Search results for: rapid compression machine
4710 Estimation of Grinding Force and Material Characterization of Ceramic Matrix Composite
Authors: Lakshminarayanan, Vijayaraghavan, Krishnamurthy
Abstract:
The ever-increasing demand for high efficiency in automotive and aerospace applications requires new materials to suit to high temperature applications. The Ceramic Matrix Composites nowadays find its applications for high strength and high temperature environments. In this paper, Al2O3 and Sic ceramic materials are taken in particulate form as matrix and reinforcement respectively. They are blended together in Ball Milling and compacted in Cold Compaction Machine by powder metallurgy technique. Scanning Electron Microscope images are taken for the samples in order to find out proper blending of powders. Micro harness testing is also carried out for the samples in Vickers Micro Hardness Testing Equipment. Surface grinding of the samples is also carried out in Surface Grinding Machine in order to find out grinding force estimates. The surface roughness of the grounded samples is also taken in Surface Profilometer. These are yielding promising results.Keywords: ceramic matrix composite, cold compaction, material characterization, particulate and surface grinding
Procedia PDF Downloads 2414709 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever
Abstract:
Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.Keywords: deep learning model, dengue fever, prediction, optimization
Procedia PDF Downloads 644708 The Effect of Using Computer-Assisted Translation Tools on the Translation of Collocations
Authors: Hassan Mahdi
Abstract:
The integration of computer-assisted translation (CAT) tools in translation creates several opportunities for translators. However, this integration is not useful in all types of English structures. This study aims at examining the impact of using CAT tools in translating collocations. Seventy students of English as a foreign language participated in this study. The participants were divided into three groups (i.e., CAT tools group, Machine Translation group, and the control group). The comparison of the results obtained from the translation output of the three groups demonstrated the improvement of translation using CAT tools. The results indicated that the participants who used CAT tools outscored the participants who used MT, and in turn, both groups outscored the control group who did not use any type of technology in translation. In addition, there was a significant difference in the use of CAT for translation different types of collocations. The results also indicated that CAT tools were more effective in translation fixed and medium-strength collocations than weak collocations. Finally, the results showed that CAT tools were effective in translation collocations in both types of languages (i.e. target language or source language). The study suggests some guidelines for translators to use CAT tools.Keywords: machine translation, computer-assisted translation, collocations, technology
Procedia PDF Downloads 1914707 Classification of Health Risk Factors to Predict the Risk of Falling in Older Adults
Authors: L. Lindsay, S. A. Coleman, D. Kerr, B. J. Taylor, A. Moorhead
Abstract:
Cognitive decline and frailty is apparent in older adults leading to an increased likelihood of the risk of falling. Currently health care professionals have to make professional decisions regarding such risks, and hence make difficult decisions regarding the future welfare of the ageing population. This study uses health data from The Irish Longitudinal Study on Ageing (TILDA), focusing on adults over the age of 50 years, in order to analyse health risk factors and predict the likelihood of falls. This prediction is based on the use of machine learning algorithms whereby health risk factors are used as inputs to predict the likelihood of falling. Initial results show that health risk factors such as long-term health issues contribute to the number of falls. The identification of such health risk factors has the potential to inform health and social care professionals, older people and their family members in order to mitigate daily living risks.Keywords: classification, falls, health risk factors, machine learning, older adults
Procedia PDF Downloads 1464706 Specific Emitter Identification Based on Refined Composite Multiscale Dispersion Entropy
Authors: Shaoying Guo, Yanyun Xu, Meng Zhang, Weiqing Huang
Abstract:
The wireless communication network is developing rapidly, thus the wireless security becomes more and more important. Specific emitter identification (SEI) is an vital part of wireless communication security as a technique to identify the unique transmitters. In this paper, a SEI method based on multiscale dispersion entropy (MDE) and refined composite multiscale dispersion entropy (RCMDE) is proposed. The algorithms of MDE and RCMDE are used to extract features for identification of five wireless devices and cross-validation support vector machine (CV-SVM) is used as the classifier. The experimental results show that the total identification accuracy is 99.3%, even at low signal-to-noise ratio(SNR) of 5dB, which proves that MDE and RCMDE can describe the communication signal series well. In addition, compared with other methods, the proposed method is effective and provides better accuracy and stability for SEI.Keywords: cross-validation support vector machine, refined com- posite multiscale dispersion entropy, specific emitter identification, transient signal, wireless communication device
