Search results for: linear static analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30482

Search results for: linear static analysis

29072 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello

Abstract:

Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 384
29071 Determinants of Investment in Vaca Muerta, Argentina

Authors: Ivan Poza Martínez

Abstract:

The international energy landscape has been significantly affected by the Covid-19 pandemic and te conflict in Ukraine. The Vaca Muerta sedimentary formation in Argentina´s Neuquén province has become a crucial area for energy production, specifically in the shale gas ad shale oil sectors. The massive investment required for theexploitation of this reserve make it essential to understand te determinants of the investment in the upstream sector at both local ad international levels. The aim of this study is to identify the qualitative and quantitative determinants of investment in Vaca Muerta. The research methodolody employs both quantiative ( econometrics ) and qualitative approaches. A linear regression model is used to analyze the impact in non-conventional hydrocarbons. The study highlights that, in addition to quantitative factors, qualitative variables, particularly the design of a regulatory framework, significantly influence the level of the investment in Vaca Muerta. The analysis reveals the importance of attracting both domestic and foreign capital investment. This research contributes to understanding the factors influencing investment inthe Vaca Muerta regioncomapred to other published studies. It emphasizes to role of qualitative varibles, such as regulatory frameworks, in the development of the shale gas and oil sectors. The study uses a combination ofquantitative data , such a investment figures, and qualitative data, such a regulatory frameworks. The data is collected from various rpeorts and industry publications. The linear regression model is used to analyze the relationship between the variables and the investment in Vaca Muerta. The research addresses the question of what factors drive investment in the Vaca Muerta region, both from a quantitative and qualitative perspective. The study concludes that a combination of quantitative and qualitative factors, including the design of a regulatory framework, plays a significant role in attracting investment in Vaca Muerta. It highlights the importance of these determinants in the developmentof the local energy sector and the potential economic benefits for Argentina and the Southern Cone region.

Keywords: vaca muerta, FDI, shale gas, shale oil, YPF

Procedia PDF Downloads 57
29070 Tigers in Film: Past, Present and Future Perspectives

Authors: Farah Benbouabdellah

Abstract:

This research examines the shifting portrayal of tigers in visual media, particularly cinema, to explore how cultural, political, and ecological perspectives influence animal symbolism. Through an interdisciplinary approach combining film studies, anthropology, art history, and material culture, this study investigates tiger representations in static and moving images, from early art forms to 20th-century films. The research highlights how the film has perpetuated, transformed, and politicised tiger imagery across contexts by analysing colonialism, identity, and ecological change themes. With a comprehensive focus on Indian and Western cinema, this study illustrates the tiger's enduring role as a cultural symbol and its impact on visual narratives, exploring techniques in cinematography, audience reception, and narratives that helped shape the animal's iconic status. This research aims to provide a comprehensive view of tiger representations in media, addressing the intersection of animal symbolism and sociocultural values across historical and regional landscapes.

Keywords: tiger representation, visual media, anthropology media, material culture, film studies, comparative analysis

Procedia PDF Downloads 8
29069 Seismic Resistant Columns of Buildings against the Differential Settlement of the Foundation

Authors: Romaric Desbrousses, Lan Lin

Abstract:

The objective of this study is to determine how Canadian seismic design provisions affect the column axial load resistance of moment-resisting frame reinforced concrete buildings subjected to the differential settlement of their foundation. To do so, two four-storey buildings are designed in accordance with the seismic design provisions of the Canadian Concrete Design Standards. One building is located in Toronto, which is situated in a moderate seismic hazard zone in Canada, and the other in Vancouver, which is in Canada’s highest seismic hazard zone. A finite element model of each building is developed using SAP 2000. A 100 mm settlement is assigned to the base of the building’s center column. The axial load resistance of the column is represented by the demand capacity ratio. The analysis results show that settlement-induced tensile axial forces have a particularly detrimental effect on the conventional settling columns of the Toronto buildings which fail at a much smaller settlement that those in the Vancouver buildings. The results also demonstrate that particular care should be taken in the design of columns in short-span buildings.

Keywords: Columns, Demand, Foundation differential settlement, Seismic design, Non-linear analysis

Procedia PDF Downloads 135
29068 Integrated Mass Rapid Transit System for Smart City Project in Western India

Authors: Debasis Sarkar, Jatan Talati

Abstract:

This paper is an attempt to develop an Integrated Mass Rapid Transit System (MRTS) for a smart city project in Western India. Integrated transportation is one of the enablers of smart transportation for providing a seamless intercity as well as regional level transportation experience. The success of a smart city project at the city level for transportation is providing proper integration to different mass rapid transit modes by way of integrating information, physical, network of routes fares, etc. The methodology adopted for this study was primary data research through questionnaire survey. The respondents of the questionnaire survey have responded on the issues about their perceptions on the ways and means to improve public transport services in urban cities. The respondents were also required to identify the factors and attributes which might motivate more people to shift towards the public mode. Also, the respondents were questioned about the factors which they feel might restrain the integration of various modes of MRTS. Furthermore, this study also focuses on developing a utility equation for respondents with the help of multiple linear regression analysis and its probability to shift to public transport for certain factors listed in the questionnaire. It has been observed that for shifting to public transport, the most important factors that need to be considered were travel time saving and comfort rating. Also, an Integrated MRTS can be obtained by combining metro rail with BRTS, metro rail with monorail, monorail with BRTS and metro rail with Indian railways. Providing a common smart card to transport users for accessing all the different available modes would be a pragmatic solution towards integration of the available modes of MRTS.

