image of the expanding wire. Relating these diameters to the diameter obtained before the pulse-heating start, the temperature dependent volume expansion is calculated. With the help of the known room-temperature density, volume expansion is then converted into density data. The so-obtained liquid density behavior is compared to existing literature data and provides another independent source of experimental data. In this work, the newly determined off-critical liquid phase density was in a second step utilized as input data for the estimation of niobium’s critical point. The approach used, heuristically takes into account the crossover from mean field to Ising behavior, as well as the non-linearity of the phase diagram’s diameter.

Keywords: critical point data, density, liquid metals, niobium, ohmic pulse-heating, volume expansion

Procedia PDF Downloads 198
294 Strengthening Facility-Based Systems to Improve Access to In-Patient Care for Sick Newborns in Brong Ahafo Region, Ghana

Authors: Paulina Clara Appiah, Kofi Issah, Timothy Letsa, Kennedy Nartey, Amanua Chinbuah, Adoma Dwomo-Fokuo, Jacqeline G. Asibey

Abstract:

Background: The Every Newborn Action Plan provides evidence–based interventions to end preventable deaths in high burden countries. Brong Ahafo Region is one of ten regions in Ghana with less than half of its district hospitals having sick newborn units. Facility-based neonatal care is not prioritized and under-funded, and there is also inadequate knowledge and competence to manage the sick. The aim of this intervention was to make available in–patient care for sick newborns in all 19 district hospitals through the strengthening of facility-based systems. Methods: With the development and dissemination of the National Newborn Strategy and Action Plan 2014-2018, the country was able to attract PATH which provided the region with basic resuscitation equipment, supported hospital providers’ capacity building in Helping Babies Breathe, Essential Care of Every Baby, Infection Prevention and Management and held a symposia on managing the sick newborn. Newborn advocacy was promoted through newborn champions at the facility and community levels. Hospital management was then able to mobilize resources from communities, corporate organizations and from internally generated funds; created or expanded sick newborn care units and provided essential medicines and equipment. Kangaroo Mother Care was initiated in 6 hospitals. Pediatric specialist outreach services initiated comprised telephone consultations, teaching ward rounds and participating in perinatal death audits meetings. Newborn data capture and management was improved through the provision and training on the use of standard registers provided from the national level. Results: From February 2015 to November 2017, hospitals with sick newborn units increased from 7 to 19 (37%-100%). 180 pieces each of newborn ventilation bags and masks size 0, 1 and penguin suction bulbs were distributed to the hospitals, in addition to 20 newborn mannequin sets and 90 small clinical reminder posters. 802 providers (96.9%) were trained in resuscitation, of which 96% were successfully followed up in 6 weeks, 91% in 6 months and 80% in 12 months post-training. 53 clinicians (65%) were trained and mentored to manage sick newborns. 56 specialist teaching ward rounds were conducted. Data completeness improved from 92.6% - 99.9%. Availability of essential medicines improved from 11% to 100%. Number of hospital cots increased from 116 to 248 (214%). Cot occupancy rate increased from 57.4% to 92.5%. Hospitals with phototherapy equipment increased from 0 to 12 (63%). Hospitals with incubators increased from 1 to 12 (5%-63%). Newborn deaths among admissions reduced from 6.3% to 5.4%. Conclusion: Access to in-patient care increased significantly. Newborn advocacy successfully mobilized resources required for strengthening facility –based systems.

Keywords: facility-based systems, Ghana, in-patient care, newborn advocacy

Procedia PDF Downloads 205
293 The Lacuna in Understanding of Forensic Science amongst Law Practitioners in India

Authors: Poulomi Bhadra, Manjushree Palit, Sanjeev P. Sahni

Abstract:

Forensic science uses all branches of science for criminal investigation and trial and has increasingly emerged as an important tool in the administration of justice. However, the growth and development of this field in India has not been as rapid or widespread as compared to the more developed Western countries. For successful administration of justice, it is important that all agencies involved in law enforcement adopt an inter-professional approach towards forensic science, which is presently lacking. In light of the alarmingly high average acquittal rate in India, this study aims to examine the lack of understanding and appreciation of the importance and scope of forensic evidence and expert opinions amongst law professionals such as lawyers and judges. Based on a study of trial court cases from Delhi and surrounding areas, the study underline the areas in forensics where the criminal justice system has noticeably erred. Using this information, the authors examine the extent of forensic understanding amongst legal professionals and attempt to conclusively identify the areas in which they need further appraisal. A cross-sectional study done using a structured questionnaire was conducted amongst law professionals across age, gender, type and years of experience in court, to determine their understanding of DNA, fingerprints and other interdisciplinary scientific materials used as forensic evidence. In our study, we understand the levels of understanding amongst lawyers with regards to DNA and fingerprint evidence, and how it affects trial outcomes. We also aim to understand the factors that prevent credible and advanced awareness amongst legal personnel, amongst others. The survey identified the areas in modern and advanced forensics, such as forensic entomology, anthropology, cybercrime etc., in which Indian legal professionals are yet to attain a functional understanding. It also brings to light, what is commonly termed as the ‘CSI-effect’ in the Western courtrooms, and provides scope to study the existence of this phenomenon and its effects on the Indian courts and their judgements. This study highlighted the prevalence of unchallenged expert testimony presented by the prosecution in criminal trials and impressed upon the judicial system the need for independent analysis and evaluation of the scientist’s data and/or testimony by the defense. Overall, this study aims to define a clearer and rigid understanding of why legal professionals should have basic understanding of the interdisciplinary nature of forensic sciences. Based on the aforementioned findings, the author suggests various measures by which judges and lawyers might obtain an extensive knowledge of the advances and promising potentialities of forensic science. This includes promoting a forensic curriculum in legal studies at Bachelor’s and Master’s level as well as in mid-career professional courses. Formation of forensic-legal consultancies, in consultation with the Department of Justice, will not only assist in training police, military and law personnel but will also encourage legal research in this field. These suggestions also aim to bridge the communication gap that presently exists between law practitioners, forensic scientists and the general community’s awareness of the criminal justice system.

Keywords: forensic science, Indian legal professionals, interdisciplinary awareness, legal education

Procedia PDF Downloads 325
292 Solomon 300 OD (Betacyfluthrin+Imidacloprid): A Combi-Product for the Management of Insect-Pests of Chilli (Capsicum annum L.)

Authors: R. S. Giraddi, B. Thirupam Reddy, D. N. Kambrekar

Abstract:

Chilli (Capsicum annum L.) an important commercial vegetable crop is ravaged by a number of insect-pests during both vegetative and reproductive phase resulting into significant crop loss.Thrips, Scirtothripsdorsalis, mite, Polyphagotarsonemuslatus and whitefly, Bemisiatabaci are the key sap feeding insects, their infestation leads to leaf curl, stunted growth and yield loss.During flowering and fruit formation stage, gall midge fly, Asphondyliacapparis (Rubsaaman) infesting flower buds and young fruits andHelicoverpaarmigera (Hubner) feeding on matured green fruits are the important insect pests causing significant crop loss.The pest is known to infest both flower buds and young fruits resulting into malformation of flower buds and twisting of fruits.In order to manage these insect-pests a combi product consisting of imidacloprid and betacyfluthrin (Soloman 300 OD) was evaluated for its bio-efficacy, phytotoxicity and effect on predator activity.Imidacloprid, a systemic insecticide belonging to neo-nicotinoid group, is effective against insect pests such as aphids, whiteflies (sap feeders) and other insectsviz., termites and soil insects.Beta-Cyfluthrin is an insecticide of synthetic pyrethroid group which acts by contact action and ingestion. It acts on the insects' nervous system as sodium channel blocker consequently a disorder of the nervous system occurs leading finally to the death. The field experiments were taken up during 2015 and 2016 at the Main Agricultural Research Station of University of Agricultural Sciences, Dharwad, Karnataka, India.The trials were laid out in a Randomized Block Design (RBD) with three replications using popular land race of Byadagi crop variety.Results indicated that the product at 21.6 + 50.4% gai/ha (240 ml/ha) and 27.9 + 65% gai/ha (310 ml/ha) was found quite effective in controlling thrips (0.00 to 0.66 thrips per six leaves) as against the standard check insecticide recommended for thrips by the University of Agricultural Sciences, Dharwad wherein the density of thrips recorded was significantly higher (1.00 to 2.00 Nos./6 leaves). Similarly, the test insecticide was quite effective against other target insects, whiteflies, fruit borer and gall midge fly as indicated by lower insect population observed in the treatments as compared to standard insecticidal control. The predatory beetle activity was found to be normal in all experimental plots. Highest green fruit yield of 5100-5500 kg/ha was recorded in Soloman 300 OD applied crop at 310 ml/ha rate as compared to 4750 to 5050 kg/ha recorded in check. At present 6-8 sprays of insecticides are recommended for management of these insect-pests on the crop. If combi-products are used in pest management programmes, it is possible to reduce insecticide usages in crop ecosystem.

