Search results for: approximate nearest neighbor search
1159 Developing Rice Disease Analysis System on Mobile via iOS Operating System
Authors: Rujijan Vichivanives, Kittiya Poonsilp, Canasanan Wanavijit
Abstract:
This research aims to create mobile tools to analyze rice disease quickly and easily. The principle of object-oriented software engineering and objective-C language were used for software development methodology and the principle of decision tree technique was used for analysis method. Application users can select the features of rice disease or the color appears on the rice leaves for recognition analysis results on iOS mobile screen. After completing the software development, unit testing and integrating testing method were used to check for program validity. In addition, three plant experts and forty farmers have been assessed for usability and benefit of this system. The overall of users’ satisfaction was found in a good level, 57%. The plant experts give a comment on the addition of various disease symptoms in the database for more precise results of the analysis. For further research, it is suggested that image processing system should be developed as a tool that allows users search and analyze for rice diseases more convenient with great accuracy.Keywords: rice disease, data analysis system, mobile application, iOS operating system
Procedia PDF Downloads 2871158 Disaster Management Using Wireless Sensor Networks
Authors: Akila Murali, Prithika Manivel
Abstract:
Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology
Procedia PDF Downloads 4041157 Being Chinese Online: Discursive (Re)Production of Internet-Mediated Chinese National Identity
Authors: Zhiwei Wang
Abstract:
Much emphasis has been placed on the political dimension of digitised Chinese national(ist) discourses and their embodied national identities, which neglects other important dimensions constitutive of their discursive nature. A further investigation into how Chinese national(ist) discourses are daily (re)shaped online by diverse socio-political actors (especially ordinary users) is crucial, which can contribute to not only deeper understandings of Chinese national sentiments on China’s Internet beyond the excessive focus on their passionate, political-charged facet but also richer insights into the socio-technical ecology of the contemporary Chinese digital (and physical) world. This research adopts an ethnographic methodology, by which ‘fieldsites’ are Sina Weibo and bilibili. The primary data collection method is virtual ethnographic observation on everyday national(ist) discussions on both platforms. If data obtained via observations do not suffice to answer research questions, in-depth online qualitative interviews with ‘key actors’ identified from those observations in discursively (re)producing Chinese national identity on each ‘fieldsite’ will be conducted, to complement data gathered through the first method. Critical discourse analysis is employed to analyse data. During the process of data coding, NVivo is utilised. From November 2021 to December 2022, 35 weeks’ digital ethnographic observations have been conducted, with 35 sets of fieldnotes obtained. The strategy adopted for the initial stage of observations was keyword searching, which means typing into the search box on Sina Weibo and bilibili any keywords related to China as a nation and then observing the search results. Throughout 35 weeks’ online ethnographic observations, six keywords have been employed on Sina Weibo and two keywords on bilibili. For 35 weeks’ observations, textual content created by ordinary users have been concentrated much upon. Based on the fieldnotes of the first week’s observations, multifarious national(ist) discourses on Sina Weibo and bilibili have been found, targeted both at national ‘Others’ and ‘Us’, both on the historical and real-world dimension, both aligning with and differing from or even conflicting with official discourses, both direct national(ist) expressions and articulations of sentiments in the name of presentation of national(ist) attachments but for other purposes. Second, Sina Weibo and bilibili users have agency in interpreting and deploying concrete national(ist) discourses despite the leading role played by the government and the two platforms in deciding on the basic framework of national expressions. Besides, there are also disputes and even quarrels between users in terms of explanations for concrete components of ‘nation-ness’ and (in)direct dissent to officially defined ‘mainstream’ discourses to some extent, though often expressed much more mundanely, discursively and playfully. Third, the (re)production process of national(ist) discourses on Sina Weibo and bilibili depends upon not only technical affordances and limitations of the two sites but also, to a larger degree, some established socio-political mechanisms and conventions in the offline China, e.g., the authorities’ acquiescence of citizens’ freedom in understanding and explaining concrete elements of national discourses while setting the basic framework of national narratives to the extent that citizens’ own national(ist) expressions do not reach political bottom lines and develop into mobilising power to shake social stability.Keywords: national identity, national(ist) discourse(s), everyday nationhood/nationalism, Chinese nationalism, digital nationalism
