Search results for: making in mathematics
4372 Localization Problem in Optical Fiber Sensors
Authors: M. Zyczkowski, P. Markowski, M. Karol
Abstract:
The security industry is making many efforts to lower the costs of system installation. However, the dominant technique is the application of fiber optic sensors. It is necessary to determine the location of the disorder of long optical fiber cables. For a number of years, many research centers developed their own solutions. The article presents the construction of the sensor systems with the possibility of disorder location. We present a methodology for determining location of the disorder. The aim of investigations is to answer the question of which of optical sensor configuration offer the best performance for location of the disorder.Keywords: fiber optic sensor, security sensor, fiber cables, system instillation
Procedia PDF Downloads 6354371 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 1614370 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1154369 Expectations of Unvaccinated Health Workers in Greece and the Question of Trust: A Qualitative Study of Vaccine Hesitancy
Authors: Sideri Katerina, Chanania Eleni
Abstract:
The reasons why people remain unvaccinated, especially health workers, are complex. In Greece, 2 percent of health workers (around 7,000) remain unvaccinated, despite the fact that for this group of people vaccination against COVID-19 is mandatory. In April 2022, the Greek health minister repeated that unvaccinated health care workers will remain suspended from their jobs ‘for as long as the pandemic lasts,’ explaining that the suspension of the workers in question was ‘entirely their choice’ and that health professionals who do not believe in vaccines ‘do not believe in their own science.’ Although policy circles around the world often link vaccine hesitancy to ignorance of science or misinformation, various recently published qualitative studies show that vaccine hesitancy is the result of a combination of factors, which include distrust towards elites and the system of innovation and distrust towards government. In a similar spirit, some commentators warn that labeling hesitancy as “anti-science” is bad politics. In this paper, we worked within the tradition of STS taking the view that people draw upon personal associations to enact and express civic concern with an issue, the enactment of public concern involves the articulation of threats to actors’ way of life, personal values, relationships, lived experiences, broader societal values and institutional structures. To this effect, we have conducted 27 in depth interviews with unvaccinated Greek health workers and we are in the process of conducting 20 more interviews. We have so far found that rather than a question of believing in ‘facts’ vaccine hesitancy reflects deep distrust towards those charged with the making of decisions and pharmaceutical companies and that emotions (rather than rational thinking) play a crucial role in the formation of attitudes and the making of decisions. We need to dig deeper so as to understand the causes of distrust towards technical government and the ways in which public(s) conceive of and want to be part in the politics of innovation. We particularly address the question of the effectiveness of mandatory vaccination of health workers and whether such top-down regulatory measures further polarize society, to finally discuss alternative regulatory approaches and governance structures.Keywords: vaccine hesitancy, innovation, trust in vaccines, sociology of vaccines, attitude drivers towards scientific information, governance
Procedia PDF Downloads 744368 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units
Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey
Abstract:
This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.Keywords: stirling engine, solar-thermal, power inverter, alternator
Procedia PDF Downloads 2784367 Optimization and Coordination of Organic Product Supply Chains under Competition: An Analytical Modeling Perspective
Authors: Mohammadreza Nematollahi, Bahareh Mosadegh Sedghy, Alireza Tajbakhsh
Abstract:
The last two decades have witnessed substantial attention to organic and sustainable agricultural supply chains. Motivated by real-world practices, this paper aims to address two main challenges observed in organic product supply chains: decentralized decision-making process between farmers and their retailers, and competition between organic products and their conventional counterparts. To this aim, an agricultural supply chain consisting of two farmers, a conventional farmer and an organic farmer who offers an organic version of the same product, is considered. Both farmers distribute their products through a single retailer, where there exists competition between the organic and the conventional product. The retailer, as the market leader, sets the wholesale price, and afterward, the farmers set their production quantity decisions. This paper first models the demand functions of the conventional and organic products by incorporating the effect of asymmetric brand equity, which captures the fact that consumers usually pay a premium for organic due to positive perceptions regarding their health and environmental benefits. Then, profit functions with consideration of some characteristics of organic farming, including crop yield gap and organic cost factor, are modeled. Our research also considers both economies and diseconomies of scale in farming production as well as the effects of organic subsidy paid by the government to