Search results for: bugs detection
2080 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma
Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan
Abstract:
Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma
Procedia PDF Downloads 5672079 Automatic Detection of Traffic Stop Locations Using GPS Data
Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell
Abstract:
Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data
Procedia PDF Downloads 2752078 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 882077 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media
Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga
Abstract:
Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives
Procedia PDF Downloads 942076 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy
Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard
Abstract:
Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy
Procedia PDF Downloads 2952075 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings
Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti
Abstract:
Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety
Procedia PDF Downloads 4962074 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method
Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang
Abstract:
Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin
Procedia PDF Downloads 1362073 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer
Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon
Abstract:
Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode
Procedia PDF Downloads 2732072 Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients
Authors: Yagahira E. Castro-Sesquen, Robert H. Gilman, Carolina Mejia, Daniel E. Clark, Jeong Choi, Melissa J. Reimer-Mcatee, Rocio Castro, Jorge Flores, Edward Valencia-Ayala, Faustino Torrico, Ricardo Castillo-Neyra, Lance Liotta, Caryn Bern, Alessandra Luchini
Abstract:
Early diagnosis of reactivation of Chagas disease in HIV patients could be lifesaving; however, in Latin American the diagnosis is performed by detection of parasitemia by microscopy which lacks sensitivity. To evaluate if levels of T. cruzi antigens in urine determined by Chunap (Chagas urine nanoparticle test) are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. T. cruzi antigens in urine of HIV patients (N=55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. The percentage of Chagas positive patients determined by Chunap compared to blood microscopy, qPCR, and ELISA was 100% (6/6), 95% (18/19) and 74% (23/31), respectively. Chunap specificity was 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels (determined by qPCR) and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (6/6). Urine antigen concentration was significantly higher among patients with CD4+ lymphocyte counts below 200/mL (p=0.045). Chunap shows potential for early detection of reactivation and with appropriate adaptation can be used for monitoring Chagas disease status in T. cruzi/HIV co-infected patients.Keywords: antigenuria, Chagas disease, Chunap, nanoparticles, parasitemia, poly N-isopropylacrylamide (NIPAm)/trypan blue particles (polyNIPAm/TB), reactivation of Chagas disease.
Procedia PDF Downloads 3772071 Development of a Direct Immunoassay for Human Ferritin Using Diffraction-Based Sensing Method
Authors: Joel Ballesteros, Harriet Jane Caleja, Florian Del Mundo, Cherrie Pascual
Abstract:
Diffraction-based sensing was utilized in the quantification of human ferritin in blood serum to provide an alternative to label-based immunoassays currently used in clinical diagnostics and researches. The diffraction intensity was measured by the diffractive optics technology or dotLab™ system. Two methods were evaluated in this study: direct immunoassay and direct sandwich immunoassay. In the direct immunoassay, human ferritin was captured by human ferritin antibodies immobilized on an avidin-coated sensor while the direct sandwich immunoassay had an additional step for the binding of a detector human ferritin antibody on the analyte complex. Both methods were repeatable with coefficient of variation values below 15%. The direct sandwich immunoassay had a linear response from 10 to 500 ng/mL which is wider than the 100-500 ng/mL of the direct immunoassay. The direct sandwich immunoassay also has a higher calibration sensitivity with value 0.002 Diffractive Intensity (ng mL-1)-1) compared to the 0.004 Diffractive Intensity (ng mL-1)-1 of the direct immunoassay. The limit of detection and limit of quantification values of the direct immunoassay were found to be 29 ng/mL and 98 ng/mL, respectively, while the direct sandwich immunoassay has a limit of detection (LOD) of 2.5 ng/mL and a limit of quantification (LOQ) of 8.2 ng/mL. In terms of accuracy, the direct immunoassay