Search results for: deep feed forward neural network
7381 Performance, Yolk and Serum Cholesterol of Shaver-Brown Layers Fed Moringa Leaf Meal and Sun Dried Garlic Powder
Authors: Anselm Onyimonyi, A. Abaponitus
Abstract:
One hundred and ninety two Shaver-Brown layers aged 40 weeks were used in a 10 weeks feeding trial to investigate the effect of supplementary moringa leaf meal and sun-dried garlic powder (MOGA) on the performance, egg yolk and serum cholesterol profiles of the birds. The birds were randomly assigned to four treatments in a 2 x 2 factorial in a Completely Randomized Design with 48 birds per treatment. Each treatment had 24 replicates with 2 birds, each separately housed in a cell in a battery cage. Birds on treatment 1 received a standard layers mash (16.5% CP and 3000 kcalME/kg) without any MOGA. Treatment 2 birds received the control diet with 5 g moringa leaf meal/kg of feed, treatment 3 received the control diet with 5 g sun-dried garlic powder/kg of feed, treatment 4 had a combination of 5 g each of moringa leaf meal and sun dried garlic powder/kg of feed. Data were kept on daily egg production, egg weight and feed intake. 10 eggs were collected per treatment at the end of the study for yolk cholesterol determination. Blood samples from four birds per treatment were collected and used for the serum cholesterol and triglycerides determination. Results showed that bird on treatment 3 (5% moringa leaf meal/kg of feed) had significantly higher (P < 0.05) Hen Day Egg Production record of 83.3% as against 78.75%, 65.05% and 66.67% recorded for the control, T2 and T4 birds, respectively. Egg weight of 56.39 g recorded for the same birds on treatment 3 was significantly (P< 0.05) lower than the values of 62.61 g, 60.99 g and 59.33 g recorded for birds on T4, T1 and T2, respectively. Yolk and serum cholesterol profiles of the moringa leaf meal fed birds were significantly (P<0.05) lowered when compared to those of the other treatments. Comparatively, the birds on the MOGA diets had significantly reduced yolk and serum cholesterol than the control. It is concluded that supplementation of moringa leaf meal and sun dried garlic powder at the levels used in this study will result in the production of nutritionally healthier eggs with less yolk and serum cholesterol.Keywords: performance, cholesterol, moringa, garlic
Procedia PDF Downloads 5207380 Neural Network Based Control Algorithm for Inhabitable Spaces Applying Emotional Domotics
Authors: Sergio A. Navarro Tuch, Martin Rogelio Bustamante Bello, Leopoldo Julian Lechuga Lopez
Abstract:
In recent years, Mexico’s population has seen a rise of different physiological and mental negative states. Two main consequences of this problematic are deficient work performance and high levels of stress generating and important impact on a person’s physical, mental and emotional health. Several approaches, such as the use of audiovisual stimulus to induce emotions and modify a person’s emotional state, can be applied in an effort to decreases these negative effects. With the use of different non-invasive physiological sensors such as EEG, luminosity and face recognition we gather information of the subject’s current emotional state. In a controlled environment, a subject is shown a series of selected images from the International Affective Picture System (IAPS) in order to induce a specific set of emotions and obtain information from the sensors. The raw data obtained is statistically analyzed in order to filter only the specific groups of information that relate to a subject’s emotions and current values of the physical variables in the controlled environment such as, luminosity, RGB light color, temperature, oxygen level and noise. Finally, a neural network based control algorithm is given the data obtained in order to feedback the system and automate the modification of the environment variables and audiovisual content shown in an effort that these changes can positively alter the subject’s emotional state. During the research, it was found that the light color was directly related to the type of impact generated by the audiovisual content on the subject’s emotional state. Red illumination increased the impact of violent images and green illumination along with relaxing images decreased the subject’s levels of anxiety. Specific differences between men and women were found as to which type of images generated a greater impact in either gender. The population sample was mainly constituted by college students