Search results for: universal testing machine
4922 Breast Cancer Detection Using Machine Learning Algorithms
Authors: Jiwan Kumar, Pooja, Sandeep Negi, Anjum Rouf, Amit Kumar, Naveen Lakra
Abstract:
In modern times where, health issues are increasing day by day, breast cancer is also one of them, which is very crucial and really important to find in the early stages. Doctors can use this model in order to tell their patients whether a cancer is not harmful (benign) or harmful (malignant). We have used the knowledge of machine learning in order to produce the model. we have used algorithms like Logistic Regression, Random forest, support Vector Classifier, Bayesian Network and Radial Basis Function. We tried to use the data of crucial parts and show them the results in pictures in order to make it easier for doctors. By doing this, we're making ML better at finding breast cancer, which can lead to saving more lives and better health care.Keywords: Bayesian network, radial basis function, ensemble learning, understandable, data making better, random forest, logistic regression, breast cancer
Procedia PDF Downloads 544921 Factors Influencing Savings of People between 30-40 Years Old in Dusit District, Bangkok Metropolis
Authors: Charawee Butbumrung
Abstract:
The purpose of this research were to study the factors influencing savings of people between 30-40 years old in Dusit District, Bangkok Metropolis. The statistic used in data analysis were frequency, mean and standard deviation, t-test, one-way ANOVA and Pearson’s correlation coefficient based on social science statistic program. Result of hypothesis testing showed that married people earning different monthly salary generally saved by depositing into the bank at different level. People of different occupation saved in form of life insurance at different level at statistical significance 0.05. Result of influence testing between saving motivation was found that people saved for use upon sickness or getting older, saved for the children. Worthiness and certainty influenced saving in the same direction at high level while saving motivation in public relation, annual tax reduction, inducement by the others, bonus gift influenced saving in the same direction at moderate level at statistical significance 0.05.Keywords: Dusit District, factors, saving, Bangkok Metropolis
Procedia PDF Downloads 2464920 Solution Approaches for Some Scheduling Problems with Learning Effect and Job Dependent Delivery Times
Authors: M. Duran Toksari, Berrin Ucarkus
Abstract:
In this paper, we propose two algorithms to optimally solve makespan and total completion time scheduling problems with learning effect and job dependent delivery times in a single machine environment. The delivery time is the extra time to eliminate adverse effect between the main processing and delivery to the customer. In this paper, we introduce the job dependent delivery times for some single machine scheduling problems with position dependent learning effect, which are makespan are total completion. The results with respect to two algorithms proposed for solving of the each problem are compared with LINGO solutions for 50-jobs, 100-jobs and 150-jobs problems. The proposed algorithms can find the same results in shorter time.Keywords: delivery Times, learning effect, makespan, scheduling, total completion time
Procedia PDF Downloads 4694919 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V.K.Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Masses and microcalcifications, architectural distortions are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support Vector Machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and accuracy of 96% for the detection of abnormalities with mammogram images collected from Digital Database for Screening Mammography (DDSM) database.Keywords: architecture distortion, mammograms, GLCM texture features, GLRLM texture features, support vector machine classifier
Procedia PDF Downloads 4914918 Intrusion Detection in Cloud Computing Using Machine Learning
Authors: Faiza Babur Khan, Sohail Asghar
Abstract:
With an emergence of distributed environment, cloud computing is proving to be the most stimulating computing paradigm shift in computer technology, resulting in spectacular expansion in IT industry. Many companies have augmented their technical infrastructure by adopting cloud resource sharing architecture. Cloud computing has opened doors to unlimited opportunities from application to platform availability, expandable storage and provision of computing environment. However, from a security viewpoint, an added risk level is introduced from clouds, weakening the protection mechanisms, and hardening the availability of privacy, data security and on demand service. Issues of trust, confidentiality, and integrity are elevated due to multitenant resource sharing architecture of cloud. Trust or reliability of cloud refers to its capability of providing the needed services precisely and unfailingly. Confidentiality is the ability of the architecture to ensure authorization of the relevant party to access its private data. It also guarantees integrity to protect the data from being fabricated by an unauthorized user. So in order to assure provision of secured cloud, a roadmap or model is obligatory to analyze a security problem, design mitigation strategies, and evaluate solutions. The aim of the paper is twofold; first to enlighten the factors which make cloud security critical along with alleviation strategies and secondly to propose an intrusion detection model that identifies the attackers in a preventive way using machine learning Random Forest classifier with an accuracy of 99.8%. This model uses less number of features. A comparison with other classifiers is also presented.Keywords: cloud security, threats, machine learning, random forest, classification
Procedia PDF Downloads 3204917 Parametrical Analysis of Stain Removal Performance of a Washing Machine: A Case Study of Sebum
Authors: Ozcan B., Koca B., Tuzcuoglu E., Cavusoglu S., Efe A., Bayraktar S.