Keywords: mass rapid transit systems, smart city, metro rail, bus rapid transit system, multiple linear regression, smart card, automated fare collection system

Procedia PDF Downloads 271
29067 Effects of Repeated High Loadings on the Performance of Adhesively-Bonded Single Lap Joints

Authors: Orkun Yavuz, Ferhat Kadioğlu, M. Emin Ercan

Abstract:

This study aims to investigate the effects of repeated high loadings on the performance of adhesively-bonded Single Lap Joints (SLJs) by employing both experimental and numerical approaches. A projectile with a mass of 1.25 gr and density of 11.3 gr/cm3 was fired at the joints with a velocity of about 280 m/s using a specially designed experimental set-up, and the impact was recorded via a high-speed camera. The SLJs were manufactured from 6061 aluminum adherend (AA6061) material and an adhesive film. The joints, which have an adherend thickness of 4 mm and overlap length of 15 mm, were subjected to up to 3 shots for the ballistic test, followed by quasi-static tensile testing. The impacted joints, then, were compared to the non-impacted and one-shot impacted ones, which was a subject of investigation carried out before. It was found that while the joints subjected to 2 shots mechanically deteriorated, those subjected to 3 shots experienced a complete failure at the end of the experiment. A numerical study was also conducted using an ABAQUS package program. While the adherends were modelled using the Johnson-Cook deformation parameters, an elastoplastic behavior of the adhesive was used as input data in the analyses. It seems the experimental results confirm the numerical ones.

Keywords: ballistic tests, adhesive joints, numerical analysis, SLJ

Procedia PDF Downloads 64
29066 Thermoelectric Generators as Alternative Source for Electric Power

Authors: L. C. Ding, Bradley G. Orr, K. Rahauoi, S. Truza, A. Date, A. Akbarzadeh

Abstract:

The research on thermoelectric has been a blooming field of research for the latest decade, owing to large amount of heat source available to be harvested, being eco-friendly and static in operation. This paper provides the performance of thermoelectric generator (TEG) with bulk material of bismuth telluride, Bi2Te3. Later, the performance of the TEGs is evaluated by considering attaching the TEGs on a plastic (polyethylene sheet) in contrast to the common method of attaching the TEGs on the metal surface.

Keywords: electric power, heat transfer, renewable energy, thermoelectric generator

Procedia PDF Downloads 282
29065 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 187
29064 Gender, Age, and Race Differences in Self-Reported Reading Attitudes of College Students

Authors: Jill Villarreal, Kristalyn Cooksey, Kai Lloyd, Daniel Ha

Abstract:

Little research has been conducted to examine college students' reading attitudes, including students' perceptions of reading behaviors and reading abilities. This is problematic, as reading assigned course material is a critical component to an undergraduate student's academic success. For this study, flyers were electronically disseminated to instructors at 24 public and 10 private U.S. institutions in “Reading-Intensive Departments” including Psychology, Sociology, Education, Business, and Communications. We requested the online survey be completed as an in-class activity during the fall 2019 and spring 2020 semesters. All participants voluntarily completed the questionnaire anonymously. Of the participants, 280 self-identified their race as Black and 280 self-identified their race as White. Of the participants, 177 self-identified their gender as Male and 383 self-identified their Gender as Female. Participants ranged in age from 18-24. Factor analysis found four dimensions resulting from the questions regarding reading. The first we interpret as “Reading Proficiency”, accounted for 19% of the variability. The second dimension was “Reading Anxiety” (15%), the third was “Textbook Reading Ability” (9%), and the fourth was “Reading Enjoyment” (8%). Linear models on each of these dimensions revealed no effect of Age, Gender, Race, or Income on “Reading proficiency”. The linear model of “Reading Anxiety” showed a significant effect of race (p = 0.02), with higher anxiety in white students, as well as higher reading anxiety in female students (p < 0.001). The model of “Textbook Reading Ability” found a significant effect of race (p < 0.001), with higher textbook problems in white students. The model of “Reading Enjoyment” showed significant effects of race (p = 0.013) with more enjoyment for white students, gender (p = 0.001) with higher enjoyment for female students, and age (p = 0.033) with older students showing higher enjoyment. These findings suggest that gender, age, and race are important factors in many aspects of college students' reading attitudes. Further research will investigate possible causes for these differences. In addition, the effectiveness of college-level programs to reduce reading anxiety, promote the reading of textbooks, and foster a love of reading will be assessed.

Keywords: age, college, gender, race, reading

Procedia PDF Downloads 152
29063 Investigating Associations Between Genes Linked to Social Behavior and Early Covid-19 Spread Using Multivariate Linear Regression Analysis

Authors: Gwenyth C. Eichfeld

Abstract:

Variation in global COVID-19 spread is partly explained by social and behavioral factors. Many of these behaviors are linked to genetics. The short polymorphism of the 5-HTTLPR promoter region of the SLC6A4 gene is linked to collectivism. The seven-repeat polymorphism of the DRD4 gene is linked to risk-taking, migration, sensation-seeking, and impulsivity. Fewer CAG repeats in the androgen receptor gene are linked to impulsivity. This study investigates an association between the country-level frequency of these variants and early Covid-19 spread. Results of regression analysis indicate a significant association between increased country-wide prevalence of the short allele of the SLC6A4 gene and decreased COVID-19 spread when other factors that have been linked to COVID-19 are controlled for. Additionally, results show that the short allele of the SLC6A4 gene is associated with COVID-19 spread through GDP and percent urbanization rather than collectivism. Results showed no significant association between the frequency of the DRD4 polymorphism nor the androgen receptor polymorphism with early COVID-19 spread.