Keywords: Imidacloprid, Betacyfluthrin, gallmidge fly, thrips, chilli

Procedia PDF Downloads 139
291 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 56
290 Management of Hypoglycemia in Von Gierke’s Disease

Authors: Makda Aamir, Sood Aayushi, Syed Omar, Nihan Khuld, Iskander Peter, Ijaz Naeem, Sharma Nishant

Abstract:

Introduction:Glycogen Storage Disease Type-1 (GSD-1) is a rare phenomenon primarily affecting the liver and kidney. Excessive accumulation of glycogen and fat in liver, kidney, and intestinal mucosa is noted in patients with deficiency of Glucose-6-phosphatase deficiency. Patients with GSD-1 have a wide spectrum of symptoms, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Age of onset, rate of disease progression and its severity is variable in this disease.Case:An 18-year-old male with GSD-1a, Von Gierke’s disease, hyperuricemia, and hypertension presented to the hospital with nausea and vomiting. The patient followed an hourly cornstarch regimen during the day and overnight through infusion via a PEG tube. The complaints started at work, where he was unable to tolerate oral cornstarch. He washemodynamically stable on arrival. ABG showed pH 7.372, PaCO2 30.3, and PaO2 92.2. WBC 16.80, K+ 5.8, HCO3 13, BUN 28, Cr 2.2, Glucose 60, AST 115, ALT 128, Cholesterol 352, Triglycerides >1000, Uric Acid 10.6, Lactic Acid 11.8 which trended down to 8.0. CT abdomen showed hepatomegaly and fatty infiltration with the PEG tube in place.He was admitted to the ICU and started on D5NS for hypoglycemia and lactic acidosis. Per request by the patient’s pediatrician, he was transitioned to IV D10/0.45NS at 110mL/Hr to maintain blood glucose above 75 mg/L. Frequent accuchecks were done till he could tolerate his dietary regimen with cornstarch. Lactic acid downtrend to 2.9, and accuchecks ranged between 100-110. Cr improved to 1.3, and his home medications (Allopurinol and Lisinopril) were resumed. He was discharged in stable condition with plans for further genetic therapy work up.Discussion:Mainstay therapy for Von Gierke’s Disease is the prevention of metabolic derangements for which dietary and lifestyle changes are recommended. A low fructose and sucrose diet is recommended by limiting the intake of galactose and lactose to one serving per day. Hypoglycemia treatment in such patients is two-fold, utilizing both quick and stable release sources. Cornstarch has been one such therapy since the 1980s; its slow digestion provides a steady release of glucose over a longer period of time as compared with other sources of carbohydrates. Dosing guidelines vary from age to age and person to person, but it is highly recommended to check BG levels frequently to maintain a BG > 70 mg/dL. Associated high levels of triglycerides and cholesterol can be treated with statins, fibrates, etc. Conclusion:The management of hypoglycemia in GSD 1 disease presents various obstacles which could prove to be fatal. Due to the deficiency of G6P, treatment with a specialized hypoglycemic regimen is warranted. A D10 ½ NS infusion can be used to maintain blood sugar levels as well as correct metabolic or lactate imbalances. Infusion should be gradually weaned off after the patient can tolerate oral feeds as this can help prevent the risk of hypoglycemia and other derangements. Further research is needed in regards to these patients for more sustainable regimens.