had a percent recovery of 88.8-93.0% in PBS while the direct sandwich immunoassay had 94.1 to 97.2%. Based on the results, the direct sandwich immunoassay is a better diffraction-based immunoassay in terms of accuracy, LOD, LOQ, linear range, and sensitivity. The direct sandwich immunoassay was utilized in the determination of human ferritin in blood serum and the results are validated by Chemiluminescent Magnetic Immunoassay (CMIA). The calculated Pearson correlation coefficient was 0.995 and the p-values of the paired-sample t-test were less than 0.5 which show that the results of the direct sandwich immunoassay was comparable to that of CMIA and could be utilized as an alternative analytical method.Keywords: biosensor, diffraction, ferritin, immunoassay
Procedia PDF Downloads 3542070 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection
Authors: Mahshid Arabi
Abstract:
With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.Keywords: data protection, digital technologies, information security, modern management
Procedia PDF Downloads 292069 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data
Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann
Abstract:
Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers
Procedia PDF Downloads 2052068 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements
Authors: M. A. García, J. Vinolas, A. Hernando
Abstract:
Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.Keywords: magnetoelastic, magnetic induction, mechanical stress, steel
Procedia PDF Downloads 502067 Flexible Ethylene-Propylene Copolymer Nanofibers Decorated with Ag Nanoparticles as Effective 3D Surface-Enhanced Raman Scattering Substrates
Authors: Yi Li, Rui Lu, Lianjun Wang
Abstract:
With the rapid development of chemical industry, the consumption of volatile organic compounds (VOCs) has increased extensively. In the process of VOCs production and application, plenty of them have been transferred to environment. As a result, it has led to pollution problems not only in soil and ground water but also to human beings. Thus, it is important to develop a sensitive and cost-effective analytical method for trace VOCs detection in environment. Surface-enhanced Raman Spectroscopy (SERS), as one of the most sensitive optical analytical technique with rapid response, pinpoint accuracy and noninvasive detection, has been widely used for ultratrace analysis. Based on the plasmon resonance on the nanoscale metallic surface, SERS technology can even detect single molecule due to abundant nanogaps (i.e. 'hot spots') on the nanosubstrate. In this work, a self-supported flexible silver nitrate (AgNO3)/ethylene-propylene copolymer (EPM) hybrid nanofibers was fabricated by electrospinning. After an in-situ chemical reduction using ice-cold sodium borohydride as reduction agent, numerous silver nanoparticles were formed on the nanofiber surface. By adjusting the reduction time and AgNO3 content, the morphology and dimension of silver nanoparticles could be controlled. According to the principles of solid-phase extraction, the hydrophobic substance is more likely to partition into the hydrophobic EPM membrane in an aqueous environment while water and other polar components are excluded from the analytes. By the enrichment of EPM fibers, the number of hydrophobic molecules located on the 'hot spots' generated from criss-crossed nanofibers is greatly increased, which further enhances SERS signal intensity. The as-prepared Ag/EPM hybrid nanofibers were first employed to detect common SERS probe molecule (p-aminothiophenol) with the detection limit down to 10-12 M, which demonstrated an excellent SERS performance. To further study the application of the fabricated substrate for monitoring hydrophobic substance in water, several typical VOCs, such as benzene, toluene and p-xylene, were selected as model compounds. The results showed that the characteristic peaks of these target analytes in the mixed aqueous solution could be distinguished even at a concentration of 10-6 M after multi-peaks gaussian fitting process, including C-H bending (850 cm-1), C-C ring stretching (1581 cm-1, 1600 cm-1) of benzene, C-H bending (844 cm-1 ,1151 cm-1), C-C ring stretching (1001 cm-1), CH3 bending vibration (1377 cm-1) of toluene, C-H bending (829 cm-1), C-C stretching (1614 cm-1) of p-xylene. The SERS substrate has remarkable advantages which combine the enrichment capacity from EPM and the Raman enhancement of Ag nanoparticles. Meanwhile, the huge specific surface area resulted from electrospinning is benificial to increase the number of adsoption sites and promotes 'hot spots' formation. In summary, this work provides powerful potential in rapid, on-site and accurate detection of trace VOCs using a portable Raman.Keywords: electrospinning, ethylene-propylene copolymer, silver nanoparticles, SERS, VOCs