support organic farming. This paper explores the investigated supply chain in three scenarios: decentralized, centralized, and coordinated decision-making structures. In the decentralized scenario, the conventional and organic farmers and the retailer maximize their own profits individually. In this case, the interaction between the farmers is modeled under the Bertrand competition, while analyzing the interaction between the retailer and farmers under the Stackelberg game structure. In the centralized model, the optimal production strategies are obtained from the entire supply chain perspective. Analytical models are developed to derive closed-form optimal solutions. Moreover, analytical sensitivity analyses are conducted to explore the effects of main parameters like the crop yield gap, organic cost factor, organic subsidy, and percent price premium of the organic product on the farmers’ and retailer’s optimal strategies. Afterward, a coordination scenario is proposed to convince the three supply chain members to shift from the decentralized to centralized decision-making structure. The results indicate that the proposed coordination scenario provides a win-win-win situation for all three members compared to the decentralized model. Moreover, our paper demonstrates that the coordinated model respectively increases and decreases the production and price of organic produce, which in turn motivates the consumption of organic products in the market. Moreover, the proposed coordination model helps the organic farmer better handle the challenges of organic farming, including the additional cost and crop yield gap. Last but not least, our results highlight the active role of the organic subsidy paid by the government as a means of promoting sustainable organic product supply chains. Our paper shows that although the amount of organic subsidy plays a significant role in the production and sales price of organic products, the allocation method of subsidy between the organic farmer and retailer is not of that importance.Keywords: analytical game-theoretic model, product competition, supply chain coordination, sustainable organic supply chain
Procedia PDF Downloads 1114366 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 934365 Competitiveness and Pricing Policy Assessment for Resilience Surface Access System at Airports
Authors: Dimitrios J. Dimitriou
Abstract:
Considering a worldwide tendency, air transports are growing very fast and many changes have taken place in planning, management and decision making process. Given the complexity of airport operation, the best use of existing capacity is the key driver of efficiency and productivity. This paper deals with the evaluation framework for the ground access at airports, by using a set of mode choice indicators providing key messages towards airport’s ground access performance. The application presents results for a sample of 12 European airports, illustrating recommendations to define policy and improve service for the air transport access chain.Keywords: airport ground access, air transport chain, airport access performance, airport policy
Procedia PDF Downloads 3714364 Simulation Programs to Education of Crisis Management Members
Authors: Jiri Barta
Abstract:
This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project.Keywords: crisis management, continuity, critical infrastructure, dangerous substance, education, flood, simulation programs
Procedia PDF Downloads 4654363 Power Generation from Sewage by a Micro-Hydraulic Turbine
Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide
Abstract:
This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe
Procedia PDF Downloads 3924362 Creating Emotional Brand Attachment through Immersive Worlds in Brick-and-Mortar Stores
Authors: Sanne Dollerup
Abstract:
This paper is an analysis of the store Tarina Tarantino through an exploration of different perspectives of play. It is based on Yelp reviews where customers disclose a very positive emotional reaction toward the store. The paper proposes some general principles for designing immersive stores based on ‘possible world’ theory. The aim is to disclose essential condition for customer engagement is an overall cohesiveness in all elements in a store. The most significant contribution in this paper is that products become props for role-playing in a store, hence making them central for maintaining that role outside the store.Keywords: experience design, emotional brand attachment, retail design, case study
Procedia PDF Downloads 1614361 Salient Issues in Reading Comprehension Difficulties Faced by Primary School Children
Authors: Janet Fernandez
Abstract:
Reading is both for aesthetic and efferent purposes. In order for reading comprehension to take place, the reader needs to be able to make meaningful connections and enjoy the reading process. The notion of reading comprehension is discussed along with the plausible causes of poor reading comprehension abilities among primary school children. Among the major contributing causes are imaging, lack of schemata, selection of reading materials, and habits of the readers. Instruction methods are an integral part of making reading comprehension a meaningful experience, hence several models are presented for the classroom practitioner. Suggestions on how primary school children can improve their reading comprehension skills are offered.Keywords: children, improve, reading comprehension, meaningful strategies
Procedia PDF Downloads 4664360 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images
Authors: Jeena R. S., Sukesh Kumar A.