Keywords: von gierke, glycogen storage disease, hypoglycemia, genetic disease

Procedia PDF Downloads 86
289 Vortex Generation to Model the Airflow Downstream of a Piezoelectric Fan Array

Authors: Alastair Hales, Xi Jiang, Siming Zhang

Abstract:

Numerical methods are used to generate vortices in a domain. Through considered design, two counter-rotating vortices may interact and effectively drive one another downstream. This phenomenon is comparable to the vortex interaction that occurs in a region immediately downstream from two counter-oscillating piezoelectric (PE) fan blades. PE fans are small blades clamped at one end and driven to oscillate at their first natural frequency by an extremely low powered actuator. In operation, the high oscillation amplitude and frequency generate sufficient blade tip speed through the surrounding air to create downstream air flow. PE fans are considered an ideal solution for low power hot spot cooling in a range of small electronic devices, but a single blade does not typically induce enough air flow to be considered a direct alternative to conventional air movers, such as axial fans. The development of face-to-face PE fan arrays containing multiple blades oscillating in counter-phase to one another is essential for expanding the range of potential PE fan applications regarding the cooling of power electronics. Even in an unoptimised state, these arrays are capable of moving air volumes comparable to axial fans with less than 50% of the power demand. Replicating the airflow generated by face-to-face PE fan arrays without including the actual blades in the model reduces the process’s computational demands and enhances the rate of innovation and development in the field. Vortices are generated at a defined inlet using a time-dependent velocity profile function, which pulsates the inlet air velocity magnitude. This induces vortex generation in the considered domain, and these vortices are shown to separate and propagate downstream in a regular manner. The generation and propagation of a single vortex are compared to an equivalent vortex generated from a PE fan blade in a previous experimental investigation. Vortex separation is found to be accurately replicated in the present numerical model. Additionally, the downstream trajectory of the vortices’ centres vary by just 10.5%, and size and strength of the vortices differ by a maximum of 10.6%. Through non-dimensionalisation, the numerical method is shown to be valid for PE fan blades with differing parameters to the specific case investigated. The thorough validation methods presented verify that the numerical model may be used to replicate vortex formation from an oscillating PE fans blade. An investigation is carried out to evaluate the effects of varying the distance between two PE fan blade, pitch. At small pitch, the vorticity in the domain is maximised, along with turbulence in the near vicinity of the inlet zones. It is proposed that face-to-face PE fan arrays, oscillating in counter-phase, should have a minimal pitch to optimally cool nearby heat sources. On the other hand, downstream airflow is maximised at a larger pitch, where the vortices can fully form and effectively drive one another downstream. As such, this should be implemented when bulk airflow generation is the desired result.

Keywords: piezoelectric fans, low energy cooling, vortex formation, computational fluid dynamics

Procedia PDF Downloads 155
288 Synergistic Studies of Liposomes of Clove and Cinnamon Oil in Oral Health Care

Authors: Sandhya Parameswaran, Prajakta Dhuri

Abstract:

Despite great improvements in health care, the world oral health report states that dental problems still persist, particularly among underprivileged groups in both developing and developed countries. Dental caries and periodontal diseases are identified as the most important oral health problems globally. Acidic foods and beverages can affect natural teeth, and chronic exposure often leads to the development of dental erosion, abrasion, and decay. In recent years, there has been an increased interest toward essential oils. These are secondary metabolites and possess antibacterial, antifungal and antioxidant properties. Essential oils are volatile and chemically unstable in the presence of air, light, moisture and high temperature. Hence many novel methods like a liposomal encapsulation of oils have been introduced to enhance the stability and bioavailability. This research paper focuses on two essential oils, clove and cinnamon oil. Clove oil was obtained from Syzygium aromaticum Linn using clavengers apparatus. It contains eugenol and β caryophyllene. Cinnamon oil, from the barks of Cinnamomum cassia, contains cinnamaldehyde, The objective of the current research was to develop a liposomal carrier system containing clove and cinnamon oil and study their synergistic activity against dental pathogens when formulated as a gel. Methodology: The essential oil were first tested for their antimicrobial activity against dental pathogens, Lactobacillus acidophillus (MTCC No. 10307, MRS broth) and Streptococcus Mutans (MTCC No .890, Brain Heart Infusion agar). The oils were analysed by UV spectroscopy for eugenol and cinnamaldehyde content. Standard eugenol was linear between 5ppm to 25ppm at 282nm and standard cinnamaldehde from 1ppm to 5pmm at 284nm. The concentration of eugenol in clove oil was found to be 62.65 % w/w, and that of cinnamaldehyde was found to be 5.15%s w/w. The oils were then formulated into liposomes. Liposomes were prepared by thin film hydration method using Phospholipid, Cholesterol, and other oils dissolved in a chloroform methanol (3:1) mixture. The organic solvent was evaporated in a rotary evaporator above lipid transition temperature. The film was hydrated with phosphate buffer (pH 5.5).The various batches of liposomes were characterized and compared for their size, loading rate, encapsulation efficiency and morphology. The prepared liposomes when evaluated for entrapment efficiency showed 65% entrapment for clove and 85% for cinnamon oil. They were also tested for their antimicrobial activity against dental pathogens and their synergistic activity studied. Based on the activity and the entrapment efficiency the amount of liposomes required to prepare 1gm of the gel was calculated. The gel was prepared using a simple ointment base and contained 0.56% of cinnamon and clove liposomes. A simultaneous method of analysis for eugenol and cinnamaldehyde.was then developed using HPLC. The prepared gels were then studied for their stability as per ICH guidelines. Conclusion: It was found that liposomes exhibited spherical shaped vesicles and protected the essential oil from degradation. Liposomes, therefore, constitute a suitable system for encapsulation of volatile, unstable essential oil constituents.

Keywords: cinnamon oil, clove oil, dental caries, liposomes

Procedia PDF Downloads 163
287 Defense Priming from Egg to Larvae in Litopenaeus vannamei with Non-Pathogenic and Pathogenic Bacteria Strains

Authors: Angelica Alvarez-Lee, Sergio Martinez-Diaz, Jose Luis Garcia-Corona, Humberto Lanz-Mendoza

Abstract:

World aquaculture is always looking for improvements to achieve productions with high yields avoiding the infection by pathogenic agents. The best way to achieve this is to know the biological model to create alternative treatments that could be applied in the hatcheries, which results in greater economic gains and improvements in human public health. In the last decade, immunomodulation in shrimp culture with probiotics, organic acids and different carbon sources has gained great interest, mainly in larval and juvenile stages. Immune priming is associated with a strong protective effect against a later pathogen challenge. This work provides another perspective about immunostimulation from spawning until hatching. The stimulation happens during development embryos and generates resistance to infection by pathogenic bacteria. Massive spawnings of white shrimp L. vannamei were obtained and placed in experimental units with 700 mL of sterile seawater at 30 °C, salinity of 28 ppm and continuous aeration at a density of 8 embryos.mL⁻¹. The immunostimulating effect of three death strains of non-pathogenic bacterial (Escherichia coli, Staphylococcus aureus and Bacillus subtilis) and a pathogenic strain for white shrimp (Vibrio parahaemolyticus) was evaluated. The strains killed by heat were adjusted to O.D. 0.5, at A 600 nm, and directly added to the seawater of each unit at a ratio of 1/100 (v/v). A control group of embryos without inoculum of dead bacteria was kept under the same physicochemical conditions as the rest of the treatments throughout the experiment and used as reference. The duration of the stimulus was 12 hours, then, the larvae that hatched were collected, counted and transferred to a new experimental unit (same physicochemical conditions but at a salinity of 28 ppm) to carry out a challenge of infection against the pathogen V. parahaemolyticus, adding directly to seawater an amount 1/100 (v/v) of the live strain adjusted to an OD 0.5; at A 600 nm. Subsequently, 24 hrs after infection, nauplii survival was evaluated. The results of this work shows that, after 24 hrs, the hatching rates of immunostimulated shrimp embryos with the dead strains of B. subtillis and V. parahaemolyticus are significantly higher compared to the rest of the treatments and the control. Furthermore, survival of L. vanammei after a challenge of infection of 24 hrs against the live strain of V. parahaemolyticus is greater (P < 0.05) in the larvae immunostimulated during the embryonic development with the dead strains B. subtillis and V. parahaemolyticus, followed by those that were treated with E. coli. In summary superficial antigens can stimulate the development cells to promote hatching and can have normal development in agreeing with the optical observations, plus exist a differential response effect between each treatment post-infection. This research provides evidence of the immunostimulant effect of death pathogenic and non-pathogenic bacterial strains in the rate of hatching and oversight of shrimp L. vannamei during embryonic and larval development. This research continues evaluating the effect of these death strains on the expression of genes related to the defense priming in larvae of L. vannamei that come from massive spawning in hatcheries before and after the infection challenge against V. parahaemolyticus.