whose data analysis showed a decreased sensibility to violence towards humans. Despite the early stage of the control algorithm, the results obtained from the population sample give us a better insight into the possibilities of emotional domotics and the applications that can be created towards the improvement of performance in people’s lives. The objective of this research is to create a positive impact with the application of technology to everyday activities; nonetheless, an ethical problem arises since this can also be applied to control a person’s emotions and shift their decision making.Keywords: data analysis, emotional domotics, performance improvement, neural network
Procedia PDF Downloads 1407379 Enhanced Constraint-Based Optical Network (ECON) for Enhancing OSNR
Authors: G. R. Kavitha, T. S. Indumathi
Abstract:
With the constantly rising demands of the multimedia services, the requirements of long haul transport network are constantly changing in the area of optical network. Maximum data transmission using optimization of the communication channel poses the biggest challenge. Although there has been a constant focus on this area from the past decade, there was no evidence of a significant result that has been accomplished. Hence, after reviewing some potential design of optical network from literatures, it was understood that optical signal to noise ratio was one of the elementary attributes that can define the performance of the optical network. In this paper, we propose a framework termed as ECON (Enhanced Constraint-based Optical Network) that primarily optimize the optical signal to noise ratio using ROADM. The simulation is performed in Matlab and optical signal to noise ratio is extracted considering the system matrix. The outcome of the proposed study shows that optimized OSNR as compared to the existing studies.Keywords: component, optical network, reconfigurable optical add-drop multiplexer, optical signal-to-noise ratio
Procedia PDF Downloads 4887378 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 557377 A Proposed Algorithm for Obtaining the Map of Subscribers’ Density Distribution for a Mobile Wireless Communication Network
Authors: C. Temaneh-Nyah, F. A. Phiri, D. Karegeya
Abstract:
This paper presents an algorithm for obtaining the map of subscriber’s density distribution for a mobile wireless communication network based on the actual subscriber's traffic data obtained from the base station. This is useful in statistical characterization of the mobile wireless network.Keywords: electromagnetic compatibility, statistical analysis, simulation of communication network, subscriber density
Procedia PDF Downloads 3097376 Early Recognition and Grading of Cataract Using a Combined Log Gabor/Discrete Wavelet Transform with ANN and SVM
Authors: Hadeer R. M. Tawfik, Rania A. K. Birry, Amani A. Saad
Abstract:
Eyes are considered to be the most sensitive and important organ for human being. Thus, any eye disorder will affect the patient in all aspects of life. Cataract is one of those eye disorders that lead to blindness if not treated correctly and quickly. This paper demonstrates a model for automatic detection, classification, and grading of cataracts based on image processing techniques and artificial intelligence. The proposed system is developed to ease the cataract diagnosis process for both ophthalmologists and patients. The wavelet transform combined with 2D Log Gabor Wavelet transform was used as feature extraction techniques for a dataset of 120 eye images followed by a classification process that classified the image set into three classes; normal, early, and advanced stage. A comparison between the two used classifiers, the support vector machine SVM and the artificial neural network ANN were done for the same dataset of 120 eye images. It was concluded that SVM gave better results than ANN. SVM success rate result was 96.8% accuracy where ANN success rate result was 92.3% accuracy.Keywords: cataract, classification, detection, feature extraction, grading, log-gabor, neural networks, support vector machines, wavelet
Procedia PDF Downloads 3327375 Anaerobic Co-digestion of the Halophyte Salicornia Ramosissima and Pig Manure in Lab-Scale Batch and Semi-continuous Stirred Tank Reactors: Biomethane Production and Reactor Performance
Authors: Aadila Cayenne, Hinrich Uellendahl
Abstract:
Optimization of the anaerobic digestion (AD) process of halophytic plants is essential as the biomass contains a high salt content that can inhibit the AD process. Anaerobic co-digestion, together with manure, can resolve the inhibitory effects of saline biomass in order to dilute the salt concentration and establish favorable conditions for the microbial consortia of the AD process. The present laboratory study investigated the co-digestion of S. ramosissima (Sram), and pig manure (PM) in batch and semi-continuous stirred tank reactors (CSTR) under mesophilic (38oC) conditions. The 0.5L batch reactor experiments were in mono- and co-digestion of Sram: PM using different percent volatile solid (VS) based ratios (0:100, 15:85, 25:75, 35:65, 50:50, 100:0) with an inoculum to substate (I/R) ratio of 2. Two 5L CSTR systems (R1 and R2) were operated for 133 days with a feed of PM in a control reactor (R1) and with a co-digestion feed in an increasing Sram VS ratio of Sram: PM of 15:85, 25:75, 35:65 in reactor R2 at an organic loading rate (OLR) of 2 gVS/L/d and hydraulic retention time (HRT) of 20 days. After a start-up phase of 8 weeks for both reactors R1 and R2 with PM feed alone, the halophyte biomass Sram was added to the feed of R2 in an increasing ratio of 15 – 35 %VS Sram over an 11-week period. The process performance was monitored by pH, total solid (TS), VS, total nitrogen (TN), ammonium-nitrogen (NH4 – N), volatile fatty acids (VFA), and biomethane production. In the batch experiments, biomethane yields of 423, 418, 392, 365, 315, and 214 mL-CH4/gVS were achieved for mixtures of 0:100, 15:85, 25:75, 35:65, 50:50, 100:0 %VS Sram: PM, respectively. In the semi-continuous reactor processes, the average biomethane yields were 235, 387, and 365 mL-CH4/gVS for the phase of a co-digestion feed ratio in R2 of 15:85, 25:75, and 35:65 %VS Sram: PM, respectively. The methane yield of PM alone in R1 was in the corresponding phases on average 260, 388, and 446 mL-CH4/gVS. Accordingly, in the continuous AD process, the methane yield of the halophyte Sram was highest at 386 mL-CH4/gVS in the co-digestion ratio of 25:75%VS Sram: PM and significantly lower at 15:85 %VS Sram: PM (100 mL-CH4/gVS) and at 35:65 %VS Sram (214 mL-CH4/gVS). The co-digestion process showed no signs of inhibition at 2 – 4 g/L NH4 – N, 3.5 – 4.5 g/L TN, and total VFA of 0.45 – 2.6 g/L (based on Acetic, Propionic, Butyric and Valeric acid). This study demonstrates that a stable co-digestion process of S. ramosissima and pig manure can be achieved with a feed of 25%VS Sram at HRT of 20 d and OLR of 2 gVS/L/d.Keywords: anaerobic co-digestion, biomethane production, halophytes, pig manure, salicornia ramosissima
Procedia PDF Downloads 1527374 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events
Authors: Gregory D. Saxton
Abstract:
Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter
Procedia PDF Downloads 1217373 Productive Performance of Lactating Sows Feed with Cull Chickpea
Authors: J. M. Uriarte, H. R. Guemez, J. A. Romo, R. Barajas, J. M. Romo
Abstract:
This research was carried out with the objective of knowing the productive performance of sows in lactation when fed with diets containing cull chickpea instead of corn and soybean meal. Thirty-six (Landrace x Yorkshire) lactating sows were divided into three treatments with 12 sows per treatment. On day 107 of gestation, sows were moved into farrowing crates in an environmentally regulated (2.2 × 0.6 m) contained an area (2.2 × 0.5 m) for newborn pigs on each side, all diets were provided as a dry powder, and the sows received free access to water throughout the experimental period. After farrowing, daily feed allowance increased gradually, and sows had ad libitum access to feed by day four. They were fed diets containing 0 (CONT), cull chickpeas 15 % (CHP15), or cull chickpeas 30% (CHP30) for 28 days. The diets contained the same calculated levels of crude protein and metabolizable energy, and contained vitamins and minerals that exceeded the National Research Council (1998) recommendations; sows were fed three times daily. On day 28, piglets were weaned and performances of lactating sows and nursery piglets were recorded. All data in this experiment were analyzed in accordance with a completely randomized design. Results indicated that average daily feed intake (5.61, 5.59 and 5.46 kg for CONT, CHP15, and CHP30 respectively) of sows were not affected (P > 0.05) by different dietary. There was no difference (P > 0.05) in average body weight of piglets on the day of birth (1.35 vs. 1.30, and 1.32 kg) and day 28 (7.10, 6.80 and 6.92 kg) between treatments. The numbers of weaned piglets (10.65 on average) were not affected by treatments. It is concluded that the use of cull chickpea at 30% of the diet does not affect the productive performance of lactating sows.Keywords: cull chickpea, lactating sow, performance, pigs