Keywords: neuroscience, genetics, population sciences, Covid-19

Procedia PDF Downloads 36
29062 The Characteristics of Static Plantar Loading in the First-Division College Sprint Athletes

Authors: Tong-Hsien Chow

Abstract:

Background: Plantar pressure measurement is an effective method for assessing plantar loading and can be applied to evaluating movement performance of the foot. The purpose of this study is to explore the sprint athletes’ plantar loading characteristics and pain profiles in static standing. Methods: Experiments were undertaken on 80 first-division college sprint athletes and 85 healthy non-sprinters. ‘JC Mat’, the optical plantar pressure measurement was applied to examining the differences between both groups in the arch index (AI), three regional and six distinct sub-regional plantar pressure distributions (PPD), and footprint characteristics. Pain assessment and self-reported health status in sprint athletes were examined for evaluating their common pain areas. Results: Findings from the control group, the males’ AI fell into the normal range. Yet, the females’ AI was classified as the high-arch type. AI values of the sprint group were found to be significantly lower than the control group. PPD were higher at the medial metatarsal bone of both feet and the lateral heel of the right foot in the sprint group, the males in particular, whereas lower at the medial and lateral longitudinal arches of both feet. Footprint characteristics tended to support the results of the AI and PPD, and this reflected the corresponding pressure profiles. For the sprint athletes, the lateral knee joint and biceps femoris were the most common musculoskeletal pains. Conclusions: The sprint athletes’ AI were generally classified as high arches, and that their PPD were categorized between the features of runners and high-arched runners. These findings also correspond to the profiles of patellofemoral pain syndrome (PFPS)-related plantar pressure. The pain profiles appeared to correspond to the symptoms of high-arched runners and PFPS. The findings reflected upon the possible link between high arches and PFPS. The correlation between high-arched runners and PFPS development is worth further studies.

Keywords: sprint athletes, arch index, plantar pressure distributions, high arches, patellofemoral pain syndrome

Procedia PDF Downloads 339
29061 Prediction of Slaughter Body Weight in Rabbits: Multivariate Approach through Path Coefficient and Principal Component Analysis

Authors: K. A. Bindu, T. V. Raja, P. M. Rojan, A. Siby

Abstract:

The multivariate path coefficient approach was employed to study the effects of various production and reproduction traits on the slaughter body weight of rabbits. Information on 562 rabbits maintained at the university rabbit farm attached to the Centre for Advanced Studies in Animal Genetics, and Breeding, Kerala Veterinary and Animal Sciences University, Kerala State, India was utilized. The manifest variables used in the study were age and weight of dam, birth weight, litter size at birth and weaning, weight at first, second and third months. The linear multiple regression analysis was performed by keeping the slaughter weight as the dependent variable and the remaining as independent variables. The model explained 48.60 percentage of the total variation present in the market weight of the rabbits. Even though the model used was significant, the standardized beta coefficients for the independent variables viz., age and weight of the dam, birth weight and litter sizes at birth and weaning were less than one indicating their negligible influence on the slaughter weight. However, the standardized beta coefficient of the second-month body weight was maximum followed by the first-month weight indicating their major role on the market weight. All the other factors influence indirectly only through these two variables. Hence it was concluded that the slaughter body weight can be predicted using the first and second-month body weights. The principal components were also developed so as to achieve more accuracy in the prediction of market weight of rabbits.

Keywords: component analysis, multivariate, slaughter, regression

Procedia PDF Downloads 165
29060 Neighborhood Graph-Optimized Preserving Discriminant Analysis for Image Feature Extraction

Authors: Xiaoheng Tan, Xianfang Li, Tan Guo, Yuchuan Liu, Zhijun Yang, Hongye Li, Kai Fu, Yufang Wu, Heling Gong

Abstract:

The image data collected in reality often have high dimensions, and it contains noise and redundant information. Therefore, it is necessary to extract the compact feature expression of the original perceived image. In this process, effective use of prior knowledge such as data structure distribution and sample label is the key to enhance image feature discrimination and robustness. Based on the above considerations, this paper proposes a local preserving discriminant feature learning model based on graph optimization. The model has the following characteristics: (1) Locality preserving constraint can effectively excavate and preserve the local structural relationship between data. (2) The flexibility of graph learning can be improved by constructing a new local geometric structure graph using label information and the nearest neighbor threshold. (3) The L₂,₁ norm is used to redefine LDA, and the diagonal matrix is introduced as the scale factor of LDA, and the samples are selected, which improves the robustness of feature learning. The validity and robustness of the proposed algorithm are verified by experiments in two public image datasets.