Abstract:
Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.Keywords: prediction, retinal imaging, risk factors, stroke
Procedia PDF Downloads 3034359 Application of Web Aided Education on Laboratory of the Physics Course
Authors: Nigmet Koklu, Dundar Yener
Abstract:
Recently, distance education that make use of web technology is used widely all around the world to overcome geographical and time based problems in education. Graphics, animation and other auxiliary visual sources help student to understand the subjects easily. Especially some theoretical courses that are quite difficult to understand such as physics and chemistry require visual material for students to understand topics clearly. In this study, physics applications for laboratory of physics course were developed. All facilities of web-based educational technology were used for students in laboratory studies to avoid making mistakes and to learn better physics subjects.Keywords: physics education, laboratory, web-based education, distance education
Procedia PDF Downloads 5154358 Local Religion 'Parmalim': Between Civilization and Faith
Authors: Sabrina Yulianti
Abstract:
This study aims to explain the identity struggles of local religious communities in Indonesia. Local religion in Indonesia is not recognized by the government and is not incorporated into the official religion in Indonesia. This makes the local religions in Indonesia experienced the challenges and obstacles in fulfilling their rights as citizens of Indonesia. Challenges and barriers they experience such as: difficulty in making of the birth certificate and marriage. It is as experienced by one of the local religions namely Parmalim which located in North Sumatra. Not only difficulty in taking care of the bureaucracy as a citizen, but the local religion is seen as a minority and sometimes regarded as follower of deviate religion.Keywords: local religion, faith, struggles, civilization, discrimination
Procedia PDF Downloads 4004357 Unlocking the Health Benefits of Goat Meat
Authors: K. Makangali, G. Tokysheva, A. Shoman
Abstract:
Goat meat and goat meat products have garnered increasing attention within the realm of nutrition and health due to their potential to provide a myriad of benefits. This scientific article presents a comprehensive review of the health advantages associated with goat meat consumption and the products derived from it. The paper explores the nutritional content of goat meat, highlighting its favorable composition in terms of protein, essential minerals, and amino acids. It delves into the intricate balance of macronutrients, with lower fat and cholesterol levels compared to other meats, making goat meat a desirable choice for individuals seeking healthier dietary options.Keywords: goat meat, amino acid, nutrition, meat products, meat
Procedia PDF Downloads 794356 Development of a Tesla Music Coil from Signal Processing
Authors: Samaniego Campoverde José Enrique, Rosero Muñoz Jorge Enrique, Luzcando Narea Lorena Elizabeth
Abstract:
This paper presents a practical and theoretical model for the operation of the Tesla coil using digital signal processing. The research is based on the analysis of ten scientific papers exploring the development and operation of the Tesla coil. Starting from the Testa coil, several modifications were carried out on the Tesla coil, with the aim of amplifying the digital signal by making use of digital signal processing. To achieve this, an amplifier with a transistor and digital filters provided by MATLAB software were used, which were chosen according to the characteristics of the signals in question.Keywords: tesla coil, digital signal process, equalizer, graphical environment
Procedia PDF Downloads 1174355 Identification of Nonlinear Systems Structured by Hammerstein-Wiener Model
Authors: A. Brouri, F. Giri, A. Mkhida, A. Elkarkri, M. L. Chhibat
Abstract:
Standard Hammerstein-Wiener models consist of a linear subsystem sandwiched by two memoryless nonlinearities. Presently, the linear subsystem is allowed to be parametric or not, continuous- or discrete-time. The input and output nonlinearities are polynomial and may be noninvertible. A two-stage identification method is developed such the parameters of all nonlinear elements are estimated first using the Kozen-Landau polynomial decomposition algorithm. The obtained estimates are then based upon in the identification of the linear subsystem, making use of suitable pre-ad post-compensators.Keywords: nonlinear system identification, Hammerstein-Wiener systems, frequency identification, polynomial decomposition
Procedia PDF Downloads 5114354 The Constraint of Machine Breakdown after a Match up Scheduling of Paper Manufacturing Industry
Authors: John M. Ikome
Abstract:
In the process of manufacturing, a machine breakdown usually forces a modified flow shop out of the prescribed state, this strategy reschedules part of the initial schedule to match up with the pre-schedule at some point with the objective to create a schedule that is reliable with the other production planning decisions like material flow, production and suppliers by utilizing a critical decision-making concept. We propose a rescheduling strategy and a match-up point that will have a determination procedure through an advanced feedback control mechanism to increase both the schedule quality and stability. These approaches are compared with alternative re-scheduling methods under different experimental settings.Keywords: scheduling, heuristics, branch, integrated
Procedia PDF Downloads 4084353 Cross-sectional Developmental Trajectories of Executive Function and Relations to Theory of Mind in Autism Spectrum Disorder
Authors: Evangelia-Chrysanthi Kouklari, Evdokia Tagkouli, Vassiliki Ntre, Artemios Pehlivanidis, Stella Tsermentseli, Gerasimos Kolaitis, Katerina Papanikolaou