Procedia PDF Downloads 1427372 Strategy Research for the Development of Thematic Commercial Streets - Based On the Survey of Eight Typical Thematic Commercial Streets in Harbin
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
The construction of thematic commercial streets has been on the hotspot with the rapid development of cities. In order to improve the image and competitiveness of cities, many cities are building or rebuilding thematic commercial streets. However, many contradictions and problems have emerged during this process. Therefore, it is significant, for both the practice and the research, to analyse the development of thematic commercial streets and provide some useful suggestions. Through the deep research and comparative study of the eight typical thematic commercial streets in Harbin, this paper summarize the current situations, laws and influencing factors of the development of these streets, and then put forward some suggestions about the plan, constructions and developments of the thematic commercial streets.Keywords: thematic commercial streets, laws of the development, influence factors, the constructions and developments, degrees of aggregation
Procedia PDF Downloads 3757371 Sign Language Recognition of Static Gestures Using Kinect™ and Convolutional Neural Networks
Authors: Rohit Semwal, Shivam Arora, Saurav, Sangita Roy
Abstract:
This work proposes a supervised framework with deep convolutional neural networks (CNNs) for vision-based sign language recognition of static gestures. Our approach addresses the acquisition and segmentation of correct inputs for the CNN-based classifier. Microsoft Kinect™ sensor, despite complex environmental conditions, can track hands efficiently. Skin Colour based segmentation is applied on cropped images of hands in different poses, used to depict different sign language gestures. The segmented hand images are used as an input for our classifier. The CNN classifier proposed in the paper is able to classify the input images with a high degree of accuracy. The system was trained and tested on 39 static sign language gestures, including 26 letters of the alphabet and 13 commonly used words. This paper includes a problem definition for building the proposed system, which acts as a sign language translator between deaf/mute and the rest of the society. It is then followed by a focus on reviewing existing knowledge in the area and work done by other researchers. It also describes the working principles behind different components of CNNs in brief. The architecture and system design specifications of the proposed system are discussed in the subsequent sections of the paper to give the reader a clear picture of the system in terms of the capability required. The design then gives the top-level details of how the proposed system meets the requirements.Keywords: sign language, CNN, HCI, segmentation
Procedia PDF Downloads 1577370 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 597369 New Neuroplasmonic Sensor Based on Soft Nanolithography
Authors: Seyedeh Mehri Hamidi, Nasrin Asgari, Foozieh Sohrabi, Mohammad Ali Ansari
Abstract:
New neuro plasmonic sensor based on one dimensional plasmonic nano-grating has been prepared. To record neural activity, the sample has been exposed under different infrared laser and then has been calculated by ellipsometry parameters. Our results show that we have efficient sensitivity to different laser excitation.Keywords: neural activity, Plasmonic sensor, Nanograting, Gold thin film
Procedia PDF Downloads 3997368 Influence of Canola Oil and Lysine Supplementation Diets on Growth Performance and Fatty Acid Composition of Meat in Broiler Chicks
Authors: Ali Kiani, Seyed Davod. Sharifi, Shokoufeh Ghazanfari
Abstract:
A study was conducted to evaluate the effects of diets containing different levels of lysine and canola oil on growth performance and fatty acid composition of meat of broilers chicks. 240-day old Ross broiler chicks were used in a 3×2 factorial arrangement with canola oil (1, 3, and 5%) and lysine (recommended, and 25% more than recommended by Ross broiler manual) in completely randomized design with four replicates and 10 birds per each. The experimental diets were iso-caloric and iso-nitrogenous. Feed intake and body weight gain were recorded at the end of starter (10 d), grower (24 d) and finisher (42 d) periods, and feed conversion ratio was calculated. The results showed that the weight gain of chickens fed diets containing 5% canola oil were greater than those of birds fed on other diets (P<0.05). The dietary lysine had significant effect on feed intake and diets with 25% more than recommended, increased feed intake significantly (P<0.05). The canola oil×lysine interaction effects on performance were not significant. Among all treatment birds, those fed diets containing 5% canola oil had the highest meristic acid and oleic acid content in their meat. Broilers fed diets containing 3 or 5% canola oil possessed the higher content of linolenic acid and lower content of arachidonic acid in their meat (P<0.05). The results of the present experiment indicated that the diets containing canola oil (5%) and lysine at 25% higher than requirement, improve the growth performance, carcass and breast yield of broiler, and increase the accumulation of Omega-3 fatty acids in breast meat.Keywords: broiler, canola oil. lysine, fatty acid
Procedia PDF Downloads 2937367 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate
Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori
Abstract:
Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission
Procedia PDF Downloads 757366 An Eco-Friendly Preparations of Izonicotinamide Quaternary Salts in Deep Eutectic Solvents
Authors: Dajana Gašo-Sokač, Valentina Bušić
Abstract:
Deep eutectic solvents (DES) are liquids composed of two or three safe, inexpensive components, often interconnected by noncovalent hydrogen bonds which produce eutectic mixture whose melting point is lower than that of each component. No data in literature have been found on the quaternization reaction in DES. The use of DES have several advantages: they are environmentally benign and biodegradable, easy for purification and simple for preparation. An environmentally sustainable method for preparing quaternary salts of izonicotinamide and substituted 2-bromoacetophenones was demonstrated here using choline chloride-based DES. The quaternization reaction was carried out by three synthetic approaches: conventional method, microwave and ultrasonic irradiation. We showed that the highest yields were obtained by the microwave method.Keywords: deep eutectic solvents, izonicotinamide salts, microwave synthesis, ultrasonic irradiation
Procedia PDF Downloads 1307365 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 387364 Pellet Feed Improvements through Vitamin C Supplementation for Snakehead (Channa striata) Culture in Vietnam
Authors: Pham Minh Duc, Tran Thi Thanh Hien, David A. Bengtson
Abstract:
Laboratory feeding trial: the study was conducted to find out the optimal dietary vitamin C, or ascorbic acid (AA) levels in terms of the growth performance of snakehead. The growth trial included six treatments with five replications. Each treatment contained 0, 125, 250, 500, 1000 and 2000 mg AA equivalent kg⁻¹ diet which included six iso-nitrogenous (45% protein), iso-lipid (9% lipid) and isocaloric (4.2 Kcal.g¹). Eighty snakehead fingerlings (6.24 ± 0.17 g.fish¹) were assigned randomly in 0.5 m³ composite tanks. Fish were fed twice daily on demand for 8 weeks. The result showed that growth rates increased, protein efficiency ratio increased and the feed conversion ratio decreased in treatments with AA supplementation compared with control treatment. The survival rate of fish tends to increase with increase AA level. The number of RBCs, lysozyme in treatments with AA supplementation tended to rise significantly proportional to the concentration of AA. The number of WBCs of snakehead in treatments with AA supplementation was higher 2.1-3.6 times. In general, supplementation of AA in the diets for snakehead improved growth rate, feed efficiency and immune response. Hapa on-farm trial: based on the results of the laboratory feeding trial, the effects of AA on snakehead in hapas to simulate farm conditions, was tested using the following treatments: commercial feed; commercial feed plus hand mixed AA at 500; 750 and 1000 mg AA.kg⁻¹; SBM diet without AA; SBM diet plus 500; 750 and 1000 mg AA.kg⁻¹. The experiment was conducted in two experimental ponds (only SBM diet without AA placed in one pond and the rest in the other pond) with four replicate hapa each. Stocking density was 150 fish.m² and culture period was 5 months until market size was attained. The growth performance of snakehead and economic aspects were examined in this research.Keywords: fish health, growth rate, snakehead, Vitamin C