Keywords: feature extraction, graph optimization local preserving projection, linear discriminant analysis, L₂, ₁ norm

Procedia PDF Downloads 149
29059 Development of PPy-M Composites Materials for Sensor Application

Authors: Yatimah Alias, Tilagam Marimuthu, M. R. Mahmoudian, Sharifah Mohamad

Abstract:

The rapid growth of science and technology in energy and environmental fields has enlightened the substantial importance of the conducting polymer and metal composite materials engineered at nano-scale. In this study, polypyrrole-cobalt composites (PPy-Co Cs) and polypyrrole-nickel oxide composites (PPy-NiO Cs) were prepared by a simple and facile chemical polymerization method with an aqueous solution of pyrrole monomer in the presence of metal salt. These composites then fabricated into non-enzymatic hydrogen peroxide (H2O2) and glucose sensor. The morphology and composition of the composites are characterized by the Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrum and X-ray Powder Diffraction. The obtained results were compared with the pure PPy and metal oxide particles. The structural and morphology properties of synthesized composites are different from those of pure PPy and metal oxide particles, which were attributed to the strong interaction between the PPy and the metal particles. Besides, a favorable micro-environment for the electrochemical oxidation of H2O2 and glucose was achieved on the modified glassy carbon electrode (GCE) coated with PPy-Co Cs and PPy-NiO Cs respectively, resulting in an enhanced amperometric response. Both PPy-Co/GCE and PPy-NiO/GCE give high response towards target analyte at optimum condition of 500 μl pyrrole monomer content. Furthermore, the presence of pyrrole monomer greatly increases the sensitivity of the respective modified electrode. The PPy-Co/GCE could detect H2O2 in a linear range of 20 μM to 80 mM with two linear segments (low and high concentration of H2O2) and the detection limit for both ranges is 2.05 μM and 19.64 μM, respectively. Besides, PPy-NiO/GCE exhibited good electrocatalytic behavior towards glucose oxidation in alkaline medium and could detect glucose in linear ranges of 0.01 mM to 0.50 mM and 1 mM to 20 mM with detection limit of 0.33 and 5.77 μM, respectively. The ease of modifying and the long-term stability of this sensor have made it superior to enzymatic sensors, which must kept in a critical environment.

Keywords: metal oxide, composite, non-enzymatic sensor, polypyrrole

Procedia PDF Downloads 266
29058 New Approach for Minimizing Wavelength Fragmentation in Wavelength-Routed WDM Networks

Authors: Sami Baraketi, Jean Marie Garcia, Olivier Brun

Abstract:

Wavelength Division Multiplexing (WDM) is the dominant transport technology used in numerous high capacity backbone networks, based on optical infrastructures. Given the importance of costs (CapEx and OpEx) associated to these networks, resource management is becoming increasingly important, especially how the optical circuits, called “lightpaths”, are routed throughout the network. This requires the use of efficient algorithms which provide routing strategies with the lowest cost. We focus on the lightpath routing and wavelength assignment problem, known as the RWA problem, while optimizing wavelength fragmentation over the network. Wavelength fragmentation poses a serious challenge for network operators since it leads to the misuse of the wavelength spectrum, and then to the refusal of new lightpath requests. In this paper, we first establish a new Integer Linear Program (ILP) for the problem based on a node-link formulation. This formulation is based on a multilayer approach where the original network is decomposed into several network layers, each corresponding to a wavelength. Furthermore, we propose an efficient heuristic for the problem based on a greedy algorithm followed by a post-treatment procedure. The obtained results show that the optimal solution is often reached. We also compare our results with those of other RWA heuristic methods.

Keywords: WDM, lightpath, RWA, wavelength fragmentation, optimization, linear programming, heuristic

Procedia PDF Downloads 527
29057 OpenFOAM Based Simulation of High Reynolds Number Separated Flows Using Bridging Method of Turbulence

Authors: Sagar Saroha, Sawan S. Sinha, Sunil Lakshmipathy

Abstract:

Reynolds averaged Navier-Stokes (RANS) model is the popular computational tool for prediction of turbulent flows. Being computationally less expensive as compared to direct numerical simulation (DNS), RANS has received wide acceptance in industry and research community as well. However, for high Reynolds number flows, the traditional RANS approach based on the Boussinesq hypothesis is incapacitated to capture all the essential flow characteristics, and thus, its performance is restricted in high Reynolds number flows of practical interest. RANS performance turns out to be inadequate in regimes like flow over curved surfaces, flows with rapid changes in the mean strain rate, duct flows involving secondary streamlines and three-dimensional separated flows. In the recent decade, partially averaged Navier-Stokes (PANS) methodology has gained acceptability among seamless bridging methods of turbulence- placed between DNS and RANS. PANS methodology, being a scale resolving bridging method, is inherently more suitable than RANS for simulating turbulent flows. The superior ability of PANS method has been demonstrated for some cases like swirling flows, high-speed mixing environment, and high Reynolds number turbulent flows. In our work, we intend to evaluate PANS in case of separated turbulent flows past bluff bodies -which is of broad aerodynamic research and industrial application. PANS equations, being derived from base RANS, continue to inherit the inadequacies from the parent RANS model based on linear eddy-viscosity model (LEVM) closure. To enhance PANS’ capabilities for simulating separated flows, the shortcomings of the LEVM closure need to be addressed. Inabilities of the LEVMs have inspired the development of non-linear eddy viscosity models (NLEVM). To explore the potential improvement in PANS performance, in our study we evaluate the PANS behavior in conjugation with NLEVM. Our work can be categorized into three significant steps: (i) Extraction of PANS version of NLEVM from RANS model, (ii) testing the model in the homogeneous turbulence environment and (iii) application and evaluation of the model in the canonical case of separated non-homogeneous flow field (flow past prismatic bodies and bodies of revolution at high Reynolds number). PANS version of NLEVM shall be derived and implemented in OpenFOAM -an open source solver. Homogeneous flows evaluation will comprise the study of the influence of the PANS’ filter-width control parameter on the turbulent stresses; the homogeneous analysis performed over typical velocity fields and asymptotic analysis of Reynolds stress tensor. Non-homogeneous flow case will include the study of mean integrated quantities and various instantaneous flow field features including wake structures. Performance of PANS + NLEVM shall be compared against the LEVM based PANS and LEVM based RANS. This assessment will contribute to significant improvement of the predictive ability of the computational fluid dynamics (CFD) tools in massively separated turbulent flows past bluff bodies.