Procedia PDF Downloads 1284705 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1474704 The Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles
Authors: Shaherah Jordan, Paula Vandergert
Abstract:
The discussion on public charging infrastructure is usually framed around the ‘chicken-egg’ challenge of consumers feeling reluctant to purchase without the necessary infrastructure and policymakers reluctant to invest in the infrastructure without the demand. However, public charging infrastructure may be more crucial to electric vehicle (EV) adoption than previously thought. Historically, access to residential charging was thought to be a major factor in potential for growth in the EV market as it offered a guaranteed place for a vehicle to be charged. The purpose of this study is to understand how the built environment may encourage uptake of EVs by seeking a correlation between EV ownership and public charging points in an urban and densely populated city such as London. Using a statistical approach with data from the Department for Transport and Zap-Map, a statistically significant correlation was found between the total (slow, fast and rapid) number of public charging points and a number of EV registrations per borough – with the strongest correlation found between EV registrations and rapid chargers. This research does not explicitly prove that there is a cause and effect relationship between public charging points EVs but challenges some of the previous literature which indicates that public charging infrastructure is not as important as home charging. Furthermore, the study provides strong evidence that public charging points play a functional and psychological role in the adoption of EVs and supports the notion that the built environment can influence human behaviour.Keywords: behaviour change, electric vehicles, public charging infrastructure, transportation
Procedia PDF Downloads 2154703 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 1264702 AI-Based Information System for Hygiene and Safety Management of Shared Kitchens
Authors: Jongtae Rhee, Sangkwon Han, Seungbin Ji, Junhyeong Park, Byeonghun Kim, Taekyung Kim, Byeonghyeon Jeon, Jiwoo Yang
Abstract:
The shared kitchen is a concept that transfers the value of the sharing economy to the kitchen. It is a type of kitchen equipped with cooking facilities that allows multiple companies or chefs to share time and space and use it jointly. These shared kitchens provide economic benefits and convenience, such as reduced investment costs and rent, but also increase the risk of safety management, such as cross-contamination of food ingredients. Therefore, to manage the safety of food ingredients and finished products in a shared kitchen where several entities jointly use the kitchen and handle various types of food ingredients, it is critical to manage followings: the freshness of food ingredients, user hygiene and safety and cross-contamination of cooking equipment and facilities. In this study, it propose a machine learning-based system for hygiene safety and cross-contamination management, which are highly difficult to manage. User clothing management and user access management, which are most relevant to the hygiene and safety of shared kitchens, are solved through machine learning-based methodology, and cutting board usage management, which is most relevant to cross-contamination management, is implemented as an integrated safety management system based on artificial intelligence. First, to prevent cross-contamination of food ingredients, we use images collected through a real-time camera to determine whether the food ingredients match a given cutting board based on a real-time object detection model, YOLO v7. To manage the hygiene of user clothing, we use a camera-based facial recognition model to recognize the user, and real-time object detection model to determine whether a sanitary hat and mask are worn. In addition, to manage access for users qualified to enter the shared kitchen, we utilize machine learning based signature recognition module. By comparing the pairwise distance between the contract signature and the signature at the time of entrance to the shared kitchen, access permission is determined through a pre-trained signature verification model. These machine learning-based safety management tasks are integrated into a single information system, and each result is managed in an integrated database. Through this, users are warned of safety dangers through the tablet PC installed in the shared kitchen, and managers can track the cause of the sanitary and safety accidents. As a result of system integration analysis, real-time safety management services can be continuously provided by artificial intelligence, and machine learning-based methodologies are used for integrated safety management of shared kitchens that allows dynamic contracts among various users. By solving this problem, we were able to secure the feasibility and safety of the shared kitchen business.Keywords: artificial intelligence, food safety, information system, safety management, shared kitchen