Keywords: immunostimulation, L. vannamei, hatching, survival

Procedia PDF Downloads 119
286 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 21
285 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage

Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh

Abstract:

Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.

Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range

Procedia PDF Downloads 149
284 A Hybrid of BioWin and Computational Fluid Dynamics Based Modeling of Biological Wastewater Treatment Plants for Model-Based Control

Authors: Komal Rathore, Kiesha Pierre, Kyle Cogswell, Aaron Driscoll, Andres Tejada Martinez, Gita Iranipour, Luke Mulford, Aydin Sunol

Abstract:

Modeling of Biological Wastewater Treatment Plants requires several parameters for kinetic rate expressions, thermo-physical properties, and hydrodynamic behavior. The kinetics and associated mechanisms become complex due to several biological processes taking place in wastewater treatment plants at varying times and spatial scales. A dynamic process model that incorporated the complex model for activated sludge kinetics was developed using the BioWin software platform for an Advanced Wastewater Treatment Plant in Valrico, Florida. Due to the extensive number of tunable parameters, an experimental design was employed for judicious selection of the most influential parameter sets and their bounds. The model was tuned using both the influent and effluent plant data to reconcile and rectify the forecasted results from the BioWin Model. Amount of mixed liquor suspended solids in the oxidation ditch, aeration rates and recycle rates were adjusted accordingly. The experimental analysis and plant SCADA data were used to predict influent wastewater rates and composition profiles as a function of time for extended periods. The lumped dynamic model development process was coupled with Computational Fluid Dynamics (CFD) modeling of the key units such as oxidation ditches in the plant. Several CFD models that incorporate the nitrification-denitrification kinetics, as well as, hydrodynamics was developed and being tested using ANSYS Fluent software platform. These realistic and verified models developed using BioWin and ANSYS were used to plan beforehand the operating policies and control strategies for the biological wastewater plant accordingly that further allows regulatory compliance at minimum operational cost. These models, with a little bit of tuning, can be used for other biological wastewater treatment plants as well. The BioWin model mimics the existing performance of the Valrico Plant which allowed the operators and engineers to predict effluent behavior and take control actions to meet the discharge limits of the plant. Also, with the help of this model, we were able to find out the key kinetic and stoichiometric parameters which are significantly more important for modeling of biological wastewater treatment plants. One of the other important findings from this model were the effects of mixed liquor suspended solids and recycle ratios on the effluent concentration of various parameters such as total nitrogen, ammonia, nitrate, nitrite, etc. The ANSYS model allowed the abstraction of information such as the formation of dead zones increases through the length of the oxidation ditches as compared to near the aerators. These profiles were also very useful in studying the behavior of mixing patterns, effect of aerator speed, and use of baffles which in turn helps in optimizing the plant performance.