Procedia PDF Downloads 891156 Ethical Considerations of Disagreements Between Clinicians and Artificial Intelligence Recommendations: A Scoping Review
Authors: Adiba Matin, Daniel Cabrera, Javiera Bellolio, Jasmine Stewart, Dana Gerberi (librarian), Nathan Cummins, Fernanda Bellolio
Abstract:
OBJECTIVES: Artificial intelligence (AI) tools are becoming more prevalent in healthcare settings, particularly for diagnostic and therapeutic recommendations, with an expected surge in the incoming years. The bedside use of this technology for clinicians opens the possibility of disagreements between the recommendations from AI algorithms and clinicians’ judgment. There is a paucity in the literature analyzing nature and possible outcomes of these potential conflicts, particularly related to ethical considerations. The goal of this scoping review is to identify, analyze and classify current themes and potential strategies addressing ethical conflicts originating from the conflict between AI and human recommendations. METHODS: A protocol was written prior to the initiation of the study. Relevant literature was searched by a medical librarian for the terms of artificial intelligence, healthcare and liability, ethics, or conflict. Search was run in 2021 in Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, IEEE Xplore, Scopus, and Web of Science Core Collection. Articles describing the role of AI in healthcare that mentioned conflict between humans and AI were included in the primary search. Two investigators working independently and in duplicate screened titles and abstracts and reviewed full-text of potentially eligible studies. Data was abstracted into tables and reported by themes. We followed methodological guidelines for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). RESULTS: Of 6846 titles and abstracts, 225 full texts were selected, and 48 articles included in this review. 23 articles were included as original research and review papers. 25 were included as editorials and commentaries with similar themes. There was a lack of consensus in the included articles on who would be held liable for mistakes incurred by following AI recommendations. It appears that there is a dichotomy of the perceived ethical consequences depending on if the negative outcome is a result of a human versus AI conflict or secondary to a deviation from standard of care. Themes identified included transparency versus opacity of recommendations, data bias, liability of outcomes, regulatory framework, and the overall scope of artificial intelligence in healthcare. A relevant issue identified was the concern by clinicians of the “black box” nature of these recommendations and the ability to judge appropriateness of AI guidance. CONCLUSION AI clinical tools are being rapidly developed and adopted, and the use of this technology will create conflicts between AI algorithms and healthcare workers with various outcomes. In turn, these conflicts may have legal, and ethical considerations. There is limited consensus about the focus of ethical and liability for outcomes originated from disagreements. This scoping review identified the importance of framing the problem in terms of conflict between standard of care or not, and informed by the themes of transparency/opacity, data bias, legal liability, absent regulatory frameworks and understanding of the technology. Finally, limited recommendations to mitigate ethical conflicts between AI and humans have been identified. Further work is necessary in this field.Keywords: ethics, artificial intelligence, emergency medicine, review
Procedia PDF Downloads 931155 A Study on the Impact of Artificial Intelligence on Human Society and the Necessity for Setting up the Boundaries on AI Intrusion
Authors: Swarna Pundir, Prabuddha Hans
Abstract:
As AI has already stepped into the daily life of human society, one cannot be ignorant about the data it collects and used it to provide a quality of services depending up on the individuals’ choices. It also helps in giving option for making decision Vs choice selection with a calculation based on the history of our search criteria. Over the past decade or so, the way Artificial Intelligence (AI) has impacted society is undoubtedly large.AI has changed the way we shop, the way we entertain and challenge ourselves, the way information is handled, and has automated some sections of our life. We have answered as to what AI is, but not why one may see it as useful. AI is useful because it is capable of learning and predicting outcomes, using Machine Learning (ML) and Deep Learning (DL) with the help of Artificial Neural Networks (ANN). AI can also be a system that can act like humans. One of the major impacts be Joblessness through automation via AI which is seen mostly in manufacturing sectors, especially in the routine manual and blue-collar occupations and those without a college degree. It raises some serious concerns about AI in regards of less employment, ethics in making moral decisions, Individuals privacy, human judgement’s, natural emotions, biased decisions, discrimination. So, the question is if an error occurs who will be responsible, or it will be just waved off as a “Machine Error”, with no one taking the responsibility of any wrongdoing, it is essential to form some rules for using the AI where both machines and humans are involved. Procedia PDF Downloads 971154 Analyzing Boson Star as a Candidate for Dark Galaxy Using ADM Formulation of General Relativity