Abstract:
A washing machine is mainly used for removing any types of dirt and stains and also eliminating malodorous substances from textile surfaces. Stains originate from various sources from the human body to environmental contamination. Therefore, there are various methods for removing them. They are roughly classified into four different groups: oily (greasy) stains, particulate stains, enzymatic stains and bleachable (oxidizable) stains. Oily stains on clothes surfaces are a common result of being in contact with organic substances of the human body (e.g. perspiration, skin shedding and sebum) or by being exposed to an oily environmental pollutant (e.g. oily foods). Studies showed that human sebum is major component of oily soil found on the garments, and if it is aged under the several environmental conditions, it can generate obstacle yellow stains on the textile surface. In this study, a parametric study was carried out to investigate the key factors affecting the cleaning performance (specifically sebum removal performance) of a washing machine. These parameters are mechanical agitation percentage of tumble, consumed water and total washing period. A full factorial design of the experiment is used to capture all the possible parametric interactions using Minitab 2021 statistical program. Tests are carried out with commercial liquid detergent and 2 different types of sebum-soiled cotton and cotton + polyester fabrics. Parametric results revealed that for both test samples, increasing the washing time and the mechanical agitation could lead to a much better removal result of sebum. However, for each sample, the water amount had different outcomes. Increasing the water amount decreases the performance of cotton + polyester fabrics, while it is favorable for cotton fabric. Besides this, it was also discovered that the type of textile can greatly affect the sebum removal performance. Results showed that cotton + polyester fabrics are much easier to clean compared to cotton fabricKeywords: laundry, washing machine, low-temperature washing, cold wash, washing efficiency index, sustainability, cleaning performance, stain removal, oily soil, sebum, yellowing
Procedia PDF Downloads 1464916 Ontology-Driven Knowledge Discovery and Validation from Admission Databases: A Structural Causal Model Approach for Polytechnic Education in Nigeria
Authors: Bernard Igoche Igoche, Olumuyiwa Matthew, Peter Bednar, Alexander Gegov
Abstract:
This study presents an ontology-driven approach for knowledge discovery and validation from admission databases in Nigerian polytechnic institutions. The research aims to address the challenges of extracting meaningful insights from vast amounts of admission data and utilizing them for decision-making and process improvement. The proposed methodology combines the knowledge discovery in databases (KDD) process with a structural causal model (SCM) ontological framework. The admission database of Benue State Polytechnic Ugbokolo (Benpoly) is used as a case study. The KDD process is employed to mine and distill knowledge from the database, while the SCM ontology is designed to identify and validate the important features of the admission process. The SCM validation is performed using the conditional independence test (CIT) criteria, and an algorithm is developed to implement the validation process. The identified features are then used for machine learning (ML) modeling and prediction of admission status. The results demonstrate the adequacy of the SCM ontological framework in representing the admission process and the high predictive accuracies achieved by the ML models, with k-nearest neighbors (KNN) and support vector machine (SVM) achieving 92% accuracy. The study concludes that the proposed ontology-driven approach contributes to the advancement of educational data mining and provides a foundation for future research in this domain.Keywords: admission databases, educational data mining, machine learning, ontology-driven knowledge discovery, polytechnic education, structural causal model
Procedia PDF Downloads 664915 User Experience Evaluation on the Usage of Commuter Line Train Ticket Vending Machine
Authors: Faishal Muhammad, Erlinda Muslim, Nadia Faradilla, Sayidul Fikri
Abstract:
To deal with the increase of mass transportation needs problem, PT. Kereta Commuter Jabodetabek (KCJ) implements Commuter Vending Machine (C-VIM) as the solution. For that background, C-VIM is implemented as a substitute to the conventional ticket windows with the purposes to make transaction process more efficient and to introduce self-service technology to the commuter line user. However, this implementation causing problems and long queues when the user is not accustomed to using the machine. The objective of this research is to evaluate user experience after using the commuter vending machine. The goal is to analyze the existing user experience problem and to achieve a better user experience design. The evaluation method is done by giving task scenario according to the features offered by the machine. The features are daily insured ticket sales, ticket refund, and multi-trip card top up. There 20 peoples that separated into two groups of respondents involved in this research, which consist of 5 males and 5 females each group. The experienced and inexperienced user to prove that there is a significant difference between both groups in the measurement. The user experience is measured by both quantitative and qualitative measurement. The quantitative measurement includes the user performance metrics such as task success, time on task, error, efficiency, and learnability. The qualitative measurement includes system usability scale questionnaire (SUS), questionnaire for user interface satisfaction (QUIS), and retrospective think aloud (RTA). Usability performance metrics shows that 4 out of 5 indicators are significantly different in both group. This shows that the inexperienced group is having a problem when using the C-VIM. Conventional ticket windows also show a better usability performance metrics compared to the C-VIM. From the data processing, the experienced group give the SUS score of 62 with the acceptability scale of 'marginal low', grade scale of “D”, and the adjective ratings of 'good' while the inexperienced group gives the SUS score of 51 with the acceptability scale of 'marginal low', grade scale of 'F', and the adjective ratings of 'ok'. This shows that both groups give a low score on the system usability scale. The QUIS score of the experienced group is 69,18 and the inexperienced group is 64,20. This shows the average QUIS score below 70 which indicate a problem with the user interface. RTA was done to obtain user experience issue when using C-VIM through interview protocols. The issue obtained then sorted using pareto concept and diagram. The solution of this research is interface redesign using activity relationship chart. This method resulted in a better interface with an average SUS score of 72,25, with the acceptable scale of 'acceptable', grade scale of 'B', and the adjective ratings of 'excellent'. From the time on task indicator of performance metrics also shows a significant better time by using the new interface design. Result in this study shows that C-VIM not yet have a good performance and user experience.Keywords: activity relationship chart, commuter line vending machine, system usability scale, usability performance metrics, user experience evaluation
Procedia PDF Downloads 2624914 Preliminary Study of Antimicrobial Activity against Escherichia coli sp. and Probiotic Properties of Lactic Acid Bacteria Isolated from Thailand Fermented Foods
Authors: Phanwipa Pangsri, Yawariyah Weahayee
Abstract:
The lactic acid bacteria (LAB) were isolated from 10 samples of fermented foods (Sa-tor-dong and Bodo) in South locality of Thailand. The 23 isolates of lactic acid bacteria were selected, which were exhibited a clear zone and growth on MRS agar supplemented with CaCO3. All of lactic acid bacteria were tested on morphological and biochemical. The result showed that all isolates were Gram’s positive, non-spore forming but only 10 isolates displayed catalase negative. The 10 isolates including BD 1.1, BD 1.2, BD 2.1, BD2.2, BD 2.3, BD 3.1, BD 4.1, BD 5.2, ST4.1, and ST 5.2 were selected for inhibition activity determination. Only 2 strains (ST 4.1 and BD 2.3) showed inhibition zone on agar, when using Escherichia coli sp. as target strain. The ST 4.1 showed highest inhibition zone on agar, which was selected for probiotic property testing. The ST4.1 isolate could grow in MRS broth containing a high concentration of sodium chloride 6%, bile salts 7%, pH 4-10 and vary temperature at 15-45^oC.Keywords: lactic acid bacteria, probiotic, antimicrobial, probiotic property testing
Procedia PDF Downloads 3794913 Thermal Transport Properties of Common Transition Single Metal Atom Catalysts
Authors: Yuxi Zhu, Zhenqian Chen
Abstract:
It is of great interest to investigate the thermal properties of non-precious metal catalysts for Proton exchange membrane fuel cell (PEMFC) based on the thermal management requirements. Due to the low symmetry of materials, to accurately obtain the thermal conductivity of materials, it is necessary to obtain the second and third order force constants by combining density functional theory and machine learning interatomic potential. To be specific, the interatomic force constants are obtained by moment tensor potential (MTP), which is trained by the computational trajectory of Ab initio molecular dynamics (AIMD) at 50, 300, 600, and 900 K for 1 ps each, with a time step of 1 fs in the AIMD computation. And then the thermal conductivity can be obtained by solving the Boltzmann transport equation. In this paper, the thermal transport properties of single metal atom catalysts are studied for the first time to our best knowledge by machine-learning interatomic potential (MLIP). Results show