Keywords: bridging methods of turbulence, high Re-CFD, non-linear PANS, separated turbulent flows

Procedia PDF Downloads 145
29056 The Determinants of Financing to Deposit Ratio of Islamic Bank in Malaysia

Authors: Achsania Hendratmi, Puji Sucia Sukmaningrum, Fatin Fadhilah Hasib, Nisful Laila

Abstract:

The research aimed to know the influence of Capital Adequacy Ratio (CAR), Return on Assets (ROA) and Size of the Financing to Deposit Ratio (FDR) Islamic Banks in Malaysia by using eleven Islamic Banks in Indonesia and fifteen Islamic Banks in Malaysia in the period 2012 to 2016 as samples. The research used a quantitative approach method, and the analysis technique used multiple linear regression. Based on the result of t-test (partial), CAR, ROA and size significantly affect of FDR. While the results of f-test (simultaneous) showed that CAR, ROA and Size significant effect on FDR.

Keywords: capital adequacy ratio, financing to deposit ratio, return on assets, size

Procedia PDF Downloads 339
29055 Study on Errors in Estimating the 3D Gaze Point for Different Pupil Sizes Using Eye Vergences

Authors: M. Pomianek, M. Piszczek, M. Maciejewski

Abstract:

The binocular eye tracking technology is increasingly being used in industry, entertainment and marketing analysis. In the case of virtual reality, eye tracking systems are already the basis for user interaction with the environment. In such systems, the high accuracy of determining the user's eye fixation point is very important due to the specificity of the virtual reality head-mounted display (HMD). Often, however, there are unknown errors occurring in the used eye tracking technology, as well as those resulting from the positioning of the devices in relation to the user's eyes. However, can the virtual environment itself influence estimation errors? The paper presents mathematical analyses and empirical studies of the determination of the fixation point and errors resulting from the change in the size of the pupil in response to the intensity of the displayed scene. The article contains both static laboratory tests as well as on the real user. Based on the research results, optimization solutions were proposed that would reduce the errors of gaze estimation errors. Studies show that errors in estimating the fixation point of vision can be minimized both by improving the pupil positioning algorithm in the video image and by using more precise methods to calibrate the eye tracking system in three-dimensional space.

Keywords: eye tracking, fixation point, pupil size, virtual reality

Procedia PDF Downloads 132
29054 Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities

Authors: Retius Chifurira

Abstract:

Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe.

Keywords: generalized extreme value distribution, general linear model, mean annual rainfall, meteorological drought probabilities

Procedia PDF Downloads 200
29053 Non-linear Model of Elasticity of Compressive Strength of Concrete

Authors: Charles Horace Ampong

Abstract:

Non-linear models have been found to be useful in modeling the elasticity (measure of degree of responsiveness) of a dependent variable with respect to a set of independent variables ceteris paribus. This constant elasticity principle was applied to the dependent variable (Compressive Strength of Concrete in MPa) which was found to be non-linearly related to the independent variable (Water-Cement ratio in kg/m3) for given Ages of Concrete in days (3, 7, 28) at different levels of admixtures Superplasticizer (in kg/m3), Blast Furnace Slag (in kg/m3) and Fly Ash (in kg/m3). The levels of the admixtures were categorized as: S1=Some Plasticizer added & S0=No Plasticizer added; B1=some Blast Furnace Slag added & B0=No Blast Furnace Slag added; F1=Some Fly Ash added & F0=No Fly Ash added. The number of observations (samples) used for the research was one-hundred and thirty-two (132) in all. For Superplasticizer, it was found that Compressive Strength of Concrete was more elastic with regards to Water-Cement ratio at S1 level than at S0 level for the given ages of concrete 3, 7and 28 days. For Blast Furnace Slag, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for concrete ages 3, 7 and 28 days. For Fly Ash, Compressive Strength with regards to Water-Cement ratio was more elastic at B0 level than at B1 level for Ages 3, 7 and 28 days. The research also tested for different combinations of the levels of Superplasticizer, Blast Furnace Slag and Fly Ash. It was found that Compressive Strength elasticity with regards to Water-Cement ratio was lowest (Elasticity=-1.746) with a combination of S0, B0 and F0 for concrete age of 3 days. This was followed by Elasticity of -1.611 with a combination of S0, B0 and F0 for a concrete of age 7 days. Next, the highest was an Elasticity of -1.414 with combination of S0, B0 and F0 for a concrete age of 28 days. Based on preceding outcomes, three (3) non-linear model equations for predicting the output elasticity of Compressive Strength of Concrete (in %) or the value of Compressive Strength of Concrete (in MPa) with regards to Water to Cement was formulated. The model equations were based on the three different ages of concrete namely 3, 7 and 28 days under investigation. The three models showed that higher elasticity translates into higher compressive strength. And the models revealed a trend of increasing concrete strength from 3 to 28 days for a given amount of water to cement ratio. Using the models, an increasing modulus of elasticity from 3 to 28 days was deduced.