Authors: Aria Ratmandanu
Abstract:
Boson stars can be viewed as zero temperature ground state, Bose-Einstein condensates, characterized by enormous occupation numbers. Time-dependent spherically symmetric spacetime can be a model of Boson Star. We use (3+1) split of Einstein equation (ADM formulation of general relativity) to solve Einstein field equation coupled to a complex scalar field (Einstein-Klein-Gordon Equation) on time-dependent spherically symmetric spacetime, We get the result that Boson stars are pulsating stars with the frequency of oscillation equal to its density. We search for interior solution of Boson stars and get the T.O.V. (Tollman-Oppenheimer-Volkoff) equation for Boson stars. Using T.O.V. equation, we get the equation of state and the relation between pressure and density, its total mass and along with its gravitational Mass. We found that the hypothetical particle Axion could form a Boson star with the size of a milky way galaxy and make it a candidate for a dark galaxy, (a galaxy that consists almost entirely of dark matter).Keywords: axion, boson star, dark galaxy, time-dependent spherically symmetric spacetime
Procedia PDF Downloads 2431153 A Comparative Study of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Extreme Value Theory (EVT) Model in Modeling Value-at-Risk (VaR)
Authors: Longqing Li
Abstract:
The paper addresses the inefficiency of the classical model in measuring the Value-at-Risk (VaR) using a normal distribution or a Student’s t distribution. Specifically, the paper focuses on the one day ahead Value-at-Risk (VaR) of major stock market’s daily returns in US, UK, China and Hong Kong in the most recent ten years under 95% confidence level. To improve the predictable power and search for the best performing model, the paper proposes using two leading alternatives, Extreme Value Theory (EVT) and a family of GARCH models, and compares the relative performance. The main contribution could be summarized in two aspects. First, the paper extends the GARCH family model by incorporating EGARCH and TGARCH to shed light on the difference between each in estimating one day ahead Value-at-Risk (VaR). Second, to account for the non-normality in the distribution of financial markets, the paper applies Generalized Error Distribution (GED), instead of the normal distribution, to govern the innovation term. A dynamic back-testing procedure is employed to assess the performance of each model, a family of GARCH and the conditional EVT. The conclusion is that Exponential GARCH yields the best estimate in out-of-sample one day ahead Value-at-Risk (VaR) forecasting. Moreover, the discrepancy of performance between the GARCH and the conditional EVT is indistinguishable.Keywords: Value-at-Risk, Extreme Value Theory, conditional EVT, backtesting
Procedia PDF Downloads 3211152 Meta-Analysis of Exercise Interventions for Children and Adolescents Diagnosed with Pediatric Metabolic Syndrome
Authors: James M. Geidner
Abstract:
Objective: The purpose of this meta-analysis was to examine the evidence for the effectiveness of exercise interventions on reducing metabolic components in children and/or adolescents diagnosed with Paediatric Metabolic Syndrome. Methods: A computerized search was made from four databases: PubMed, PsycInfo, SPORTDiscus, Cochrane Central Register. The analysis was restricted to children and adolescents with metabolic syndrome examining the effect of exercise interventions on metabolic components. Effect size and 95% confidence interval were calculated and the heterogeneity of the studies was estimated using Cochran’s Q-statistic and I2. Bias was assessed using multiple tools and statistical analyses. Results: Thirteen studies, consisting of 19 separate trials, were selected for the meta-analysis as they fulfilled the inclusion criteria (n=908). Exercise interventions resulted in decreased waist circumference, systolic blood pressure, diastolic blood pressure, fasting glucose, insulin resistance, triglycerides, and High-Density Lipoprotein Cholesterol (HDL-C). Conclusions: This meta-analysis provides insights into the effectiveness of exercise interventions on markers of Paediatric Metabolic Syndrome in children and adolescents.Keywords: metabolic syndrome, syndrome x, pediatric, meta-analysis
Procedia PDF Downloads 1721151 Solution to Riemann Hypothesis Critical Strip Zone Using Non-Linear Complex Variable Functions