that the single metal atom catalysts exhibit anisotropic thermal conductivities and partially exhibit good thermal conductivity. The average lattice thermal conductivities of G-FeN₄, G-CoN₄ and G-NiN₄ at 300 K are 88.61 W/mK, 205.32 W/mK and 210.57 W/mK, respectively. While other single metal atom catalysts show low thermal conductivity due to their low phonon lifetime. The results also show that low-frequency phonons (0-10 THz) dominate thermal transport properties. The results provide theoretical insights into the application of single metal atom catalysts in thermal management.Keywords: proton exchange membrane fuel cell, single metal atom catalysts, density functional theory, thermal conductivity, machine-learning interatomic potential
Procedia PDF Downloads 274912 Detectability of Malfunction in Turboprop Engine
Authors: Tomas Vampola, Michael Valášek
Abstract:
On the basis of simulation-generated failure states of structural elements of a turboprop engine suitable for the busy-jet class of aircraft, an algorithm for early prediction of damage or reduction in functionality of structural elements of the engine is designed and verified with real data obtained at dynamometric testing facilities of aircraft engines. Based on an expanding database of experimentally determined data from temperature and pressure sensors during the operation of turboprop engines, this strategy is constantly modified with the aim of using the minimum number of sensors to detect an inadmissible or deteriorated operating mode of specific structural elements of an aircraft engine. The assembled algorithm for the early prediction of reduced functionality of the aircraft engine significantly contributes to the safety of air traffic and to a large extent, contributes to the economy of operation with positive effects on the reduction of the energy demand of operation and the elimination of adverse effects on the environment.Keywords: detectability of malfunction, dynamometric testing, prediction of damage, turboprop engine
Procedia PDF Downloads 944911 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy
Procedia PDF Downloads 2494910 Examining Bulling Rates among Youth with Intellectual Disabilities
Authors: Kaycee L. Bills
Abstract:
Adolescents and youth who are members of a minority group are more likely to experience higher rates of bullying in comparison to other student demographics. Specifically, adolescents with intellectual disabilities are a minority population that is more susceptible to experience unfair treatment in social settings. This study employs the 2015 Wave of the National Crime Victimization Survey – School Crime Supplement (NCVS/SCS) longitudinal dataset to explore bullying rates experienced among adolescents with intellectual disabilities. This study uses chi-square testing and a logistic regression to analyze if having a disability influences the likelihood of being bullied in comparison to other student demographics. Results of the chi-square testing and the logistic regression indicate that adolescent students who were identified as having a disability were approximately four times more likely to experience higher bullying rates in comparison to all other majority and minority student populations. Thus, it means having a disability resulted in higher bullying rates in comparison to all student groups.Keywords: disability, bullying, social work, school bullying
Procedia PDF Downloads 1314909 Trashing Customary International Law Comprehensive Evaluation
Authors: Hamid Vahidkia
Abstract:
Central to the World Court’s mission is the assurance of universal custom “as prove of a common hone acknowledged as law.” Understudies of the Court’s law have long been mindful that the Court has been superior at applying standard law than characterizing it. However until Nicaragua v. Joined together States, small hurt was done. For within the strongly challenged cases earlier to Nicaragua, the Court overseen to inspire commonalities in factious structure that floated its decisions toward the standard standards certain in state hone. The Court’s need of hypothetical unequivocality basically implied that a career opportunity emerged for a few eyewitnesses like me to endeavor to supply the lost hypothesis of custom.Keywords: law, international law, jurisdication, customary
Procedia PDF Downloads 624908 The Use of Artificial Intelligence in Diagnosis of Mastitis in Cows
Authors: Djeddi Khaled, Houssou Hind, Miloudi Abdellatif, Rabah Siham
Abstract:
In the field of veterinary medicine, there is a growing application of artificial intelligence (AI) for diagnosing bovine mastitis, a prevalent inflammatory disease in dairy cattle. AI technologies, such as automated milking systems, have streamlined the assessment of key metrics crucial for managing cow health during milking and identifying prevalent diseases, including mastitis. These automated milking systems empower farmers to implement automatic mastitis detection by analyzing indicators like milk yield, electrical conductivity, fat, protein, lactose, blood content in the milk, and milk flow rate. Furthermore, reports highlight the integration of somatic cell count (SCC), thermal infrared thermography, and diverse systems utilizing statistical models and machine learning techniques, including artificial neural networks, to enhance the overall efficiency and accuracy of mastitis detection. According to a review of 15 publications, machine learning technology can predict the risk and detect mastitis in cattle with an accuracy ranging from 87.62% to 98.10% and sensitivity and specificity ranging from 84.62% to 99.4% and 81.25% to 98.8%, respectively. Additionally, machine learning algorithms and microarray meta-analysis are utilized to identify mastitis genes in dairy cattle, providing insights into the underlying functional modules of mastitis disease. Moreover, AI applications can assist in developing predictive models that anticipate the likelihood of mastitis outbreaks based on factors such as environmental conditions, herd management practices, and animal health history. This proactive approach supports farmers in implementing preventive measures and optimizing herd health. By harnessing the power of artificial intelligence, the diagnosis of bovine mastitis can be significantly improved, enabling more effective management strategies and ultimately enhancing the health and productivity of dairy cattle. The integration of artificial intelligence presents valuable opportunities for the precise and early detection of mastitis, providing substantial benefits to the dairy industry.Keywords: artificial insemination, automatic milking system, cattle, machine learning, mastitis
Procedia PDF Downloads 664907 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors
Authors: Ibrahim Beldjilali, Adel Ghenaiet
Abstract:
The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.Keywords: aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study
Procedia PDF Downloads 1594906 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate
Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur
Abstract:
Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration
Procedia PDF Downloads 1354905 Top-Down Approach for Fabricating Hematite Nanowire Arrays
Authors: Seungmin Shin, Jin-Baek Kim
Abstract:
Hematite (α-Fe2O3) has very good semiconducting properties with a band gap of 2.1 eV and is antiferromagnetic. Due to its electrochemical stability, low toxicity, wide abundance, and low-cost, hematite, it is a particularly attractive material for photoelectrochemical cells. Additionally, hematite has also found applications in gas sensing, field emission, heterogeneous catalysis, and lithium-ion battery electrodes. Here, we discovered a new universal top-down method for the synthesis of one-dimensional hematite nanowire arrays. Various shapes and lengths of hematite nanowire have been easily fabricated over large areas by sequential processes. The obtained hematite nanowire arrays are promising candidates as photoanodes in photoelectrochemical solar cells.Keywords: hematite, lithography, nanowire, top-down process
Procedia PDF Downloads 2494904 Hotel Guests’ Service Fulfillment: Bangkok, Thailand
Authors: Numtana Ladplee, Cherif Haberih
Abstract:
The value of service evaluation depends critically on guests’ understanding of the evaluation objectives and their roles. The present research presents a three-phase investigation of the impact of evaluating participants’ theories about their roles: (a) identifying the theories, (b) testing the process consequences of participants’ role theories, and (c) gaining insights into the impact of participants’ role theories by testing key moderator/s. The findings of this study will hopefully indicate that (a) when forewarned of an upcoming evaluation task, consumers tend to believe that the evaluation objective is to identify aspects that need improvement, (b) this expectation produces a conscious attempt to identify negative aspects, although the encoding of attribute information is not affected, and (c) cognitive load during the evaluation experience greatly decreases the negativity of expected evaluations. The present study can be applied to other market research techniques and thereby improve our understanding of consumer inputs derived from market research. Such insights can help diminish biases produced by participants’ correct or incorrect theories regarding their roles.Keywords: fulfillment, hotel guests, service, Thailand
Procedia PDF Downloads 2784903 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens
Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima
Abstract:
Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria
Procedia PDF Downloads 4144902 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 2254901 Classification of IoT Traffic Security Attacks Using Deep Learning
Authors: Anum Ali, Kashaf ad Dooja, Asif Saleem
Abstract:
The future smart cities trend will be towards Internet of Things (IoT); IoT creates dynamic connections in a ubiquitous manner. Smart cities offer ease and flexibility for daily life matters. By using small devices that are connected to cloud servers based on IoT, network traffic between these devices is growing exponentially, whose security is a concerned issue, since ratio of cyber attack may make the network traffic vulnerable. This paper discusses the latest machine learning approaches in related work further to tackle the increasing rate of cyber attacks, machine learning algorithm is applied to IoT-based network traffic data. The proposed algorithm train itself on data and identify different sections of devices interaction by using supervised learning which is considered as a classifier related to a specific IoT device class. The simulation results clearly identify the attacks and produce fewer false detections.Keywords: IoT, traffic security, deep learning, classification
Procedia PDF Downloads 1544900 Laboratory Testing Regime for Quantifying Soil Collapsibility
Authors: Anne C. Okwedadi, Samson Ng’ambi, Ian Jefferson
Abstract:
Collapsible soils go through radical rearrangement of their particles when triggered by water, stress or/and vibration, causing loss of volume. This loss of volume in soil as seen in foundation failures has caused millions of dollars’ worth of damages to public facilities and infrastructure and so has an adverse effect on the society and people. Despite these consequences and the several studies that are available, more research is still required in the study of soil collapsibility. Discerning the pedogenesis (formation) of soils and investigating the combined effects of the different geological soil properties is key to elucidating and quantifying soils collapsibility. This study presents a novel laboratory testing regime that would be undertaken on soil samples where the effects of soil type, compactive variables (moisture content, density, void ratio, degree of saturation) and loading are analyzed. It is anticipated that results obtained would be useful in mapping the trend of the combined effect thus the basis for evaluating soil collapsibility or collapse potentials encountered in construction with volume loss problems attributed to collapse.Keywords: collapsible soil, geomorphological process, soil collapsibility properties, soil test
Procedia PDF Downloads 4724899 “Everything, Everywhere, All at Once” Hollywoodization and Lack of Authenticity in Today’s Mainstream Cinema
Authors: Haniyeh Parhizkar
Abstract:
When Sarris came up with the "auteur theory" in 1962, he emphasized that the utmost premise of auteur theory is the inner meanings and concepts of a film and that a film is purely an art form. Today's mainstream movies are conceptually closer to what the Frankfurt School scholars regarded as "reproduced" and "mass culture" years ago. Hollywood goes on to be a huge movie-making machine that leads the dominant paradigms of films throughout the world and cinema is far from art. Although there are still movies, directors, and audiences who favor art cinema over Hollywood and mainstream movies, it's an almost undeniable fact that, for the most part, people's perception of movies is widely influenced by their American depiction and Hollywood's legacy of mass culture. With the uprising of Hollywood studios as the forerunners of the movie industry and cinema being largely dependent on economics rather than artistic values, this distinctive role of cinema has diminished and is replaced with a global standard. The Blockbuster 2022 film, 'Everything, Everywhere, All at Once' is now the most-awarded movie of all time, winning seven Oscars at the 95th Academy Awards. Despite its main cast being Asian, the movie is produced by American incorporation and is heavily influenced by Hollywood's dominant themes of superheroes, fantasy, action, and adventure. The New Yorker film critic, Richard Brody, called the movie "a pitch for a Marvel" and critiqued the film for being "universalized" and "empty of history and culture". Other critics of Variety pinpointed the movie's similarities to Marvel, particularly in their storylines of multi-universe which manifest traces of American legacy. As argued by these critics, 'Everything, Everywhere, All at Once' might appear as a unique and authentic film at first glance, but it can be argued that it is yet another version of a Marvel movie. While the movie's universal acclaim was regarded as recognition and an acknowledgment of its Asian cast, the issue that arises here is when the Hollywood influences and American themes are so robust in the film, is the movie industry honoring another culture or is it yet another celebration of Hollywood's dominant paradigm. This essay will employ a critical approach to Hollywood's dominance and mass-produced culture, which has deprived authenticity of non-American movies and is constantly reproducing the same formula of success.Keywords: hollywoodization, universalization, blockbuster, dominant paradigm, marvel, authenticity, diversity