Keywords: concrete, compressive strength, elasticity, water-cement

Procedia PDF Downloads 293
29052 The Aromaticity of P-Substituted O-(N-Dialkyl)Aminomethylphenols

Authors: Khodzhaberdi Allaberdiev

Abstract:

Aromaticity, one of the most important concepts in organic chemistry, has attracted considerable interest from both experimentalists and theoreticians. The geometry optimization of p-substituted o-(N-dialkyl)aminomethylphenols, o-DEAMPH XC₆ H₅CH ₂Y (X=p-OCH₃, CH₃, H, F, Cl, Br, COCH₃, COOCH₃, CHO, CN and NO₂, Y=o-N (C₂H₅)₂, o-DEAMPHs have been performed in the gas phase using the B3LYP/6-311+G(d,p) level. Aromaticities of the considered molecules were investigated using different indices included geometrical (HOMA and Bird), electronic (FLU, PDI and SA) magnetic (NICS(0), NICS(1) and NICS(1)zz indices. The linear dependencies were obtained between some aromaticity indices. The best correlation is observed between the Bird and PDI indices (R² =0.9240). However, not all types of indices or even different indices within the same type correlate well among each other. Surprisingly, for studied molecules in which geometrical and electronic cannot correctly give the aromaticity of ring, the magnetism based index successfully predicts the aromaticity of systems. 1H NMR spectra of compounds were obtained at B3LYP/6–311+G(d,p) level using the GIAO method. Excellent linear correlation (R²= 0.9996) between values the chemical shift of hydrogen atom obtained experimentally of 1H NMR and calculated using B3LYP/6–311+G(d,p) demonstrates a good assignment of the experimental values chemical shift to the calculated structures of o-DEAMPH. It is found that the best linear correlation with the Hammett substituent constants is observed for the NICS(1)zz index in comparison with the other indices: NICS(1)zz =-21.5552+1,1070 σp- (R²=0.9394). The presence intramolecular hydrogen bond in the studied molecules also revealed changes the aromatic character of substituted o-DEAMPHs. The HOMA index predicted for R=NO2 the reduction in the π-electron delocalization of 3.4% was about double that observed for p-nitrophenol. The influence intramolecular H-bonding on aromaticity of benzene ring in the ground state (S0) are described by equations between NICS(1)zz and H-bond energies: experimental, Eₑₓₚ, predicted IR spectroscopical, Eν and topological, EQTAIM with correlation coefficients R² =0.9666, R² =0.9028 and R² =0.8864, respectively. The NICS(1)zz index also correlates with usual descriptors of the hydrogen bond, while the other indices do not give any meaningful results. The influence of the intramolecular H-bonding formation on the aromaticity of some substituted o-DEAMPHs is criteria to consider the multidimensional character of aromaticity. The linear relationships as well as revealed between NICS(1)zz and both pyramidality nitrogen atom, ΣN(C₂H₅)₂ and dihedral angle, φ CAr – CAr -CCH₂ –N, to characterizing out-of-plane properties.These results demonstrated the nonplanar structure of o-DEAMPHs. Finally, when considering dependencies of NICS(1)zz, were excluded data for R=H, because the NICS(1) and NICS(1)zz values are the most negative for unsubstituted DEAMPH, indicating its highest aromaticity; that was not the case for NICS(0) index.

Keywords: aminomethylphenols, DFT, aromaticity, correlations

Procedia PDF Downloads 181
29051 Multivariate Statistical Analysis of Heavy Metals Pollution of Dietary Vegetables in Swabi, Khyber Pakhtunkhwa, Pakistan

Authors: Fawad Ali

Abstract:

Toxic heavy metal contamination has a negative impact on soil quality which ultimately pollutes the agriculture system. In the current work, we analyzed uptake of various heavy metals by dietary vegetables grown in wastewater irrigated areas of Swabi city. The samples of soil and vegetables were analyzed for heavy metals viz Cd, Cr, Mn, Fe, Ni, Cu, Zn and Pb using Atomic Absorption Spectrophotometer. High levels of metals were found in wastewater irrigated soil and vegetables in the study area. Especially the concentrations of Pb and Cd in the dietary vegetable crossed the permissible level of World Health Organization. Substantial positive correlation was found among the soil and vegetable contamination. Transfer factor for some metals including Cr, Zn, Mn, Ni, Cd and Cu was greater than 0.5 which shows enhanced accumulation of these metals due to contamination by domestic discharges and industrial effluents. Linear regression analysis indicated significant correlation of heavy metals viz Pb, Cr, Cd, Ni, Zn, Cu, Fe and Mn in vegetables with concentration in soil of 0.964 at P≤0.001. Abelmoschus esculentus indicated Health Risk Index (HRI) of Pb >1 in adults and children. The source identification analysis carried out by Principal Component Analysis (PCA) and Cluster Analysis (CA) showed that ground water and soil were being polluted by the trace metals coming out from industries and domestic wastes. Hierarchical cluster analysis (HCA) divided metals into two clusters for wastewater and soil but into five clusters for soil of control area. PCA extracted two factors for wastewater, each contributing 61.086 % and 16.229 % of the total 77.315 % variance. PCA extracted two factors, for soil samples, having total variance of 79.912 % factor 1 and factor 2 contributed 63.889 % and 16.023 % of the total variance. PCA for sub soil extracted two factors with a total variance of 76.136 % factor 1 being 61.768 % and factor 2 being 14.368 %of the total variance. High pollution load index for vegetables in the study area due to metal polluted soil has opened a study area for proper legislation to protect further contamination of vegetables. This work would further reveal serious health risks to human population of the study area.