Authors: Manojkumar Sabanayagam
Abstract:
The Riemann hypothesis is an unsolved millennium problem and the search for a solution to the Riemann hypothesis is to study the pattern of prime number distribution. The scope of this paper is to identify the solution for the critical strip and the critical line axis, which has the non-trivial zero solutions using complex plane functions. The Riemann graphical plot is constructed using a linear complex variable function (X+iY) and is applicable only when X>1. But the investigation shows that complex variable behavior has two zones. The first zone is the transformation zone, where the definition of the complex plane should be a non-linear variable which is the critical strip zone in the graph (X=0 to 1). The second zone is the transformed zone (X>1) defined using linear variables conventionally. This paper deals with the Non-linear function in the transformation zone derived using cosine and sinusoidal time lag w.r.t imaginary number ‘i’. The alternate complex variable (Cosθ+i Sinθ) is used to understand the variables in the critical strip zone. It is concluded that the non-trivial zeros present in the Real part 0.5 are because the linear function is not the correct approach in the critical strip. This paper provides the solution to Reimann's hypothesis.Keywords: Reimann hypothesis, critical strip, complex plane, transformation zone
Procedia PDF Downloads 2081150 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider
Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz
Abstract:
The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.Keywords: anomalos couplings, FCC-eh, Higgs, Z boson
Procedia PDF Downloads 2101149 A Method for the Extraction of the Character's Tendency from Korean Novels
Authors: Min-Ha Hong, Kee-Won Kim, Seung-Hoon Kim
Abstract:
The character in the story-based content, such as novels and movies, is one of the core elements to understand the story. In particular, the character’s tendency is an important factor to analyze the story-based content, because it has a significant influence on the storyline. If readers have the knowledge of the tendency of characters before reading a novel, it will be helpful to understand the structure of conflict, episode and relationship between characters in the novel. It may therefore help readers to select novel that the reader wants to read. In this paper, we propose a method of extracting the tendency of the characters from a novel written in Korean. In advance, we build the dictionary with pairs of the emotional words in Korean and English since the emotion words in the novel’s sentences express character’s feelings. We rate the degree of polarity (positive or negative) of words in our emotional words dictionary based on SenticNet. Then we extract characters and emotion words from sentences in a novel. Since the polarity of a word grows strong or weak due to sentence features such as quotations and modifiers, our proposed method consider them to calculate the polarity of characters. The information of the extracted character’s polarity can be used in the book search service or book recommendation service.Keywords: character tendency, data mining, emotion word, Korean novel
Procedia PDF Downloads 3341148 Brain Computer Interface Implementation for Affective Computing Sensing: Classifiers Comparison
Authors: Ramón Aparicio-García, Gustavo Juárez Gracia, Jesús Álvarez Cedillo
Abstract:
A research line of the computer science that involve the study of the Human-Computer Interaction (HCI), which search to recognize and interpret the user intent by the storage and the subsequent analysis of the electrical signals of the brain, for using them in the control of electronic devices. On the other hand, the affective computing research applies the human emotions in the HCI process helping to reduce the user frustration. This paper shows the results obtained during the hardware and software development of a Brain Computer Interface (BCI) capable of recognizing the human emotions through the association of the brain electrical activity patterns. The hardware involves the sensing stage and analogical-digital conversion. The interface software involves algorithms for pre-processing of the signal in time and frequency analysis and the classification of patterns associated with the electrical brain activity. The methods used for the analysis and classification of the signal have been tested separately, by using a database that is accessible to the public, besides to a comparison among classifiers in order to know the best performing.Keywords: affective computing, interface, brain, intelligent interaction
Procedia PDF Downloads 3881147 Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis
Authors: Martina Kanciruk, Jac J. W. Andrews, Tyrone Donnon
Abstract:
The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.Keywords: childhood obesity, overweight, smoking, parents, risk factors
Procedia PDF Downloads 5231146 Subjective Well-Being through Coaching Process
Authors: Pendar Fazel