Procedia PDF Downloads 664701 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads
Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar
Abstract:
This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.Keywords: Kevlar, needle temperautre, nomex, sewing
Procedia PDF Downloads 5304700 Community-based Mapping as a Planning Tool; Examples from Pakistan
Authors: Noman Ahmed, Fariha Tahseen
Abstract:
Since several decades, unplanned urbanization and rapid growth of informal settlements have evolved and increased in size and number. Large cities such as Karachi have been impacted with sprawl and rising share of unplanned settlements where poor communities reside. Threats of eviction, deteriorating law and order situation, lack of essential amenities and infrastructure, extortion and bullying from local and non-local musclemen and feeble response of government agencies towards their development needs are some predicaments. Non-governmental organizations (NGOs) have caused important interventions in such locations. Appraisal of the community-based mapping as a tool in supporting the development work in less privileged areas in Karachi has been the objective of this research. The Orangi Pilot Project (OPP), under the leadership of its slain director Perween Rahman had a significant role to play in developing and extending this approach in low income locations in Karachi and beyond. The paper investigates the application of mapping in the process of peri urban land invasion causing rapid transformation of traditional settlements in Karachi. Mixed methodology components comprising literature review, archival research, and unstructured interviews with key informants and case studies have been used.Keywords: squatters (katchi abadis), land grabbing, community empowerment, housing rights, mapping, infrastructure development
Procedia PDF Downloads 3144699 High-Fidelity Materials Screening with a Multi-Fidelity Graph Neural Network and Semi-Supervised Learning
Authors: Akeel A. Shah, Tong Zhang
Abstract:
Computational approaches to learning the properties of materials are commonplace, motivated by the need to screen or design materials for a given application, e.g., semiconductors and energy storage. Experimental approaches can be both time consuming and costly. Unfortunately, computational approaches such as ab-initio electronic structure calculations and classical or ab-initio molecular dynamics are themselves can be too slow for the rapid evaluation of materials, often involving thousands to hundreds of thousands of candidates. Machine learning assisted approaches have been developed to overcome the time limitations of purely physics-based approaches. These approaches, on the other hand, require large volumes of data for training (hundreds of thousands on many standard data sets such as QM7b). This means that they are limited by how quickly such a large data set of physics-based simulations can be established. At high fidelity, such as configuration interaction, composite methods such as G4, and coupled cluster theory, gathering such a large data set can become infeasible, which can compromise the accuracy of the predictions - many applications require high accuracy, for example band structures and energy levels in semiconductor materials and the energetics of charge transfer in energy storage materials. In order to circumvent this problem, multi-fidelity approaches can be adopted, for example the Δ-ML method, which learns a high-fidelity output from a low-fidelity result such as Hartree-Fock or density functional theory (DFT). The general strategy is to learn a map between the low and high fidelity outputs, so that the high-fidelity output is obtained a simple sum of the physics-based low-fidelity and correction, Although this requires a low-fidelity calculation, it typically requires far fewer high-fidelity results to learn the correction map, and furthermore, the low-fidelity result, such as Hartree-Fock or semi-empirical ZINDO, is typically quick to obtain, For high-fidelity outputs the result can be an order of magnitude or more in speed up. In this work, a new multi-fidelity approach is developed, based on a graph convolutional network (GCN) combined with semi-supervised learning. The GCN allows for the material or molecule to be represented as a graph, which is known to improve accuracy, for example SchNet and MEGNET. The graph incorporates information regarding the numbers of, types and properties of atoms; the types of bonds; and bond angles. They key to the accuracy in multi-fidelity methods, however, is the incorporation of low-fidelity output to learn the high-fidelity equivalent, in this case by learning their difference. Semi-supervised learning is employed to allow for different numbers of low and high-fidelity training points, by using an additional GCN-based low-fidelity map to predict high fidelity outputs. It is shown on 4 different data sets that a significant (at least one order of magnitude) increase in accuracy is obtained, using one to two orders of magnitude fewer low and high fidelity training points. One of the data sets is developed in this work, pertaining to 1000 simulations of quinone molecules (up to 24 atoms) at 5 different levels of fidelity, furnishing the energy, dipole moment and HOMO/LUMO.Keywords: .materials screening, computational materials, machine learning, multi-fidelity, graph convolutional network, semi-supervised learning