Procedia PDF Downloads 1047363 Studies of Zooplankton in Gdańsk Basin (2010-2011)
Authors: Lidia Dzierzbicka-Glowacka, Anna Lemieszek, Mariusz Figiela
Abstract:
In 2010-2011, the research on zooplankton was conducted in the southern part of the Baltic Sea to determine seasonal variability in changes occurring throughout the zooplankton in 2010 and 2011, both in the region of Gdańsk Deep, and in the western part of Gdańsk Bay. The research in the sea showed that the taxonomic composition of holoplankton in the southern part of the Baltic Sea was similar to that recorded in this region for many years. The maximum values of abundance and biomass of zooplankton both in the Deep and the Bay of Gdańsk were observed in the summer season. Copepoda dominated in the composition of zooplankton for almost the entire study period, while rotifers occurred in larger numbers only in the summer 2010 in the Gdańsk Deep as well as in May and July 2010 in the western part of Gdańsk Bay, and meroplankton – in April 2011.Keywords: Baltic Sea, composition, Gdańsk Bay, zooplankton
Procedia PDF Downloads 4337362 Blood Profile, Organs, and Carcass Analysis and Performance of Broilers Fed Cowpea Testa Based Diet
Authors: O. J. Osunkeye, P. O. Fakolade, B. E. Olorede
Abstract:
Broilers productions depend on the provision of adequate and goo quality feed containing all the nutrients, including proteins, carbohydrate, fats, vitamins, minerals and water. All these nutrients have to be provided at a required amount to support maximum productivity and normal physiological functions and demands. Among these nutrients proteins are particularly important, since they are essential for meat and muscle production, optimum growth and health status. Poultry production industry in the developing countries is been threatened because of the over dependency on Soybean meal as one of the key/major conventional protein stuff for feeding livestock. Even the competition between man and livestock for Soybean and other protein sources made the price of this feed stuff to be on the increase. Hence the needs to seek for an alternative feed stuff which is cheap and less competitive. This study showed the blood profile, organ and carcass characteristics and performance of broilers fed with Cowpea Testa Meal (CTM) based diets. Four diets were formulated with Cowpea Testa replacing Soybean at 0%, 15%, 30%, and 50% graded levels. One hundred and twenty day-old unsexed broiler birds were allotted to these four treatments with 3 replicates of 10 birds per replicate. The results showed no significant differences in all the haematological parameters measured (P>0.05), the serum metabolites analysis revealed significant different in Cholesterol (99.8 mg/dl, 112.84 mg/dl, 131.07 mg/dl and 97.66 mg/dl respectively) (P<0.05) among others. There were significant differences within the diets for average daily weight gain, average feed intake and feed to gain ratio. The birds on control (0%) and CTM gained more weight than those fed with 30% and 50% CTM diets. The organs and carcass primal cuts of the broilers expressed significant different for the spleen (0.12 g, 0.09 g, 0.11 g and 0.14 g respectively), lungs (0.97 g, 0.72 g, 0.77 g and 1.01g respectively) and proventriculus (0.96 g, 0.99 g, 0.81 g and 0.85 g respectively) (P<0.05). For the carcass, there were no significant differences (P<0.05) in the breast, thigh, drumstick, wing and neck except for the Back (21.27 g, 21.04 g, 17.71 g, and 17.89 g respectively). In conclusion, CTM inclusion in broiler’s diet could be used as an alternative feed stuff in replacement of Soybean meal up to 15% without any adverse effects as revealed by the blood profile and to increase the growth performance of the birds.Keywords: physiological functions, cholesterol, blood profiles, CTM and carcass analysis
Procedia PDF Downloads 6137361 CERD: Cost Effective Route Discovery in Mobile Ad Hoc Networks
Authors: Anuradha Banerjee
Abstract:
A mobile ad hoc network is an infrastructure less network, where nodes are free to move independently in any direction. The nodes have limited battery power; hence, we require energy efficient route discovery technique to enhance their lifetime and network performance. In this paper, we propose an energy-efficient route discovery technique CERD that greatly reduces the number of route requests flooded into the network and also gives priority to the route request packets sent from the routers that has communicated with the destination very recently, in single or multi-hop paths. This does not only enhance the lifetime of nodes but also decreases the delay in tracking the destination.Keywords: ad hoc network, energy efficiency, flooding, node lifetime, route discovery