Keywords: health risk, vegetables, wastewater, atomic absorption sepctrophotometer

Procedia PDF Downloads 70
29050 An Ensemble Deep Learning Architecture for Imbalanced Classification of Thoracic Surgery Patients

Authors: Saba Ebrahimi, Saeed Ahmadian, Hedie Ashrafi

Abstract:

Selecting appropriate patients for surgery is one of the main issues in thoracic surgery (TS). Both short-term and long-term risks and benefits of surgery must be considered in the patient selection criteria. There are some limitations in the existing datasets of TS patients because of missing values of attributes and imbalanced distribution of survival classes. In this study, a novel ensemble architecture of deep learning networks is proposed based on stacking different linear and non-linear layers to deal with imbalance datasets. The categorical and numerical features are split using different layers with ability to shrink the unnecessary features. Then, after extracting the insight from the raw features, a novel biased-kernel layer is applied to reinforce the gradient of the minority class and cause the network to be trained better comparing the current methods. Finally, the performance and advantages of our proposed model over the existing models are examined for predicting patient survival after thoracic surgery using a real-life clinical data for lung cancer patients.

Keywords: deep learning, ensemble models, imbalanced classification, lung cancer, TS patient selection

Procedia PDF Downloads 145
29049 Rheological and Morphological Properties of Investment Casting Pattern Material Based on Paraffin Wax Fortified with Linear Low-Density Polyethylene and Filled with Poly Methyl Methacrylate

Authors: Robert Kimutai Tewo, Hilary Limo Rutto, Tumisang Seodigeng

Abstract:

The rheological and morphological properties of paraffin wax, linear low-density polyethylene (LLDPE), and poly (methyl methacrylate) (PMMA) microbeads formulations were prepared via an extrusion process. The blends were characterized by rheometry, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the viscosity of the blends increased as compared to that of neat wax. SEM confirmed that LLDPE alters the wax crystal habit at higher concentrations. The rheological experimental data fitted with predicted data using the modified Krieger and Dougherty expression. The SEM micrograph of wax/LLDPE/PMMA revealed a near-perfect spherical nature for the filler particles in the wax/EVA polymer matrix. The FT-IR spectra show the deformation vibrations stretch of a long-chain aliphatic hydrocarbon (C-H) and also the presence of carbonyls absorption group denoted by -C=O- stretch.

Keywords: investment casting pattern, paraffin wax, LLDPE, PMMA, rheological properties, modified Krieger and Dougherty expression

Procedia PDF Downloads 170
29048 Electrochemical Study of Al-Doped K₂CO₃ Activated Coconut Husk Carbon-Based Composite Anode Material for Battery Applications

Authors: Alpha Matthew

Abstract:

The Composites of Al-Doped K₂CO₃ activated coconut husk carbon, Al₀.₁:(K₂CO₃C)₀.₉ and AI₀.₃:(K₂CO₃C)₀.₇, were prepared using the hydrothermal method and drop casting deposition technique. The electrochemical performance of the Al-doped K₂CO₃ activated coconut husk carbon composite as a promising anode material for lithium-ion batteries was characterised by cyclic voltammetry analysis, electrochemical impedance spectroscopy, and galvanostatic charge discharge analysis. The charges that are retained in the anode material during charging showed a linear decline in charge capacity as the charging current intensity increased. Ionic polarisation was the reason for the observed drop in the charge and discharge capabilities at the current density of 5 A/g. Having greater specific capacitance and energy density, the composite Al₀.₁:(K₂CO₃C)₀.₉ is a better anode material for electrochemical applications compared to AI₀.₃:(K₂CO₃C)₀.₇, also its comparatively higher power density at a scan rate of 5 mV/s is mostly explained by its lower equivalent series resistance.

Keywords: coconut carbon husk, power density, energy density, battery, anode electrode

Procedia PDF Downloads 23
29047 Controller Design and Experimental Evaluation of a Motorized Assistance for a Patient Transfer Floor Lift

Authors: Donatien Callon, Ian Lalonde, Mathieu Nadeau, Alexandre Girard

Abstract:

Patient transfer is a challenging, critical task because it exposes caregivers to injury risks. Available transfer devices, like floor lifts, lead to improvements but are far from perfect. They do not eliminate the caregivers’ risk of musculoskeletal disorders, and they can be burdensome to use due to their poor maneuverability. This paper presents a new motorized floor lift with a single central motorized wheel connected to an instrumented handle. Admittance controllers are designed to 1) improve the device maneuverability, 2) reduce the required caregiver effort, and 3) ensure the security and comfort of patients. Two controller designs, one with a linear admittance law and a non-linear admittance law with variable damping, were developed and implemented on a prototype. Tests were performed on seven participants to evaluate the performance of the assistance system and the controllers. The experimental results show that 1) the motorized assistance with the variable damping controller improves maneuverability by 28%, 2) reduces the amount of effort required to push the lift by 66%, and 3) provides the same level of patient comfort compared to a standard unassisted floor lift.