Procedia PDF Downloads 374698 Rapid Strategic Consensus Building in Land Readjustment in Kabul
Authors: Nangialai Yousufzai, Eysosiyas Etana, Ikuo Sugiyama
Abstract:
Kabul population has been growing continually since 2001 and reaching six million in 2025 due to the rapid inflow from the neighboring countries. As a result of the population growth, lack of living facilities supported by infrastructure services is becoming serious in social and economic aspects. However, about 70% of the city is still occupied illegally and the government has little information on the infrastructure demands. To improve this situation, land readjustment is one of the powerful development tools, because land readjustment does not need a high governmental budget of itself. Instead, the method needs cooperation between stakeholders such as landowners, developers and a local government. So it is becoming crucial for both government and citizens to implement land readjustment for providing tidy urban areas with enough public services to realize more livable city as a whole. On the contrary, the traditional land readjustment tends to spend a long time until now to get consensus on the new plan between stakeholders. One of the reasons is that individual land area (land parcel) is decreased due to the contribution to public such as roads/parks/squares for improving the urban environment. The second reason is that the new plan is difficult for dwellers to imagine new life after the readjustment. Because the paper-based plan is made by an authority not for dwellers but for specialists to precede the project. This paper aims to shorten the time to realize quick consensus between stakeholders. The first improvement is utilizing questionnaire(s) to assess the demand and preference of the landowners. The second one is utilizing 3D model for dwellers to visualize the new environment easily after the readjustment. In additions, the 3D model is reflecting the demand and preference of the resident so that they could select a land parcel according to their sense value of life. The above-mentioned two improvements are carried out after evaluating total land prices of the new plans to select for maximizing the project value. The land price forecasting formula is derived from the current market ones in Kabul. Finally, it is stressed that the rapid consensus-building of land readjustment utilizing ICT and open data analysis is essential to redevelop slums and illegal occupied areas in Kabul.Keywords: land readjustment, consensus building, land price formula, 3D simulation
Procedia PDF Downloads 3324697 A Study to Connect the Objective Interface Design Characters To Ergonomic Safety
Authors: Gaoguang Yang, Shan Fu
Abstract:
Human-machine interface (HMI) intermediate system information to human operators to facilitate human ability to manage and control the system. Well-designed HMI would enhance human ability. An evaluation must be performed to confirm that the designed HMI would enhance but not degrade human ability. However, the prevalent HMI evaluation techniques have difficulties in more thoroughly and accurately evaluating the suitability and fitness of a given HMI for the wide variety of uncertainty contained in both the existing HMI evaluation techniques and the large number of task scenarios. The first limitation should be attributed to the subjective and qualitative analysis characteristics of these evaluation methods, and the second one should be attributed to the cost balance. This study aims to explore the connection between objective HMI characters and ergonomic safety and step forward toward solving these limitations with objective, characterized HMI parameters. A simulation experiment was performed with the time needed for human operators to recognize the HMI information as characterized HMI parameter, and the result showed a strong correlation between the parameter and ergonomic safety level.Keywords: Human-Machine Interface (HMI), evaluation, objective, characterization, simulation
Procedia PDF Downloads 654696 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine
Authors: N. Hatraf, L. Merabti, Z. Neffah, W. Taane
Abstract:
The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming. In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold. Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize. The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.Keywords: absorption, crystallization, experimental results, lithium bromide solution
Procedia PDF Downloads 3054695 Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness
Authors: S. M. Mahdi Niktabara, K. Seshagiri Raob, Amit Kumar Shrivastavac, Jiří Ščučkaa
Abstract:
The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude.Keywords: cyclic shear load, frequency of load, amplitude of displacement, normal stiffness
Procedia PDF Downloads 1494694 Epigastric Pain in Emergency Room: Median Arcuate Ligament Syndrome
Authors: Demet Devrimsel Dogan, Ecem Deniz Kirkpantur, Muharrem Dogan, Ahmet Aykut, Ebru Unal Akoglu, Ozge Ecmel Onur
Abstract:
Introduction: Median Arcuate Ligament Syndrome (MALS) is a rare cause of chronic abdominal pain due to external compression of the celiac trunk by a fibrous arch that unites diaphragmatic crura on each side of the aortic hiatus. While 10-24% of the population may suffer from compression of celiac trunk, it rarely causes patients to develop symptoms. The typical clinical triad of symptoms includes postprandial epigastric pain, weight loss and vomiting. The diagnosis can be made using thin section multi-detector computed tomography (CT) scans which delineate the ligament and the compressed vessel. The treatment of MALS is aimed at relieving the compression of the celiac artery to restore adequate blood flow through the vessel and neurolysis to address chronic pain. Case: A 68-year-old male presented to our clinic with acute postprandial epigastric pain. This was patients’ first attack, and the pain was the worst pain of his life. The patient did not have any other symptoms like nausea, vomiting, chest pain or dyspnea. In his medical history, the patient has had an ischemic cerebrovascular stroke 5 years ago which he recovered with no sequel, and he was using 75 mg clopidogrel and 100 mg acetylsalicylic acid. He was not using any other medication and did not have a story of cardiovascular disease. His vital signs were stable (BP:113/72 mmHg, Spo2:97, temperature:36.3°C, HR:90/bpm). In his electrocardiogram, there was ST depression in leads II, III and AVF. In his physical examination, there was only epigastric tenderness, other system examinations were normal. Physical examination through his upper gastrointestinal system showed no bleeding. His laboratory results were as follows: creatinine:1.26 mg/dL, AST:42 U/L, ALT:17 U/L, amylase:78 U/L, lipase:26 U/L, troponin:10.3 pg/ml, WBC:28.9 K/uL, Hgb:12.7 gr/dL, Plt:335 K/uL. His serial high-sensitive troponin levels were also within normal limits, his echocardiography showed no segmental wall motion abnormalities, an acute myocardial infarction was excluded. In his abdominal ultrasound, no pathology was founded. Contrast-enhanced abdominal CT and CT angiography reported ‘thickened diaphragmatic cruras are compressing and stenosing truncus celiacus superior, this is likely compatible with MALS’. The patient was consulted to general surgery, and they admitted the patient for laparoscopic ligament release. Results: MALS is a syndrome that causes postprandial pain, nausea and vomiting as its most common symptoms. Affected patients are normally young, slim women between the ages of 30 and 50 who have undergone extensive examinations to find the source of their symptoms. To diagnose MALS, other underlying pathologies should initially be excluded. The gold standard is aortic angiography. Although diagnosis and treatment of MALS are unclear, symptom resolution has been achieved with multiple surgical modalities, including open, laparoscopic or robotic ligament release as well as celiac ganglionectomy, which often requires celiac artery revascularisation.Keywords: differential diagnosis, epigastric pain, median arcuate ligament syndrome, celiac trunk
Procedia PDF Downloads 2604693 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics
Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan
Abstract:
The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).Keywords: cloud forensics, data protection Laws, GDPR, IoT forensics, machine Learning
Procedia PDF Downloads 1494692 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 1014691 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1404690 PM Electrical Machines Diagnostic: Methods Selected
Authors: M. Barański
Abstract:
This paper presents a several diagnostic methods designed to electrical machines especially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives. Those methods are preferred by the author in periodic diagnostic of electrical machines. The special attention should be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methods were created in Institute of Electrical Drives and Machines Komel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.Keywords: electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to-traction drive, turn insulation, vibrations
Procedia PDF Downloads 4004689 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1404688 Fast Transient Workflow for External Automotive Aerodynamic Simulations
Authors: Christina Peristeri, Tobias Berg, Domenico Caridi, Paul Hutcheson, Robert Winstanley
Abstract:
In recent years the demand for rapid innovations in the automotive industry has led to the need for accelerated simulation procedures while retaining a detailed representation of the simulated phenomena. The project’s aim is to create a fast transient workflow for external aerodynamic CFD simulations of road vehicles. The geometry used was the SAE Notchback Closed Cooling DrivAer model, and the simulation results were compared with data from wind tunnel tests. The meshes generated for this study were of two types. One was a mix of polyhedral cells near the surface and hexahedral cells away from the surface. The other was an octree hex mesh with a rapid method of fitting to the surface. Three different grid refinement levels were used for each mesh type, with the biggest total cell count for the octree mesh being close to 1 billion. A series of steady-state solutions were obtained on three different grid levels using a pseudo-transient coupled solver and a k-omega-based RANS turbulence model. A mesh-independent solution was found in all cases with a medium level of refinement with 200 million cells. Stress-Blended Eddy Simulation (SBES) was chosen for the transient simulations, which uses a shielding function to explicitly switch between RANS and LES mode. A converged pseudo-transient steady-state solution was used to initialize the transient SBES run that was set up with the SIMPLEC pressure-velocity coupling scheme to reach the fastest solution (on both CPU & GPU solvers). An important part of this project was the use of FLUENT’s Multi-GPU solver. Tesla A100 GPU has been shown to be 8x faster than an Intel 48-core Sky Lake CPU system, leading to significant simulation speed-up compared to the traditional CPU solver. The current study used 4 Tesla A100 GPUs and 192 CPU cores. The combination of rapid octree meshing and GPU computing shows significant promise in reducing time and hardware costs for industrial strength aerodynamic simulations.Keywords: CFD, DrivAer, LES, Multi-GPU solver, octree mesh, RANS
Procedia PDF Downloads 1144687 A Rapid Colorimetric Assay for Direct Detection of Unamplified Hepatitis C Virus RNA Using Gold Nanoparticles
Authors: M. Shemis, O. Maher, G. Casterou, F. Gauffre
Abstract:
Hepatitis C virus (HCV) is a major cause of chronic liver disease with a global 170 million chronic carriers at risk of developing liver cirrhosis and/or liver cancer. Egypt reports the highest prevalence of HCV worldwide. Currently, two classes of assays are used in the diagnosis and management of HCV infection. Despite the high sensitivity and specificity of the available diagnostic assays, they are time-consuming, labor-intensive, expensive, and require specialized equipment and highly qualified personal. It is therefore important for clinical and economic terms to develop a low-tech assay for the direct detection of HCV RNA with acceptable sensitivity and specificity, short turnaround time, and cost-effectiveness. Such an assay would be critical to control HCV in developing countries with limited resources and high infection rates, such as Egypt. The unique optical and physical properties of gold nanoparticles (AuNPs) have allowed the use of these nanoparticles in developing simple and rapid colorimetric assays for clinical diagnosis offering higher sensitivity and specificity than current detection techniques. The current research aims to develop a detection assay for HCV RNA using gold nanoparticles (AuNPs). Methods: 200 anti-HCV positive samples and 50 anti-HCV negative plasma samples were collected from Egyptian patients. HCV viral load was quantified using m2000rt (Abbott Molecular Inc., Des Plaines, IL). HCV genotypes were determined using multiplex nested RT- PCR. The assay is based on the aggregation of AuNPs in presence of the target RNA. Aggregation of AuNPs causes a color shift from red to blue. AuNPs were synthesized using citrate reduction method. Different sets of probes within the 5’ UTR conserved region of the HCV genome were designed, grafted on AuNPs and optimized for the efficient detection of HCV RNA. Results: The nano-gold assay could colorimetrically detect HCV RNA down to 125 IU/ml with sensitivity and specificity of 91.1% and 93.8% respectively. The turnaround time of the assay is < 30 min. Conclusions: The assay allows sensitive and rapid detection of HCV RNA and represents an inexpensive and simple point-of-care assay for resource-limited settings.Keywords: HCV, gold nanoparticles, point of care, viral load
Procedia PDF Downloads 2054686 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development
Authors: Radoslaw Nagay
Abstract:
The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic
Procedia PDF Downloads 684685 Developing an Accurate AI Algorithm for Histopathologic Cancer Detection
Authors: Leah Ning
Abstract:
This paper discusses the development of a machine learning algorithm that accurately detects metastatic breast cancer (cancer has spread elsewhere from its origin part) in selected images that come from pathology scans of lymph node sections. Being able to develop an accurate artificial intelligence (AI) algorithm would help significantly in breast cancer diagnosis since manual examination of lymph node scans is both tedious and oftentimes highly subjective. The usage of AI in the diagnosis process provides a much more straightforward, reliable, and efficient method for medical professionals and would enable faster diagnosis and, therefore, more immediate treatment. The overall approach used was to train a convolution neural network (CNN) based on a set of pathology scan data and use the trained model to binarily classify if a new scan were benign or malignant, outputting a 0 or a 1, respectively. The final model’s prediction accuracy is very high, with 100% for the train set and over 70% for the test set. Being able to have such high accuracy using an AI model is monumental in regard to medical pathology and cancer detection. Having AI as a new tool capable of quick detection will significantly help medical professionals and patients suffering from cancer.Keywords: breast cancer detection, AI, machine learning, algorithm