Procedia PDF Downloads 1602066 Design of Bacterial Pathogens Identification System Based on Scattering of Laser Beam Light and Classification of Binned Plots
Authors: Mubashir Hussain, Mu Lv, Xiaohan Dong, Zhiyang Li, Bin Liu, Nongyue He
Abstract:
Detection and classification of microbes have a vast range of applications in biomedical engineering especially in detection, characterization, and quantification of bacterial contaminants. For identification of pathogens, different techniques are emerging in the field of biomedical engineering. Latest technology uses light scattering, capable of identifying different pathogens without any need for biochemical processing. Bacterial Pathogens Identification System (BPIS) which uses a laser beam, passes through the sample and light scatters off. An assembly of photodetectors surrounded by the sample at different angles to detect the scattering of light. The algorithm of the system consists of two parts: (a) Library files, and (b) Comparator. Library files contain data of known species of bacterial microbes in the form of binned plots, while comparator compares data of unknown sample with library files. Using collected data of unknown bacterial species, highest voltage values stored in the form of peaks and arranged in 3D histograms to find the frequency of occurrence. Resulting data compared with library files of known bacterial species. If sample data matching with any library file of known bacterial species, sample identified as a matched microbe. An experiment performed to identify three different bacteria particles: Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli. By applying algorithm using library files of given samples, results were compromising. This system is potentially applicable to several biomedical areas, especially those related to cell morphology.Keywords: microbial identification, laser scattering, peak identification, binned plots classification
Procedia PDF Downloads 1502065 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing
Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca de Marchi
Abstract:
This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes available a larger monitored area. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary chars the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.Keywords: data compression, ultrasonic communication, guided waves, FEM analysis
Procedia PDF Downloads 1242064 Array Type Miniaturized Ultrasonic Sensors for Detecting Sinkhole in the City
Authors: Won Young Choi, Kwan Kyu Park
Abstract:
Recently, the road depression happening in the urban area is different from the cause of the sink hole and the generation mechanism occurring in the limestone area. The main cause of sinkholes occurring in the city center is the loss of soil due to the damage of old underground buried materials and groundwater discharge due to large underground excavation works. The method of detecting the sinkhole in the urban area is mostly using the Ground Penetration Radar (GPR). However, it is challenging to implement compact system and detecting watery state since it is based on electromagnetic waves. Although many ultrasonic underground detection studies have been conducted, near-ground detection (several tens of cm to several meters) has been developed for bulk systems using geophones as a receiver. The goal of this work is to fabricate a miniaturized sinkhole detecting system based on low-cost ultrasonic transducers of 40 kHz resonant frequency with high transmission pressure and receiving sensitivity. Motived by biomedical ultrasonic imaging methods, we detect air layers below the ground such as asphalt through the pulse-echo method. To improve image quality using multi-channel, linear array system is implemented, and image is acquired by classical synthetic aperture imaging method. We present the successful feasibility test of multi-channel sinkhole detector based on ultrasonic transducer. In this work, we presented and analyzed image results which are imaged by single channel pulse-echo imaging, synthetic aperture imaging.Keywords: road depression, sinkhole, synthetic aperture imaging, ultrasonic transducer
Procedia PDF Downloads 1442063 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3202062 Method Validation for Heavy Metal Determination in Spring Water and Sediments
Authors: Habtamu Abdisa
Abstract:
Spring water is particularly valuable due to its high mineral content, which is beneficial for human health. However, anthropogenic activities usually imbalance the natural levels of its composition, which can cause adverse health effects. Regular monitoring of a naturally given environmental resource is of great concern in the world today. The spectrophotometric application is one of the best methods for qualifying and quantifying the mineral contents of environmental water samples. This research was conducted to evaluate the quality of spring water concerning its heavy metal composition. A grab sampling technique was employed to collect representative samples, including duplicates. The samples were then treated with concentrated HNO3 to a pH level below 2 and stored at 4oC. The samples were digested and analyzed for cadmium (Cd), chromium (Cr), manganese (Mn), copper (Cu), iron (Fe), and zinc (Zn) following method validation. Atomic Absorption Spectrometry (AAS) was utilized for the sample analysis. Quality control measures, including blanks, duplicates, and certified reference materials (CRMs), were implemented to ensure the accuracy and precision of the analytical results. Of the metals analyzed in the water samples, Cd and Cr were found to be below the detection limit. However, the concentrations of Mn, Cu, Fe, and Zn ranged from mean values of 0.119-0.227 mg/L, 0.142-0.166 mg/L, 0.183-0.267 mg/L, and 0.074-0.181 mg/L, respectively. Sediment analysis revealed mean concentration ranges of 348.31-429.21 mg/kg, 0.23-0.28 mg/kg, 18.73-22.84 mg/kg, 2.76-3.15 mg/kg, 941.84-1128.56 mg/kg, and 42.39-66.53 mg/kg for Mn, Cd, Cu, Cr, Fe, and Zn, respectively. The study results established that the evaluated spring water and its associated sediment met the regulatory standards and guidelines for heavy metal concentrations. Furthermore, this research can enhance the quality assurance and control processes for environmental sample analysis, ensuring the generation of reliable data.Keywords: method validation, heavy metal, spring water, sediment, method detection limit
Procedia PDF Downloads 682061 Foot-and-Mouth Virus Detection in Asymptomatic Dairy Cows without Foot-and-Mouth Disease Outbreak
Authors: Duanghathai Saipinta, Tanittian Panyamongkol, Witaya Suriyasathaporn
Abstract:
Animal management aims to provide a suitable environment for animals allowing maximal productivity in those animals. Prevention of disease is an important part of animal management. Foot-and-mouth disease (FMD) is a highly contagious viral disease in cattle and is an economically important animal disease worldwide. Monitoring the FMD virus in farms is useful management for the prevention of the FMD outbreak. A recent publication indicated collection samples from nasal swabs can be used for monitoring FMD in symptomatic cows. Therefore, the objectives of this study were to determine the FMD virus in asymptomatic dairy cattle using nasal swab samples during the absence of an FMD outbreak. The study was conducted from December 2020 to June 2021 using 185 asymptomatic signs of FMD dairy cattle in Chiang Mai Province, Thailand. By random cow selection, nasal mucosal swabs were used to collect samples from the selected cows and then were to evaluate the presence of FMD viruses using the real-time rt-PCR assay. In total, 4.9% of dairy cattle detected FMD virus, including 2 dairy farms in Mae-on (8 samples; 9.6%) and 1 farm in the Chai-Prakan district (1 sample; 1.2%). Interestingly, both farms in Mae-on were the outbreak of the FMD after this detection for 6 months. This indicated that the FMD virus presented in asymptomatic cattle might relate to the subsequent outbreak of FMD. The outbreak demonstrates the presence of the virus in the environment. In conclusion, monitoring of FMD can be performed by nasal swab collection. Further investigation is needed to show whether the FMD virus presented in asymptomatic FMD cattle could be the cause of the subsequent FMD outbreak or not.Keywords: cattle, foot-and-mouth disease, nasal swab, real-time rt-PCR assay
Procedia PDF Downloads 2322060 The Dangers of Attentional Inertia in the Driving Task
Authors: Catherine Thompson, Maryam Jalali, Peter Hills
Abstract:
The allocation of visual attention is critical when driving and anything that limits attention will have a detrimental impact on safety. Engaging in a secondary task reduces the amount of attention directed to the road because drivers allocate resources towards this task, leaving fewer resources to process driving-relevant information. Yet the dangers associated with a secondary task do not end when the driver returns their attention to the road. Instead, the attentional settings adopted to complete a secondary task may persist to the road, affecting attention, and therefore affecting driver performance. This 'attentional inertia' effect was investigated in the current work. Forty drivers searched for hazards in driving video clips while their eye-movements were recorded. At varying intervals they were instructed to attend to a secondary task displayed on a tablet situated to their left-hand