Abstract:
Executive Function (EF) is a set of goal-directed cognitive skills essentially needed in problem-solving and social behavior. Developmental EF research has indicated that EF emerges early in life and marks dramatic changes before the age of 5. Research evidence has suggested that it may continue to develop up to adolescence as well, following the development of the prefrontal cortex. Over the last decade, research evidence has suggested distinguished domains of cool and hot EF, but traditionally the development of EF in Autism Spectrum Disorder (ASD) has been examined mainly with tasks that address the “cool” cognitive aspects of EF. Thus, very little is known about the development of “hot” affective EF processes and whether the cross-sectional developmental pathways of cool and hot EF present similarities in ASD. Cool EF has also been proven to have a strong correlation with Theory of Mind (ToM) in young and middle childhood in typical development and in ASD, but information about the relationship of hot EF to ToM skills is minimal. The present study’s objective was to explore the age-related changes of cool and hot EF in ASD participants from middle childhood to adolescence, as well as their relationship to ToM. This study employed an approach of cross-sectional developmental trajectories to investigate patterns of cool and hot EF relative to chronological age within ASD. Eighty-two participants between 7 and 16 years of age were recruited to undertake measures that assessed cool EF (working memory, cognitive flexibility, planning & inhibition), hot EF (affective decision making & delay discounting) and ToM (false belief and mental state/emotion recognition). Results demonstrated that trajectories of all cool EF presented age-related changes in ASD (improvements with age). With regards to hot EF, affective decision-making presented age-related changes, but for delay discounting, there were no statistically significant changes found across younger and older ASD participants. ToM was correlated only to cool EF. Theoretical implications are discussed as the investigation of the cross-sectional developmental trajectories of the broader EF (cool and hot domains) may contribute to better defining cognitive phenotypes in ASD. These findings highlight the need to examine developmental trajectories of both hot and cool EF in research and clinical practice as they may aid in enhancing diagnosis or better-informed intervention programs.Keywords: autism spectrum disorder, developmental trajectories, executive function, theory of mind
Procedia PDF Downloads 1484352 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning
Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin
Abstract:
This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing
Procedia PDF Downloads 274351 Viewing Entrepreneurship Through a Goal Congruity Lens: The Roles of Dominance and Communal Goal Orientations in Women’s and Men’s Venture Interests
Authors: Xiaoming Yang, Abby Folberg, Carey Ryan, Lwetzel, Tgoering
Abstract:
We examined gender differences in entrepreneurial career interests drawing on goal congruity theory, which posits that people adopt gender-stereotypic goal orientations in response to social pressures to conform to traditional gender roles. Aspiring entrepreneurs (N = 351) first wrote three to five sentences about what they believed made an entrepreneur successful. They then completed measures of agentic and communal goal orientations (i.e., male and female stereotypic orientations, respectively) and indicated their interests in starting ventures in stereotypically feminine (e.g., salon), masculine (e.g., auto-repair) and science, technology, engineering, and mathematics (STEM; e.g., software developer) ventures. Qualitative analyses demonstrated that participants ascribed agentic and, more specifically, dominance, attributes to entrepreneurs; few participants ascribed communal attributes (e.g., warmth). Bifactor structural equation modeling indicated that, as expected, agentic goal orientations included dimensions of competence, self-direction, and dominance orientations and communal goal orientations were unidimensional. Further, as expected, dominance and communal orientations partially accounted for gender differences in all three career types. We discuss implications for entrepreneurial education and practice from a goal congruity perspective and the use of bifactor modeling to improve the measurement of goal orientations.Keywords: gender, entrepreneurship, gender stereotypes, agentic and communal goal orientations, entrepreneurship education
Procedia PDF Downloads 974350 The Investment Decision-Making Principles in Regional Tourism
Authors: Evgeni Baratashvili, Giorgi Sulashvili, Malkhaz Sulashvili, Bela Khotenashvili, Irma Makharashvili
Abstract:
The most investment decision-making principle of regional travel firm's management and its partner is the formulation of the aims of investment programs. The investments can be targeted in order to reduce the firm's production costs and to purchase good transport equipment. In attractive region, in order to develop firm’s activities, the investment program can be targeted for increasing of provided services. That is the case where the sales already have been used in the market. The investment can be directed to establish the affiliate firms, branches, to construct new hotels, to create food and trade enterprises, to develop entertainment enterprises, etc. Economic development is of great importance to regional development. International experience shows that inclusive economic growth largely depends on not only the national, but also regional development planning and implementation of