Abstract:
Well-being is a good or satisfactory condition of existence; a state characterized by health, happiness, and prosperity. Well-being of people is correlated with, the cognitive, social, emotional, and physical aspect of their personality. Subjective well-being, people’s emotional and cognitive evaluations of their lives, includes what lay people call happiness, peace, fulfillment, and life satisfaction. Unfortunately in this period of time people are under the pressure of financial, social problems, and other stress factors which made them vulnerable, and their well-being is threatened. Personal Coaching as a holistic orientation and novel approach is ideal for the present century which help people, to find balance, enjoyment and meaning in their lives as well as improving performance, skills and effectiveness. The aim of the present article besides introducing the personal coaching is determining how personal coaching can positively effects on subjective well-being, under this aim we tend to describe how coaching impact on the cognitive and emotional reconstruction. Present qualitative research is descriptive analytic study, which data gathered by manual library research and search within authentic article through internet; analyzed personal coaching which integrated different views into an operational one helps people promote self-awareness as well as evaluate, emotional and cognitive aspect of their personality and provide appropriate subjective well-being.Keywords: subjective well-being, coaching, well-being, positive psychology, personal growth
Procedia PDF Downloads 5271145 EFL Teacher Cognition and Learner Autonomy: An Exploratory Study into Algerian Teachers’ Understanding of Learner Autonomy
Authors: Linda Ghout
Abstract:
The main aim of the present case study was to explore EFL teachers’ understanding of learner autonomy. Thus, it sought to uncover how teachers at the de Department of English, University of Béjaia, Algeria view the process of language learning, their learners’ roles, their own roles and their practices to promote learner autonomy. For data collection, firstly, a questionnaire was designed and administered to all the teachers in the department. Secondly, interviews were conducted with some volunteers for the sake of clarifying emerging issues and digging deeper into some of the teachers’ answers to the questionnaire. The analysis revealed interesting data pertaining to the teachers’ cognition and its effects on their teaching practices. With regard to their views of language learning, it seems that the participants hold discrete views which are in opposition with the principles of learner autonomy. The teachers seemed to have a limited knowledge of the characteristics of autonomous learners and autonomy- based methodology. When it comes to teachers’ practices to promote autonomy in their classes, the majority reported that the most effective way is to ask students to search for information on their own. However, in defining their roles in the EFL learning process, most of the respondents claimed that teachers should play the role of facilitators.Keywords: English, learner autonomy, learning process, teacher cognition
Procedia PDF Downloads 3891144 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera
Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin
Abstract:
We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.Keywords: human action recognition, pose estimation, D-CNN, deep learning
Procedia PDF Downloads 1451143 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 1431142 Optimal Allocation of Distributed Generation Sources for Loss Reduction and Voltage Profile Improvement by Using Particle Swarm Optimization
Authors: Muhammad Zaheer Babar, Amer Kashif, Muhammad Rizwan Javed
Abstract:
Nowadays distributed generation integration is best way to overcome the increasing load demand. Optimal allocation of distributed generation plays a vital role in reducing system losses and improves voltage profile. In this paper, a Meta heuristic technique is proposed for allocation of DG in order to reduce power losses and improve voltage profile. The proposed technique is based on Multi Objective Particle Swarm optimization. Fewer control parameters are needed in this algorithm. Modification is made in search space of PSO. The effectiveness of proposed technique is tested on IEEE 33 bus test system. Single DG as well as multiple DG scenario is adopted for proposed method. Proposed method is more effective as compared to other Meta heuristic techniques and gives better results regarding system losses and voltage profile.Keywords: Distributed generation (DG), Multi Objective Particle Swarm Optimization (MOPSO), particle swarm optimization (PSO), IEEE standard Test System
Procedia PDF Downloads 4541141 A Review on Future Safety Conditions and Requirements for E-Bikes
Authors: Jonas Palmer, Leon Brüning, Lukas Himmelsbach
Abstract:
The worldwide ambitions to transform the transportation sector are increasingly affecting the safety conditions for all traffic participants and the required infrastructure. To contribute to the transformation and for health aspects, individuals search for carbon-free alternatives that include physical excitation. Especially e-bikes experience a growing demand within the last few years and consequently change the safety requirements. E-cyclists are exposed to amplified risks due to higher velocity in comparison to classic cyclists. Furthermore, cyclists suffer from a lack of infrastructure, rider assistance systems as well as awareness of other road users. For minimizing the risk of accidents, it is crucial to identify, develop and implement safety measures for cyclists. The paper aims to contribute to future research with delivering an overview of the latest publications and to subsequently identify essential research gaps. Therefore, it is essential to analyze the areas of technical adjustments as well as legal aspects and the correlation of both. The review`s insights can intensify the awareness of safety issues related to e-bikes and promote the development and implementation of appropriate measures.Keywords: e-bike safety measures, future mobility, risk management, road safety
Procedia PDF Downloads 1161140 Modelling of Relocation and Battery Autonomy Problem on Electric Cars Sharing Dynamic by Using Discrete Event Simulation and Petri Net
Authors: Taha Benarbia, Kay W. Axhausen, Anugrah Ilahi
Abstract:
Electric car sharing system as ecologic transportation increasing in the world. The complexity of managing electric car sharing systems, especially one-way trips and battery autonomy have direct influence to on supply and demand of system. One must be able to precisely model the demand and supply of these systems to better operate electric car sharing and estimate its effect on mobility management and the accessibility that it provides in urban areas. In this context, our work focus to develop performances optimization model of the system based on discrete event simulation and stochastic Petri net. The objective is to search optimal decisions and management parameters of the system in order to fulfil at best demand while minimizing undesirable situations. In this paper, we present new model of electric cars sharing with relocation based on monitoring system. The proposed approach also help to precise the influence of battery charging level on the behaviour of system as important decision parameter of this complex and dynamical system.Keywords: electric car-sharing systems, smart mobility, Petri nets modelling, discrete event simulation
Procedia PDF Downloads 1831139 Prevalence of Depression among Post Stroke Survivors in South Asian Region: A Systematic Review and Meta-Analysis
Authors: Roseminu Varghese, Laveena Anitha Barboza, Jyothi Chakrabarty, Ravishankar
Abstract:
Depression among post-stroke survivors is prevalent, but it is unidentified. The purpose of this review was to determine the pooled prevalence of depression among post-stroke survivors in the South Asian region from all published health sciences research articles. The review also aimed to analyze the disparities in the prevalence of depression among the post-stroke survivors from different study locations. Data search to identify the relevant research articles published from 2005 to 2016 was done by using mesh terms and keywords in Web of Science, PubMed Medline, CINAHL, Scopus, J gate, IndMED databases. The final analysis comprised of 9 studies, including a population of 1,520 men and women. Meta-analysis was performed in STATA version 13.0. The overall pooled post-stroke depression prevalence was 0.46, 95% (CI), (0.3- 0.62). The prevalence rate in this systematic review is evident of depression among post-stroke survivors in the South Asian Region. Identifying the prevalence of post-stroke depression at an early stage is important to improve outcomes of the rehabilitative process of stroke survivors and for its early intervention.Keywords: depression, post stroke survivors, prevalence, systematic review
Procedia PDF Downloads 1581138 Role of Natural Products in Drug Discovery of Anti-Biotic and Anti-Cancer Agents
Authors: Sunil Kumar
Abstract:
For many years, small organic molecules derived naturally from microbes and plants have delivered a number of expedient therapeutic drug agents. The search for naturally occurring lead compounds has continued in recent years as well, with the constituents of marine flora and fauna along with those of telluric microorganisms and plants being investigated for their anti-bacterial and anti-cancer activities. It has been observed that such promising lead molecules incline to promptly generate substantial attention among scientists like synthetic organic chemists and biologists. Subsequently, the availability of a given precious natural product sample may be enriched, and it may be possible to determine a preliminary idea of structure-activity relationships to develop synthetic analogues. For instance, anti-tumor drug topotecan is a synthetic chemical compound similar in chemical structure to camptothecin which is found in extracts of Camptotheca acuminate. Similarly, researchers at AstraZeneca discovered anti-biotic pyrrolamide through a fragment-based lead generation approach from kibdelomycin, which is isolated from Staphylococcus aureuss.Keywords: anticancer, antibiotic, lead molecule, natural product, synthetic analogues