Procedia PDF Downloads 3477360 Case for Simulating Consumer Response to Feed in Tariff Based on Socio-Economic Parameters
Authors: Fahad Javed, Tasneem Akhter, Maria Zafar, Adnan Shafique
Abstract:
Evaluation and quantification of techniques is critical element of research and development of technology. Simulations and models play an important role in providing the tools for such assessments. When we look at technologies which impact or is dependent on an average Joe consumer then modeling the socio-economic and psychological aspects of the consumer also gain an importance. For feed in tariff for home consumers which is being deployed for average consumer may force many consumers to be adapters of the technology. Understanding how consumers will adapt this technologies thus hold as much significance as evaluating how the techniques would work in consumer agnostic scenarios. In this paper we first build the case for simulators which accommodate socio-economic realities of the consumers to evaluate smart grid technologies, provide a glossary of data that can aid in this effort and present an abstract model to capture and simulate consumers' adaptation and behavioral response to smart grid technologies. We provide a case study to express the power of such simulators.Keywords: smart grids, simulation, socio-economic parameters, feed in tariff (FiT), forecasting
Procedia PDF Downloads 3587359 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 157358 Optimisation of the Hydrometeorological-Hydrometric Network: A Case Study in Greece
Authors: E. Baltas, E. Feloni, G. Bariamis
Abstract:
The operation of a network of hydrometeorological-hydrometric stations is basic infrastructure for the management of water resources, as well as, for flood protection. The assessment of water resources potential led to the necessity of adoption management practices including a multi-criteria analysis for the optimum design of the region’s station network. This research work aims at the optimisation of a new/existing network, using GIS methods. The planning of optimum network stations is based on the guidelines of international organizations such as World Meteorological Organization (WMO). The uniform spatial distribution of the stations, the drainage basin for the hydrometric stations and criteria concerning the low terrain slope, the accessibility to the stations and proximity to hydrological interest sites, were taken into consideration for its development. The abovementioned methodology has been implemented for two different areas the Florina municipality and the Argolis area in Greece, and comparison of the results has been conducted.Keywords: GIS, hydrometeorological, hydrometric, network, optimisation
Procedia PDF Downloads 2877357 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation
Authors: Vishwesh Kulkarni, Nikhil Bellarykar
Abstract:
Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.Keywords: synthetic gene network, network identification, optimization, nonlinear modeling
Procedia PDF Downloads 1567356 Relationship between Feeding Type and the Occurrence of Aflatoxin M1 in Milk of High Yielding Dairy Cows
Authors: G. S. Sumanasekara, W. M. P. B. Weerasingheg
Abstract:
The major problem associated with concentrate feeds used for feeding cattle is declining quality by contamination with Aflatoxins. Objective: The aim of the study was to detect levels of Aflatoxin M1(AFM1) in cow milk , AFM1 levels present in milk related to different feed types and to identify the relationship between feed type and Aflatoxin M1 in milk. Design: cross sectional study design. Milk samples from each farm assessed for presence of AFM1 using High Performance Liquid Chromatographic method. Setting: Ten dairy farms located in Nuwara-Eliya district were randomly selected.AFM1 analysis was done using High Performance Liquid Chromatography(HPLC). Results: The results indicated that AFM1 was present in 50% of samples. Coconut poonac shown the most significant relationship among individual feeds having a correlation of 0.65 and P value of 0.042 . Among feed combinations, coconut poonac and beer pulp combination showed the highest correlation of 0.77 and P