Keywords: computational fluid dynamics, flow-sheet simulation, kinetic modeling, process dynamics

Procedia PDF Downloads 180
283 Sublethal Effects of Industrial Effluents on Fish Fingerlings (Clarias gariepinus) from Ologe Lagoon Environs, Lagos, Nigeria

Authors: Akintade O. Adeboyejo, Edwin O. Clarke, Oluwatoyin Aderinola

Abstract:

The present study is on the sub-lethal toxicity of industrial effluents (IE) from the environment of Ologe Lagoon, Lagos, Nigeria on the African catfish fingerlings Clarias gariepinus. The fish were cultured in varying concentrations of industrial effluents: 0% (control), 5%, 15%, 25%, and 35%. Trials were carried out in triplicates for twelve (12) weeks. The culture system was a static renewable bioassay and was carried out in the fisheries laboratory of the Lagos State University, Ojo-Lagos. Weekly physico-chemical parameters: Temperature (0C), pH, Conductivity (ppm) and Dissolved Oxygen (DO in mg/l) were measured in each treatment tank. Length (cm) and weight (g) data were obtained weekly and used to calculate various growth parameters: mean weight gain (MWG), percentage weight gain (PWG), daily weight gain (DWG), specific growth rate (SGR) and survival. Haematological (Packed Cell Volume (PCV), Red blood cells (RBC), White Blood Cell (WBC), Neutrophil and Lymphocytes etc) and histological alterations were measured after 12 weeks. The physico-chemical parameters showed that the pH ranged from 7.82±0.25–8.07±0.02. DO range from 1.92±0.66-4.43±1.24 mg/l. The conductivity values increased with increase in concentration of I.E. While the temperature remained stable with mean value range between 26.08±2.14–26.38±2.28. The DO showed significant differences at P<0.05. There was progressive increase in length and weight of fish during the culture period. The fish placed in the control had highest increase in both weight and length while fish in 35% had the least. MWG ranged from 16.59–35.96, DWG is from 0.3–0.48, SGR varied from 1.0–1.86 and survival was 100%. Haematological results showed that C. gariepinus had PCV ranging from 13.0±1.7-27.7±0.6, RBC ranged from 4.7±0.6–9.1±0.1, and Neutrophil ranged from 26.7±4.6–61.0±1.0 amongst others. The highest values of these parameters were obtained in the control and lowest at 35%. While the reverse effects were observed for WBC and lymphocytes. This study has shown that effluents may affect the health status of the test organism and impair vital processes if exposure continues for a long period of time. The histological examination revealed several lesions as expressed by the gills and livers. The histopathology of the gills in the control tanks had normal tissues with no visible lesion, but at higher concentrations, there were: lifting of epithelium, swollen lamellae and gill arch infiltration, necrosis and gill arch destruction. While in the liver: control (0%) show normal liver cells, at higher toxic level, there were: vacoulation, destruction of the hepatic parenchyma, tissue becoming eosinophilic (i.e. tending towards Carcinogenicity) and severe disruption of the hepatic cord architecture. The study has shown that industrial effluents from the study area may affect fish health status and impair vital processes if exposure continues for a long period of time even at lower concentrations (Sublethal).

Keywords: sublethal toxicity, industrial effluents, clarias gariepinus, ologe lagoon

Procedia PDF Downloads 584
282 Employee Commitment as a Means of Revitalising the Hospitality Industry post-Covid: Considering the Impact of Psychological Contract and Psychological Capital

Authors: Desere Kokt

Abstract:

Hospitality establishments worldwide are bearing the brunt of the effects of Covid-19. As the hospitality industry is looking to recover, emphasis is placed on rejuvenating the industry. This is especially pertinent for economic development in areas of high unemployment, such as the Free State province of South Africa. The province is not a main tourist area and thus depends on the influx of tourists. The province has great scenic beauty with many accommodation establishments that provide job opportunities to the local population. The two main economic hubs of the Free State province namely Bloemfontein and Clarens, were the focus of the investigation. The emphasis was on graded accommodation establishments as they must adhere to the quality principles of the Tourism Grading Council of South Africa (TGCSA) to obtain star grading. The hospitality industry is known for being labour intensive, and employees need to be available to cater for the needs of paying customers. This is referred to as ‘emotional labour’ and implies that employees need to manage their feelings and emotions as part of performing their jobs. The focus of this study was thus on psychological factors related to working in the hospitality industry – specifically psychological contract and psychological capital and its impact on the commitment of employees in graded accommodation establishments. Employee commitment can be explained as a psychological state that binds the individual to the organisation and involves a set of psychological relationships that include affective (emotions), normative (perceived obligation) and continuance (staying with the organisation) dimensions. Psychological contract refers to the reciprocal beliefs and expectations between the employer and the employee and consists of transactional and rational contracts. Transactional contracts are associated with the economic exchange, and contractional issues related to the employment contract and rational contracts relate to the social exchange between the employee and the organisation. Psychological capital refers to an individual’s positive psychology state of development that is characterised by self-efficiency (having confidence in doing one’s job), optimism (being positive and persevering towards achieving one’s goals), hope (expectations for goals to succeed) and resilience (bouncing back to attain success when beset by problems and adversity). The study employed a quantitative research approach, and a structured questionnaire was used to gather data from respondents. The study was conducted during the Covid-19 pandemic, which hampered the data gathering efforts of the researchers. Many accommodation establishments were either closed or temporarily closed, which meant that data gathering was an intensive and laborious process. The main researcher travelled to the various establishments to collect the data. Nine hospitality establishments participated in the study, and around 150 employees were targeted for data collection. Ninety-two (92) questionnaires were completed, which represents a response rate of 61%. Data were analysed using descriptive and inferential statistics, and partial least squares structural equation modelling (PLS-SEM) was applied to examine the relationship between the variables.