Procedia PDF Downloads 1521137 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 1841136 Family History of Obesity and Risk of Childhood Overweight and Obesity: A Meta-Analysis
Authors: Martina Kanciruk, Jac J. W. Andrews, Tyrone Donnon
Abstract:
The purpose of this study was to determine the significance of history of obesity for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, family history, parents, childhood, risk factors. Eleven studies of family history and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that family history of obesity is a significant risk factor of overweight and /or obesity in offspring; risk for offspring overweight and/or obesity associated with family history varies depending of the family members included in the analysis; and when family history of obesity is present, the offspring are at greater risk for developing obesity or overweight. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.Keywords: childhood obesity, overweight, family history, risk factors, meta-analysis
Procedia PDF Downloads 5191135 Movement of the Viscous Elastic Fixed Vertically Located Cylinder in Liquid with the Free Surface Under the Influence of Waves
Authors: T. J. Hasanova, C. N. Imamalieva
Abstract:
The problem about the movement of the rigid cylinder keeping the vertical position under the influence of running superficial waves in a liquid is considered. The indignation of a falling wave caused by the presence of the cylinder which moves is thus considered. Special decomposition on a falling harmonious wave is used. The problem dares an operational method. For a finding of the original decision, Considering that the image denominator represents a tabular function, Voltaire's integrated equation of the first sort which dares a numerical method is used. Cylinder movement in the continuous environment under the influence of waves is considered in work. Problems are solved by an operational method, thus originals of required functions are looked for by the numerical definition of poles of combinations of transcendental functions and calculation of not own integrals. Using specificity of a task below, Decisions are under construction the numerical solution of the integrated equation of Volter of the first sort that does not create computing problems of the complex roots of transcendental functions connected with search.Keywords: rigid cylinder, linear interpolation, fluctuations, Voltaire's integrated equation, harmonious wave
Procedia PDF Downloads 3191134 Towards a Large Scale Deep Semantically Analyzed Corpus for Arabic: Annotation and Evaluation
Authors: S. Alansary, M. Nagi
Abstract:
This paper presents an approach of conducting semantic annotation of Arabic corpus using the Universal Networking Language (UNL) framework. UNL is intended to be a promising strategy for providing a large collection of semantically annotated texts with formal, deep semantics rather than shallow. The result would constitute a semantic resource (semantic graphs) that is editable and that integrates various phenomena, including predicate-argument structure, scope, tense, thematic roles and rhetorical relations, into a single semantic formalism for knowledge representation. The paper will also present the Interactive Analysis tool for automatic semantic annotation (IAN). In addition, the cornerstone of the proposed methodology which are the disambiguation and transformation rules, will be presented. Semantic annotation using UNL has been applied to a corpus of 20,000 Arabic sentences representing the most frequent structures in the Arabic Wikipedia. The representation, at different linguistic levels was illustrated starting from the morphological level passing through the syntactic level till the semantic representation is reached. The output has been evaluated using the F-measure. It is 90% accurate. This demonstrates how powerful the formal environment is, as it enables intelligent text processing and search.Keywords: semantic analysis, semantic annotation, Arabic, universal networking language
Procedia PDF Downloads 5821133 Application of Lattice Boltzmann Method to Different Boundary Conditions in a Two Dimensional Enclosure
Authors: Jean Yves Trepanier, Sami Ammar, Sagnik Banik
Abstract:
Lattice Boltzmann Method has been advantageous in simulating complex boundary conditions and solving for fluid flow parameters by streaming and collision processes. This paper includes the study of three different test cases in a confined domain using the method of the Lattice Boltzmann model. 1. An SRT (Single Relaxation Time) approach in the Lattice Boltzmann model is used to simulate Lid Driven Cavity flow for different Reynolds Number (100, 400 and 1000) with a domain aspect ratio of 1, i.e., square cavity. A moment-based boundary condition is used for more accurate results. 2. A Thermal Lattice BGK (Bhatnagar-Gross-Krook) Model is developed for the Rayleigh Benard convection for both test cases - Horizontal and Vertical Temperature difference, considered separately for a Boussinesq incompressible fluid. The Rayleigh number is varied for both the test cases (10^3 ≤ Ra ≤ 10^6) keeping the Prandtl number at 0.71. A stability criteria with a precise forcing scheme is used for a greater level of accuracy. 3. The phase change problem governed by the heat-conduction equation is studied using the enthalpy based Lattice Boltzmann Model with a single iteration for each time step, thus reducing the computational time. A double distribution function approach with D2Q9 (density) model and D2Q5 (temperature) model are used for two different test cases-the conduction dominated melting and the convection dominated melting. The solidification process is also simulated using the enthalpy based method with a single distribution function using the D2Q5 model to provide a better understanding of the heat transport phenomenon. The domain for the test cases has an aspect ratio of 2 with some exceptions for a square cavity. An approximate velocity scale is chosen to ensure that the simulations are within the incompressible regime. Different parameters like velocities, temperature, Nusselt number, etc. are calculated for a comparative study with the existing works of literature. The simulated results demonstrate excellent agreement with the existing benchmark solution within an error limit of ± 0.05 implicates the viability of this method for complex fluid flow problems.Keywords: BGK, Nusselt, Prandtl, Rayleigh, SRT
Procedia PDF Downloads 1281132 Human Action Retrieval System Using Features Weight Updating Based Relevance Feedback Approach
Authors: Munaf Rashid
Abstract:
For content-based human action retrieval systems, search accuracy is often inferior because of the following two reasons 1) global information pertaining to videos is totally ignored, only low level motion descriptors are considered as a significant feature to match the similarity between query and database videos, and 2) the semantic gap between the high level user concept and low level visual features. Hence, in this paper, we propose a method that will address these two issues and in doing so, this paper contributes in two ways. Firstly, we introduce a method that uses both global and local information in one framework for an action retrieval task. Secondly, to minimize the semantic gap, a user concept is involved by incorporating features weight updating (FWU) Relevance Feedback (RF) approach. We use statistical characteristics to dynamically update weights of the feature descriptors so that after every RF iteration feature space is modified accordingly. For testing and validation purpose two human action recognition datasets have been utilized, namely Weizmann and UCF. Results show that even with a number of visual challenges the proposed approach performs well.Keywords: relevance feedback (RF), action retrieval, semantic gap, feature descriptor, codebook
Procedia PDF Downloads 4721131 In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia
Abstract:
This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibit robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.Keywords: Academic Spin-Off (ASO), university entrepreneurship, entrepreneurial university, high growth, New Technology Based Companies (NTBC), University Spin-Off
Procedia PDF Downloads 4581130 Pb and NI Removal from Aqueous Environment by Green Synthesized Iron Nanoparticles Using Fruit Cucumis Melo and Leaves of Ficus Virens
Authors: Amandeep Kaur, Sangeeta Sharma
Abstract:
Keeping in view the serious entanglement of heavy metals ( Pb+2 and Ni+2) ions in an aqueous environment, a rapid search for efficient adsorbents for the adsorption of heavy metals has become highly desirable. In this quest, green synthesized Fe np’s have gathered attention because of their excellent adsorption capability of heavy metals from aqueous solution. This research report aims at the fabrication of Fe np’s using the fruit Cucumis melo and leaves of Ficus virens via a biogenic synthesis route. Further, synthesized CM-Fe-np’s and FV-Fe-np’s have been tested as potential bio-adsorbents for the removal of Pb+2 and Ni+2 by carrying out adsorption batch experiments. The influence of myriad parameters like initial concentration of Pb/Ni (5,10,15,20,25 mg/L), contact time (10 to 200 min.), adsorbent dosage (0.5, 0.10, 0.15 mg/L), shaking speed (120 to 350 rpm) and pH value (6,7,8,9) has been investigated. The maximum removal with CM-Fe-np’s and FV-Fe-np’s has been achieved at pH 7, metal conc. 5 mg/L, dosage 0.9 g/L, shaking speed 200 rpm and reaction contact time 200 min during the adsorption experiment. The results obtained are found to be in accordance with Freundlich and Langmuir's adsorption models; consequently, they could be highly applicable to the wastewater treatment plant.Keywords: adsorption, biogenic synthesis, nanoparticles, nickel, lead
Procedia PDF Downloads 87