a strong and competitive regions. Regional development is considered as the key factor in achieving national success. Establishing a modern institute separate entities if the pilot centers will constitute a promotion, international best practice-based public-private partnership to encourage the use of models. Regional policy directions and strategies adopted in accordance with the successful implementation of major importance in the near future specific action plans for inclusive development and implementation, which will be provided in accordance with the effective monitoring and evaluation tools and measurable indicators combined. All of these above-mentioned investments are characterized by different levels, which are related to the following fact: How successful tourism marketing service is, whether it is able to determine the proper market's reaction according to the particular firm's actions. In the sphere of regional tourism industry and in the investment decision possible variants it can be developed the some specter of models. Each of the models can be modified and specified according to the situation, and characteristic skills of the existing problem that must be solved. Besides, while choosing the proper model, the process is affected by the regulation system of economic processes. Also, it is influenced by liberalization quality and by the level of state participation.Keywords: net income of travel firm, economic growth, Investment profitability, regional development, tourist product, tourism development
Procedia PDF Downloads 2604349 Integrating Inference, Simulation and Deduction in Molecular Domain Analysis and Synthesis with Peculiar Attention to Drug Discovery
Authors: Diego Liberati
Abstract:
Standard molecular modeling is traditionally done through Schroedinger equations via the help of powerful tools helping to manage them atom by atom, often needing High Performance Computing. Here, a full portfolio of new tools, conjugating statistical inference in the so called eXplainable Artificial Intelligence framework (in the form of Machine Learning of understandable rules) to the more traditional modeling and simulation control theory of mixed dynamic logic hybrid processes, is offered as quite a general purpose even if making an example to a popular chemical physics set of problems.Keywords: understandable rules ML, k-means, PCA, PieceWise Affine Auto Regression with eXogenous input
Procedia PDF Downloads 294348 The Effect of Motivation of Chinese Tourists to Visit North Korea on Their Revisit Intention: Focused on the Tourists with the Experience of Visiting North Korea
Authors: Kim Jin-OK, Lee Jin-Eui, Han Seung-Hoon, Kim Nam-Jo
Abstract:
This study aimed to analyze the effect of the motivation of Chinese tourists to visit North Korea on their decision making process. Chinese tourists account for a considerable portion of foreign tourists in the world, while North Korea is the favorite tourist attraction of Chinese tourists. The motivation to visit North Korea was divided into three factors: the redness, which is the modern cultural heritage of Communism based on the red tourism accounting for the significant portion of domestic tourism, the novelty of the special environment of North Korean society, and the convenience of tour to North Korea in terms of geographical distance and policy of China. Red tourism refers to visiting the places of revolutionary events, monuments, artifacts and the residences of previous communist leaders, and other places related to the past Chinese Communist Party. As a revolutionary tourism, red tourism has recently been taking place in the old communist countries to recall their memories on the revolutionary places in China, as well as in North Korea, Vietnam, Cambodia, Russia, Bulgaria, Cuba, etc. In order to examine the effect of the segmented motivations on the revisit intention of Chinese tourists who have experienced a tour to North Korea, this study employed the model of goal-directed behavior, a model developed by adding a variable of emotion to the theory of planned behavior, which has a strong explanatory power on the decision making process of people in social science. For achieving the aim of the study, the data was collected through the survey in Dandong, China against Chinese tourists who have visited North Korea. The results of this study found that not only the novelty of North Korea, but also the redness, which accounts for the largest proportion in the domestic tourism, are significantly affecting overseas tour of Chinese tourists at this time point where overseas tour of Chinese tourists continue to increase. The results, therefore, suggest that the old communist countries, including those in Asia, need an emotional promotion strategy that stimulates nostalgia by focusing on the redness of the modern cultural heritage of Communism to attract Chinese tourists.Keywords: model of goal-directed behavior, modern cultural heritage, North Korea, red tourism
Procedia PDF Downloads 3094347 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges
Authors: Mohamad Mahdi Namdari
Abstract:
In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing
Procedia PDF Downloads 424346 Symbolic Partial Differential Equations Analysis Using Mathematica
Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan
Abstract:
Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica
Procedia PDF Downloads 1634345 A Machine Learning Approach for Classification of Directional Valve Leakage in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