Keywords: floor lift, human robot interaction, admittance controller, variable admittance

Procedia PDF Downloads 111
29046 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: collapse load analysis, inelastic buckling, liquefaction, pile group

Procedia PDF Downloads 162
29045 Numerical Simulation of Precast Concrete Panels for Airfield Pavement

Authors: Josef Novák, Alena Kohoutková, Vladimír Křístek, Jan Vodička

Abstract:

Numerical analysis software belong to the main tools for simulating the real behavior of various concrete structures and elements. In comparison with experimental tests, they offer an affordable way to study the mechanical behavior of structures under various conditions. The contribution deals with a precast element of an innovative airfield pavement system which is being developed within an ongoing scientific project. The proposed system consists a two-layer surface course of precast concrete panels positioned on a two-layer base of fiber-reinforced concrete with recycled aggregate. As the panels are supposed to be installed directly on the hardened base course, imperfections at the interface between the base course and surface course are expected. Considering such circumstances, three various behavior patterns could be established and considered when designing the precast element. Enormous costs of full-scale experiments force to simulate the behavior of the element in a numerical analysis software using finite element method. The simulation was conducted on a nonlinear model in order to obtain such results which could fully compensate results from the experiments. First, several loading schemes were considered with the aim to observe the critical one which was used for the simulation later on. The main objective of the simulation was to optimize reinforcement of the element subject to quasi-static loading from airplanes. When running the simulation several parameters were considered. Namely, it concerns geometrical imperfections, manufacturing imperfections, stress state in reinforcement, stress state in concrete and crack width. The numerical simulation revealed that the precast element should be heavily reinforced to fulfill all the demands assumed. The main cause of using high amount of reinforcement is the size of the imperfections which could occur at real structure. Improving manufacturing quality, the installation of the precast panels on a fresh base course or using a bedding layer underneath the surface course belong to the main steps how to reduce the size of imperfections and consequently lower the consumption of reinforcement.

Keywords: nonlinear analysis, numerical simulation, precast concrete, pavement

Procedia PDF Downloads 256
29044 Investigation of Hydrate Formation of Associated Petroleum Gas from Promoter Solutions for the Purpose of Utilization and Reduction of Its Burning

Authors: M. E. Semenov, U. Zh. Mirzakimov, A. S. Stoporev, R. S. Pavelev, M. A. Varfolomeev

Abstract:

Gas hydrates are host-guest compounds. Guest molecules can be low molecular weight components of associated petroleum gas (C1-C4 hydrocarbons), carbon dioxide, hydrogen sulfide, nitrogen. Gas hydrates have a number of unique properties that make them interesting from a technological point of view, for example, for storing hydrocarbon gases in solid form under moderate thermobaric conditions. Currently, the possibility of storing and transporting hydrocarbon gases in the form of solid hydrate is being actively explored throughout the world. The hydrate form of gas has a number of advantages, including a significant gas content in the hydrate, relative safety and environmental friendliness of the process. Recently, new developments have been proposed that seek to reduce the number of steps to obtain the finished hydrate, for example, using a pressing device/screw inside the reactor. However, the energy consumption required for the hydrate formation process remains a challenge. Thus, the goal of the current work is to study the patterns and mechanisms of the hydrate formation process using small additions of hydrate formation promoters under static conditions. The study of these aspects will help solve the problem of accelerated production of gas hydrates with minimal energy consumption. New compounds have been developed at Kazan Federal University that can accelerate the formation of methane hydrate with a small amount of promoter in water, not exceeding 0.1% by weight. These promoters were synthesized based on available natural compounds and showed high efficiency in accelerating the growth of methane hydrate. To test the influence of promoters on the process of hydrate formation, standard experiments are carried out under dynamic conditions with stirring. During such experiments, the time at which hydrate formation begins (induction period), the temperature at which formation begins (supercooling), the rate of hydrate formation, and the degree of conversion of water to hydrate are assessed. This approach helps to determine the most effective compound in comparative experiments with different promoters and select their optimal concentration. These experimental studies made it possible to study the features of the formation of associated petroleum gas hydrate from promoter solutions under static conditions. Phase transformations were studied using high-pressure micro-differential scanning calorimetry under various experimental conditions. Visual studies of the growth mode of methane hydrate depending on the type of promoter were also carried out. The work is an extension of the methodology for studying the effect of promoters on the process of associated petroleum gas hydrate formation in order to identify new ways to accelerate the formation of gas hydrates without the use of mixing. This work presents the results of a study of the process of associated petroleum gas hydrate formation using high-pressure differential scanning micro-calorimetry, visual investigation, gas chromatography, autoclave study, and stability data. It was found that the synthesized compounds multiply the conversion of water into hydrate under static conditions up to 96% due to a change in the growth mechanism of associated petroleum gas hydrate. This work was carried out in the framework of the program Priority-2030.

Keywords: gas hydrate, gas storage, promotor, associated petroleum gas

Procedia PDF Downloads 71
29043 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 65