Keywords: employee commitment, hospitality industry, psychological contract, psychological capital

Procedia PDF Downloads 84
281 Biosocial Determinants of Maternal and Child Health in Northeast India: A Case Study

Authors: Benrithung Murry

Abstract:

This paper highlights the biosocial determinants of health-seeking behavior in tribal population groups of northeast India, focusing on maternal and child health. The northeastern region of India is a conglomeration of several ethnic groups, most of which are scheduled as tribal groups. A total of 750 ever-married women in reproductive ages (15-49 years) were interviewed from three tribal groups of Nagaland, India using pre-tested and modified maternal health schedule. Data pertaining to reproductive performance of the mothers and their children health status were collected from 12 villages of Dimapur district, Nagaland, India. The sample for study comprises 212 Angami women, 267 Ao women, and 271 Sumi women, all of which belonging to tribal populations of Northeast India. Sex ratios of 15-49 years in these three populations are 1018.18, 1086.69, and 1106.92, respectively. 90% of the populations in the study are nuclear families, with about 10% of households falling below the poverty line as per the cutoffs for India. Female literacy level in these population groups is higher than the national average of 65.46%; however, about 30% of all married women are not engaged in any sort of earnings. Total fertility rates of these populations are alarming (Total Fertility Rate ≥ 6) and far from replacement fertility level, while infant mortality rates are found to be much lower than the national average of 34 per 1000. The perception and practice of maternal health in this region is unimpressive despite the availability of medical amenities. Only 3 % of mothers in the study have reported 4 times antenatal checkups during last two pregnancies. Other mothers have reported 1 to 3 times of antenatal checkups, but about 25% of them never visited a doctor during the entire pregnancy period. About 15% of mothers never took tetanus injection, while 40% of mothers never took iron folic supplements during pregnancy. Almost half of all women and their husbands do not use birth control measures even for the spacing of children, which has an immense impact on prenatal mortality mainly due to deliberate abortions: the percentage of prenatal mortality among Angami, Ao and Sumi populations is 44.88, 31.88 and 54.98, respectively per 1000 live births. The steep decline in fertility levels in most countries is a consequence of the increasing use of modern methods of contraception. However, among users of birth control measures in these populations, it is seen that most couples use it only after they have the desired number of children, thus its use having no substantial influence in reducing fertility. It is also seen that the majority of the children were only partially vaccinated. With many child deliveries being done at home, many newborns are not administered with polio at birth. Two-third of all children do not have complete basic immunization against polio, diphtheria, tetanus, pertussis, bacillus, and hepatitis besides others. Certain adherence to traditional beliefs and customs apart from the socio-economic factors is believed to have been operating in these populations, which determines their health-seeking behavior. While a more in-depth study combining biological, socio-cultural, economic, and genetic factors is suggested, there is an urgent need for intervention in these populations to combat with the poor maternal and child health status.

Keywords: case study, health behavior, mother and child, northeast india

Procedia PDF Downloads 115