side. The secondary task consisted of three separate computer games that induced horizontal, vertical, and random eye movements. Visual search and hazard detection in the driving clips were compared across the three conditions of the secondary task. Results showed that the layout of information in the secondary task, and therefore the allocation of attention in this task, had an impact on subsequent search in the driving clips. Vertically presented information reduced the wide horizontal spread of search usually associated with accurate driving and had a negative influence on the detection of hazards. The findings show the additional dangers of engaging in a secondary task while driving. The attentional inertia effect has significant implications for semi-autonomous and autonomous vehicles in which drivers have greater opportunity to direct their attention away from the driving task.Keywords: attention, eye-movements, hazard perception, visual search
Procedia PDF Downloads 1642059 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1212058 Evaluation of Commercials by Psychological Changes in Consumers’ Physiological Characteristics
Authors: Motoki Seguchi, Fumiko Harada, Hiromitsu Shimakawa
Abstract:
There have been many local companies in countryside that carefully produce and sell products, which include crafts and foods produced with traditional methods. These companies are likely to use commercials to advertise their products. However, it is difficult for companies to judge whether the commercials they create are having an impact on consumers. Therefore, to create effective commercials, this study researches what kind of gimmicks in commercials affect what kind of consumers. This study proposes a method for extracting psychological change points from the physiological characteristics of consumers while they are watching commercials and estimating the gimmicks in the commercial that affect consumer engagement. In this method, change point detection is applied to pupil size for estimating gimmicks that affect consumers’ emotional engagement, and to EDA for estimating gimmicks that affect cognitive engagement. A questionnaire is also used to estimate the commercials that influence behavioral engagement. As a result of estimating the gimmicks that influence consumer engagement using this method, it was found that there are some common features among the gimmicks. To influence cognitive engagement, it was found that it was useful to include flashback scenes, messages to be appealed to, the company’s name, and the company’s logos as gimmicks. It was also found that flashback scenes and story climaxes were useful in influencing emotional engagement. Furthermore, it was found that the use of storytelling commercials may or may not be useful, depending on which consumers are desired to take which behaviors. It also estimated the gimmicks that influence consumers for each target and found that the useful gimmicks are slightly different for students and working adults. By using this method, it can understand which gimmicks in the commercial affect which engagement of the consumers. Therefore, the results of this study can be used as a reference for the gimmicks that should be included in commercials when companies create their commercials in the future.Keywords: change point detection, estimating engagement, physiological characteristics, psychological changes, watching commercials
Procedia PDF Downloads 1862057 Quantitative Analysis of (+)-Catechin and (-)-Epicatechin in Pentace burmanica Stem Bark by HPLC
Authors: Thidarat Duangyod, Chanida Palanuvej, Nijsiri Ruangrungsi
Abstract:
Pentace burmanica Kurz., belonging to the Malvaceae family, is commonly used for anti-diarrhea in Thai traditional medicine. A method for quantification of (+)-catechin and (-)-epicatechin in P. burmanica stem bark from 12 different Thailand markets by reverse-phase high performance liquid chromatography (HPLC) was investigated and validated. The analysis was performed by a Shimadzu DGU-20A3 HPLC equipped with a Shimadzu SPD-M20A photo diode array detector. The separation was accomplished with an Inersil ODS-3 column (5 µm x 4.6 x 250 mm) using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as mobile phase at the flow rate of 1 ml/min. The isocratic was set at 20% B for 15 min and the column temperature was maintained at 40 ºC. The detection was at the wavelength of 280 nm. Both (+)-catechin and (-)-epicatechin existed in the ethanolic extract of P. burmanica stem bark. The content of (-)-epicatechin was found as 59.74 ± 1.69 µg/mg of crude extract. In contrast, the quantitation of (+)-catechin content was omitted because of its small amount. The method was linear over a range of 5-200 µg/ml with good coefficients (r2 > 0.99) for (+)-catechin