Due to increasing cost pressure in global markets, artificial intelligence is becoming a technology that is decisive for competition. Predictive quality enables machinery and plant manufacturers to ensure product quality by using data-driven forecasts via machine learning models as a decision-making basis for test results. The use of cross-process Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the quality characteristics of workpieces.Keywords: predictive quality, hydraulics, machine learning, classification, supervised learning
Procedia PDF Downloads 2304344 Applying the Underwriting Technique to Analyze and Mitigate the Credit Risks in Construction Project Management
Authors: Hai Chien Pham, Thi Phuong Anh Vo, Chansik Park
Abstract:
Risks management in construction projects is important to ensure the positive feasibility of the projects in which financial risks are most concerned while construction projects always run on a credit basis. Credit risks, therefore, require unique and technical tools to be well managed. Underwriting technique in credit risks, in its most basic sense, refers to the process of evaluating the risks and the potential exposure of losses. Risks analysis and underwriting are applied as a must in banks and financial institutions who are supporters for constructions projects when required. Recently, construction organizations, especially contractors, have recognized the significant increasing of credit risks which caused negative impacts to project performance and profit of construction firms. Despite the successful application of underwriting in banks and financial institutions for many years, there are few contractors who are applying this technique to analyze and mitigate the credit risks of their potential owners before signing contracts with them for delivering their performed services. Thus, contractors have taken credit risks during project implementation which might be not materialized due to the bankruptcy and/or protracted default made by their owners. With this regard, this study proposes a model using the underwriting technique for contractors to analyze and assess credit risks of their owners before making final decisions for the potential construction contracts. Contractor’s underwriters are able to analyze and evaluate the subjects such as owner, country, sector, payment terms, financial figures and their related concerns of the credit limit requests in details based on reliable information sources, and then input into the proposed model to have the Overall Assessment Score (OAS). The OAS is as a benchmark for the decision makers to grant the proper limits for the project. The proposed underwriting model is validated by 30 subjects in Asia Pacific region within 5 years to achieve their OAS, and then compare output OAS with their own practical performance in order to evaluate the potential of underwriting model for analyzing and assessing credit risks. The results revealed that the underwriting would be a powerful method to assist contractors in making precise decisions. The contribution of this research is to allow the contractors firstly to develop their own credit risk management model for proactively preventing the credit risks of construction projects and continuously improve and enhance the performance of this function during project implementation.Keywords: underwriting technique, credit risk, risk management, construction project
Procedia PDF Downloads 2084343 The School Governing Council as the Impetus for Collaborative Education Governance: A Case Study of Two Benguet Municipalities in the Highlands of Northern Philippines
Authors: Maria Consuelo Doble
Abstract:
For decades, basic public education in the Philippines has been beleaguered by a governance scenario of multi-layered decision-making and the lack of collaboration between sectors in addressing issues on poor access to schools, high dropout rates, low survival rates, and poor student performance. These chronic problems persisted despite multiple efforts making it appear that the education system is incapable of reforming itself. In the mountainous rural towns of La Trinidad and Tuba, in the province of Benguet in Northern Philippines, collaborative education governance was catalyzed by the intervention of Synergeia Foundation, a coalition made up of individuals, institutions and organizations that aim to improve the quality of education in the Philippines. Its major thrust is to empower the major stakeholders at the community level to make education work by building the capacities of School Governing Councils (SGCs). Although mandated by the Department of Education in 2006, the SGCs in Philippine public elementary schools remained dysfunctional. After one year of capacity-building by Synergeia Foundation, some SGCs are already exhibiting active community-based multi-sectoral collaboration, while there are many that are not. With the myriad of factors hindering collaboration, Synergeia Foundation is now confronted with the pressing question: What are the factors that promote collaborative governance in the SGCs so that they can address the education-related issues that they are facing? Using Emerson’s (2011) framework on collaborative governance, this study analyzes the application of collaborative governance by highly-functioning SGCs in the public elementary schools of Tuba and La Trinidad. Findings of this action research indicate how the dynamics of collaboration composed of three interactive and iterative components – principled engagement, shared motivation and capacity for joint action – have resulted in meaningful short-term impact such as stakeholder engagement and decreased a number of dropouts. The change in the behavior of stakeholders is indicative of adaptation to a more collaborative approach in governing education in Benguet highland settings such as Tuba and La Trinidad.Keywords: basic public education, Benguet highlands, collaborative governance, School Governing Council
Procedia PDF Downloads 290