Procedia PDF Downloads 894684 Hierarchical Queue-Based Task Scheduling with CloudSim
Authors: Wanqing You, Kai Qian, Ying Qian
Abstract:
The concepts of Cloud Computing provide users with infrastructure, platform and software as service, which make those services more accessible for people via Internet. To better analysis the performance of Cloud Computing provisioning policies as well as resources allocation strategies, a toolkit named CloudSim proposed. With CloudSim, the Cloud Computing environment can be easily constructed by modelling and simulating cloud computing components, such as datacenter, host, and virtual machine. A good scheduling strategy is the key to achieve the load balancing among different machines as well as to improve the utilization of basic resources. Recently, the existing scheduling algorithms may work well in some presumptive cases in a single machine; however they are unable to make the best decision for the unforeseen future. In real world scenario, there would be numbers of tasks as well as several virtual machines working in parallel. Based on the concepts of multi-queue, this paper presents a new scheduling algorithm to schedule tasks with CloudSim by taking into account several parameters, the machines’ capacity, the priority of tasks and the history log.Keywords: hierarchical queue, load balancing, CloudSim, information technology
Procedia PDF Downloads 4204683 Design of an Automatic Saw Cutting Machine for Wood and Aluminum
Authors: Jawad Ul Haq, Evan Mazur, Ahmed Qureshi, Mohamed Al-Hussein
Abstract:
The uses of wood in furniture, building, bridges and aluminum in transportation and construction, make aluminum and forest economy a prominent matter in North America. Machines available to date to cut the aforementioned materials are mostly industry oriented with complex structure and operations which require special training and skill. Furthermore, requirements such as pneumatics, 3-phase supply are associated with cost, maintenance, and safety hazards. Power saws are very useful tools used to cut and shape materials; however, they can cause serious hand injuries. Operator’s hands in table saw are vulnerable as they are used to guide pieces into the saw. Apart from hands, saw operator is also prone to material being kicked back out of the saw or sustain eye or respiratory injuries due to rapidly flying sawdust and other debris. In this paper, design of an automatic saw cutting machine has been proposed to ensure safety, portability, usage at domestic level and capability to cut both aluminum and wood. This paper demonstrates detailed Mechanical design in SOLIDWORKS and Control Systems using Programmable Logic Controller (PLC), based on the aforementioned design objectives.Keywords: programmable logic controller, saw cutting, control, automation
Procedia PDF Downloads 2714682 The Effects of Land Use Types to Determine the Status of Sustainable River
Authors: Michael Louis Sunaris, Robby Yussac Tallar
Abstract:
The concept of sustainable river is evolving in Indonesia today. Many rivers condition in Indonesia have decreased by quality and quantity. The degradation of this condition is caused by rapid land use change as a result of increased population growth and human activity. It brings the degradation of the existing watersheds including some types of land use that an important factor in determining the status of river sustainability. Therefore, an evaluation method is required to determine the sustainability status of waterbody within watershed. The purpose of this study is to analyze various types of land use in determining the status of river sustainability. This study takes the watersheds of Citarum Upstream as a study area. The results of the analysis prove the index of sustainability status of the river that changes from good to bad or average in the rivers in the study area. The rapid and uncontrolled changes of land use especially in the upper watersheds area are the main causes that happened over time. It was indicated that the cumulative runoff coefficients were increased significantly. These situations indicated that the damage of watersheds has an impact on the water surplus or deficit problem yearly. Therefore, the rivers in Indonesia should be protected and conserved. The sustainability index of the rivers is an index to indicate the condition of watersheds by defining status of rivers in order to achieve sustainable water resource management.Keywords: land use change, runoff coefficient, a simple index, sustainable river
Procedia PDF Downloads 1554681 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 12