value of 0.05. Grasses had shown a very poor relationship with the AFM1 occurrence in milk (r=0.053, P=0.885). Relationship between overall concentrate feeds in the study and AFM1 in milk, it was clear that they had a significant relationship having correlation of 0.65 and P value of 0.042. Majority of samples lied between 0-10 ng L-1 of AFM1 and one sample exceeded above 30 ng L-1. Two samples had AFM1 concentrations between 22-32 ng L-1. One sample lied between 32-42ng L-1, did not exceed the EU recommended level of 50 ng L-1. The presence of AFM1 in milk under various management and feeding conditions is yet to be investigated in Sri Lanka.Keywords: aflatoxin M1, aspergillus, cattle feed, concentrates, cow milk, high perforamance liquid chromatography
Procedia PDF Downloads 2917355 Using Plant Oils in Total Mixed Ration on Voluntary Feed Intake and Blood Metabolize of Crossbred Thai Native X American Brahman Cattle
Authors: Wantanee Polviset, N. Prakobsaeng, N. Wetchakama, C. Yuangklang
Abstract:
The aim of this study was to evaluate the effect of soybean oil, palm oil and sunflower oil supplementations in total mixed ration on voluntary feed intake, dry matter (DM) digestibility and blood metabolize in crossbred Thai native x American Brahman Cattle. Three Thai native x American Brahman cattle, one-year-old with liveweight of 116±22.59 kg, were randomly assigned according to a 3 x 3 latin square design. Each period of feeding lasted for 21 days to receive three dietary treatments were soybean oil, palm oil and sunflower oil supplementation at 5%. During the experimental periods, all cattle were fed a diet with total mixed ration containing roughage to concentrate ratio of 40:60 and rice straw was used as a roughage source. Based on the present study, the results revealed that voluntary feed intake (kgDM/head/day) and %BW DM intake were not affected (P>0.05), whereas percentage of dry matter digestibility was greater with the soybean oil supplementation (P<0.01). It was also found that blood glucose, blood urea nitrogen, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein in plasma were similar among treatments. Based on this study, supplementing 5% soybean oil in total mixed ration (TMR) diets was suitable in beef cattle without any effect dry matter digestibility and blood metabolites.Keywords: plant oils, feed intake, blood metabolize, crossbred Thai native x Brahman cattle
Procedia PDF Downloads 3227354 Evaluation of Robust Feature Descriptors for Texture Classification
Authors: Jia-Hong Lee, Mei-Yi Wu, Hsien-Tsung Kuo
Abstract:
Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers.Keywords: texture classification, texture descriptor, SIFT, SURF, ORB
Procedia PDF Downloads 3697353 Deep Reinforcement Learning Model for Autonomous Driving
Authors: Boumaraf Malak
Abstract:
The development of intelligent transportation systems (ITS) and artificial intelligence (AI) are spurring us to pave the way for the widespread adoption of autonomous vehicles (AVs). This is open again opportunities for smart roads, smart traffic safety, and mobility comfort. A highly intelligent decision-making system is essential for autonomous driving around dense, dynamic objects. It must be able to handle complex road geometry and topology, as well as complex multiagent interactions, and closely follow higher-level commands such as routing information. Autonomous vehicles have become a very hot research topic in recent years due to their significant ability to reduce traffic accidents and personal injuries. Using new artificial intelligence-based technologies handles important functions in scene understanding, motion planning, decision making, vehicle control, social behavior, and communication for AV. This paper focuses only on deep reinforcement learning-based methods; it does not include traditional (flat) planar techniques, which have been the subject of extensive research in the past because reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. The DRL algorithm used so far found solutions to the four main problems of autonomous driving; in our paper, we highlight the challenges and point to possible future research directions.Keywords: deep reinforcement learning, autonomous driving, deep deterministic policy gradient, deep Q-learning
Procedia PDF Downloads 857352 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis
Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan
Abstract:
We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.
Procedia PDF Downloads 139