and (-)-epicatechin. Limit of detection values were found to be 4.80 µg/ml for (+)-catechin and 5.14 µg/ml for (-)-epicatechin. Limit of quantitation of (+)-catechin and (-)-epicatechin were of 14.54 µg/ml and 15.57 µg/ml respectively. Good repeatability and intermediate precision (%RSD < 3) were found in this study. The average recoveries of both (+)-catechin and (-)-epicatechin were obtained with good recovery in the range of 91.11 – 97.02% and 88.53 – 93.78%, respectively, with the %RSD less than 2. The peak purity indices of catechins were more than 0.99. The results suggested that HPLC method proved to be precise and accurate and the method can be conveniently used for (+)-catechin and (-)-epicatechin determination in ethanolic extract of P. burmanica stem bark. Moreover, the stem bark of P. burmanica was found to be a rich source of (-)-epicatechin.Keywords: pentace burmanica, (+)-catechin, (-)-epicatechin, high performance liquid chromatography
Procedia PDF Downloads 4542056 Investigation of Leptospira Infection in Stray Animals in Thailand: Leptospirosis Risk Reduction in Human
Authors: Ruttayaporn Ngasaman, Saowakon Indouang, Usa Chethanond
Abstract:
Leptospirosis is a public health concern zoonosis in Thailand. Human and animals are often infected by contact with contaminated water. The infected animals play an important role in leptospira infection for both human and other hosts via urine. In humans, it can cause a wide range of symptoms, some of which may present mild flu-like symptoms including fever, vomiting, and jaundice. Without treatment, Leptospirosis can lead to kidney damage, meningitis, liver failure, respiratory distress, and even death. The prevalence of leptospirosis in stray animals in Thailand is unknown. The aim of this study was to investigate leptospira infection in stray animals including dogs and cats in Songkhla province, Thailand. Total of 434 blood samples were collected from 370 stray dogs and 64 stray cats during the population control program from 2014 to 2018. Screening test using latex agglutination for the detection of antibodies against Leptospira interrogans in serum samples shows 29.26% (127/434) positive. There were 120 positive samples of stray dogs and 7 positive samples of stray cats. Detection by polymerase chain reaction specific to LipL32 gene of Leptospira interrogans showed 1.61% (7/434) positive. Stray cats (5/64) show higher prevalence than stray dogs (2/370). Although active infection was low detected, but seroprevalence was high. This result indicated that stray animals were not active infection during sample collection but they use to get infected or in a latent period of infection. They may act as a reservoir for domestic animals and human in which stay in the same environment. In order to prevent and reduce the risk of leptospira infection in a human, stray animals should be done health checking, vaccination, and disease treatment.Keywords: leptospirosis, stray animals, risk reduction, Thailand
Procedia PDF Downloads 1332055 Multiple Etiologies and Incidences of Co-Infections in Childhood Diarrhea in a Hospital Based Screening Study in Odisha, India
Authors: Arpit K. Shrivastava, Nirmal K. Mohakud, Subrat Kumar, Priyadarshi S. Sahu
Abstract:
Acute diarrhea is one of the major causes of morbidity and mortality among children less than five years of age. Multiple etiologies have been implicated for infectious gastroenteritis causing acute diarrhea. In our study fecal samples (n=165) were collected from children (<5 years) presenting with symptoms of acute diarrhea. Samples were screened for viral, bacterial, and parasitic etiologies such as Rotavirus, Adenovirus, Diarrhoeagenic Escherichia coli (EPEC, EHEC, STEC, O157, O111), Shigella spp., Salmonella spp., Vibrio cholera, Cryptosporidium spp., and Giardia spp. The overall results from our study showed that 57% of children below 5 years of age with acute diarrhea were positive for at least one infectious etiology. Diarrhoeagenic Escherichia coli was detected to be the major etiological agent (29.09%) followed by Rotavirus (24.24%), Shigella (21.21%), Adenovirus (5.45%), Cryptosporidium (2.42%), and Giardia (0.60%). Among the different DEC strains, EPEC was detected significantly higher in <2 years children in comparison to >2 years age group (p =0.001). Concurrent infections with two or more pathogens were observed in 47 of 160 (28.48%) cases with a predominant incidence particularly in <2-year-old children (66.66%) compared to children of 2 to 5 years age group. Co-infection of Rotavirus with Shigella was the most frequent combination, which was detected in 17.94% cases, followed by Rotavirus with EPEC (15.38%) and Shigella with STEC (12.82%). Detection of multiple infectious etiologies and diagnosis of the right causative agent(s) can immensely help in better management of acute childhood diarrhea. In future more studies focusing on the detection of cases with concurrent infections must be carried out, as we believe that the etiological agents might be complementing each other’s strategies of pathogenesis resulting in severe diarrhea.Keywords: children, co-infection, infectious diarrhea, Odisha
Procedia PDF Downloads 3362054 A Facile Nanocomposite of Graphene Oxide Reinforced Chitosan/Poly-Nitroaniline Polymer as a Highly Efficient Adsorbent for Extracting Polycyclic Aromatic Hydrocarbons from Tea Samples
Authors: Adel M. Al-Shutairi, Ahmed H. Al-Zahrani
Abstract:
Tea is a popular beverage drunk by millions of people throughout the globe. Tea has considerable health advantages, in-cluding antioxidant, antibacterial, antiviral, chemopreventive, and anticarcinogenic properties. As a result of environmental pollution (atmospheric deposition) and the production process, tealeaves may also include a variety of dangerous substances, such as polycyclic aromatic hydrocarbons (PAHs). In this study, graphene oxide reinforced chitosan/poly-nitroaniline polymer was prepared to develop a sensitive and reliable solid phase extraction method (SPE) for extraction of PAH7 in tea samples, followed by high-performance liquid chromatography- fluorescence detection. The prepared adsorbent was validated in terms of linearity, the limit of detection, the limit of quantification, recovery (%), accuracy (%), and precision (%) for the determination of the PAH7 (benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, chrysene, benzo[b]fluoranthene, Dibenzo[a,h]anthracene and Benzo[g,h,i]perylene) in tea samples. The concentration was determined in two types of tea commercially available in Saudi Arabia, including black tea and green tea. The maximum mean of Σ7PAHs in black tea samples was 68.23 ± 0.02 ug kg-1 and 26.68 ± 0.01 ug kg-1 in green tea samples. The minimum mean of Σ7PAHs in black tea samples was 37.93 ± 0.01 ug kg-1 and 15.26 ± 0.01 ug kg-1 in green tea samples. The mean value of benzo[a]pyrene in black tea samples ranged from 6.85 to 12.17 ug kg-1, where two samples exceeded the standard level (10 ug kg-1) established by the European Union (UE), while in green tea ranged from 1.78 to 2.81 ug kg-1. Low levels of Σ7PAHs in green tea samples were detected in comparison with black tea samples.Keywords: polycyclic aromatic hydrocarbons, CS, PNA and GO, black/green tea, solid phase extraction, Saudi Arabia
Procedia PDF Downloads 962053 Solid Waste and Its Impact on the Human Health
Authors: Waseem Akram, Hafiz Azhar Ali Khan
Abstract:
Unplanned urbanization together with change in life from simple to more technologically advanced style with flow of rural masses to urban areas has played a vital role in pilling loads of solid wastes in our environment. The cities and towns have expanded beyond boundaries. Even the uncontrolled population expansion has caused the overall environmental burden. Thus, today the indifference remains as one of the biggest trash that has come up due to the non-responsive behavior of the people. Everyday huge amount of solid waste is thrown in the streets, on the roads, parks, and in all those places that are frequently and often visited by the human beings. This behavior based response in many countries of the world has led to serious health concerns and environmental issues. Over 80% of our products that are sold in the market are packed in plastic bags. None of the bags are later recycled but simply become a permanent environment concern that flies, choke lines or are burnt and release toxic gases in the environment or form dumps of heaps. Lack of classification of the daily waste generated from houses and other places lead to worst clogging of the sewerage lines and formation of ponding areas which ultimately favor vector borne disease and sometimes become a cause of transmission of polio virus. Solid waste heaps were checked at different places of the cities. All of the wastes on visual assessments were classified into plastic bags, papers, broken plastic pots, clay pots, steel boxes, wrappers etc. All solid waste dumping sites in the cities and wastes that were thrown outside of the trash containers usually contained wrappers, plastic bags, and unconsumed food products. Insect populations seen in these sites included the house flies, bugs, cockroaches and mosquito larvae breeding in water filled wrappers, containers or plastic bags. The population of the mosquitoes, cockroaches and houseflies were relatively very high in dumping sites close to human population. This population has been associated with cases like dengue, malaria, dysentery, gastro and also to skin allergies during the monsoon and summer season. Thus, dumping of the huge amount of solid wastes in and near the residential areas results into serious environmental concerns, bad smell circulation, and health related issues. In some places, the same waste is burnt to get rid of mosquitoes through smoke which ultimately releases toxic material in the atmosphere. Therefore, a proper environmental strategy is needed to minimize environmental burden and promote concepts of recycled products and thus, reduce the disease burden.Keywords: solid waste accumulation, disease burden, mosquitoes, vector borne diseases
Procedia PDF Downloads 2782052 Improvement of Microscopic Detection of Acid-Fast Bacilli for Tuberculosis by Artificial Intelligence-Assisted Microscopic Platform and Medical Image Recognition System
Authors: Hsiao-Chuan Huang, King-Lung Kuo, Mei-Hsin Lo, Hsiao-Yun Chou, Yusen Lin
Abstract:
The most robust and economical method for laboratory diagnosis of TB is to identify mycobacterial bacilli (AFB) under acid-fast staining despite its disadvantages of low sensitivity and labor-intensive. Though digital pathology becomes popular in medicine, an automated microscopic system for microbiology is still not available. A new AI-assisted automated microscopic system, consisting of a microscopic scanner and recognition program powered by big data and deep learning, may significantly increase the sensitivity of TB smear microscopy. Thus, the objective is to evaluate such an automatic system for the identification of AFB. A total of 5,930 smears was enrolled for this study. An intelligent microscope system (TB-Scan, Wellgen Medical, Taiwan) was used for microscopic image scanning and AFB detection. 272 AFB smears were used for transfer learning to increase the accuracy. Referee medical technicians were used as Gold Standard for result discrepancy. Results showed that, under a total of 1726 AFB smears, the automated system's accuracy, sensitivity and specificity were 95.6% (1,650/1,726), 87.7% (57/65), and 95.9% (1,593/1,661), respectively. Compared to culture, the sensitivity for human technicians was only 33.8% (38/142); however, the automated system can achieve 74.6% (106/142), which is significantly higher than human technicians, and this is the first of such an automated microscope system for TB smear testing in a controlled trial. This automated system could achieve higher TB smear sensitivity and laboratory efficiency and may complement molecular methods (eg. GeneXpert) to reduce the total cost for TB control. Furthermore, such an automated system is capable of remote access by the internet and can be deployed in the area with limited medical resources.Keywords: TB smears, automated microscope, artificial intelligence, medical imaging
Procedia PDF Downloads 2292051 Retrospective Evaluation of Vector-borne Infections in Cats Living in Germany (2012-2019)
Authors: I. Schäfer, B. Kohn, M. Volkmann, E. Müller
Abstract:
Introduction: Blood-feeding arthropods transmit parasitic, bacterial, or viral pathogens to domestic animals and wildlife. Vector-borne infections are gaining significance due to the increase of travel, import of domestic animals from abroad, and the changing climate in Europe. Aims of the study: The main objective of this retrospective study was to assess the prevalence of vector-borne infections in cats in which a ‘Feline Travel Profile’ had been conducted. Material and Methods: This retrospective study included test results from cats for which a ‘Feline Travel Profile’ established by LABOKLIN had been requested by veterinarians between April 2012 and December 2019. This profile contains direct detection methods via polymerase chain reaction (PCR) for Hepatozoon spp. and Dirofilaria spp. as well as indirect detection methods via immunofluorescence antibody test (IFAT) for Ehrlichia spp. and Leishmania spp. This profile was expanded to include an IFAT for Rickettsia spp. from July 2015 onwards. The prevalence of the different vector-borne infectious agents was calculated. Results: A total of 602 cats were tested using the ‘Feline Travel Profile’. Positive test results were as follows: Rickettsia spp. IFAT 54/442 (12.2%), Ehrlichia spp. IFAT 68/602 (11.3%), Leishmania spp. IFAT 21/602 (3.5%), Hepatozoon spp. PCR 51/595 (8.6%), and Dirofilaria spp. PCR 1/595 cats (0.2%). Co-infections with more than one pathogen could be detected in 22/602 cats. Conclusions: 170/602 cats (28.2%) were tested positive for at least one vector-borne pathogen. Infections with multiple pathogens could be detected in 3.7% of the cats. The data emphasizes the importance of considering vector-borne infections as potential differential diagnoses in cats.Keywords: arthopod-transmitted infections, feline vector-borne infections, Germany, laboratory diagnostics
Procedia PDF Downloads 166