Procedia PDF Downloads 904898 Heart Ailment Prediction Using Machine Learning Methods
Authors: Abhigyan Hedau, Priya Shelke, Riddhi Mirajkar, Shreyash Chaple, Mrunali Gadekar, Himanshu Akula
Abstract:
The heart is the coordinating centre of the major endocrine glandular structure of the body, which produces hormones that profoundly affect the operations of the body, and diagnosing cardiovascular disease is a difficult but critical task. By extracting knowledge and information about the disease from patient data, data mining is a more practical technique to help doctors detect disorders. We use a variety of machine learning methods here, including logistic regression and support vector classifiers (SVC), K-nearest neighbours Classifiers (KNN), Decision Tree Classifiers, Random Forest classifiers and Gradient Boosting classifiers. These algorithms are applied to patient data containing 13 different factors to build a system that predicts heart disease in less time with more accuracy.Keywords: logistic regression, support vector classifier, k-nearest neighbour, decision tree, random forest and gradient boosting
Procedia PDF Downloads 524897 Investigating the performance of machine learning models on PM2.5 forecasts: A case study in the city of Thessaloniki
Authors: Alexandros Pournaras, Anastasia Papadopoulou, Serafim Kontos, Anastasios Karakostas
Abstract:
The air quality of modern cities is an important concern, as poor air quality contributes to human health and environmental issues. Reliable air quality forecasting has, thus, gained scientific and governmental attention as an essential tool that enables authorities to take proactive measures for public safety. In this study, the potential of Machine Learning (ML) models to forecast PM2.5 at local scale is investigated in the city of Thessaloniki, the second largest city in Greece, which has been struggling with the persistent issue of air pollution. ML models, with proven ability to address timeseries forecasting, are employed to predict the PM2.5 concentrations and the respective Air Quality Index 5-days ahead by learning from daily historical air quality and meteorological data from 2014 to 2016 and gathered from two stations with different land use characteristics in the urban fabric of Thessaloniki. The performance of the ML models on PM2.5 concentrations is evaluated with common statistical methods, such as R squared (r²) and Root Mean Squared Error (RMSE), utilizing a portion of the stations’ measurements as test set. A multi-categorical evaluation is utilized for the assessment of their performance on respective AQIs. Several conclusions were made from the experiments conducted. Experimenting on MLs’ configuration revealed a moderate effect of various parameters and training schemas on the model’s predictions. Their performance of all these models were found to produce satisfactory results on PM2.5 concentrations. In addition, their application on untrained stations showed that these models can perform well, indicating a generalized behavior. Moreover, their performance on AQI was even better, showing that the MLs can be used as predictors for AQI, which is the direct information provided to the general public.Keywords: Air Quality, AQ Forecasting, AQI, Machine Learning, PM2.5
Procedia PDF Downloads 794896 StockTwits Sentiment Analysis on Stock Price Prediction
Authors: Min Chen, Rubi Gupta
Abstract:
Understanding and predicting stock market movements is a challenging problem. It is believed stock markets are partially driven by public sentiments, which leads to numerous research efforts to predict stock market trend using public sentiments expressed on social media such as Twitter but with limited success. Recently a microblogging website StockTwits is becoming increasingly popular for users to share their discussions and sentiments about stocks and financial market. In this project, we analyze the text content of StockTwits tweets and extract financial sentiment using text featurization and machine learning algorithms. StockTwits tweets are first pre-processed using techniques including stopword removal, special character removal, and case normalization to remove noise. Features are extracted from these preprocessed tweets through text featurization process using bags of words, N-gram models, TF-IDF (term frequency-inverse document frequency), and latent semantic analysis. Machine learning models are then trained to classify the tweets' sentiment as positive (bullish) or negative (bearish). The correlation between the aggregated daily sentiment and daily stock price movement is then investigated using Pearson’s correlation coefficient. Finally, the sentiment information is applied together with time series stock data to predict stock price movement. The experiments on five companies (Apple, Amazon, General Electric, Microsoft, and Target) in a duration of nine months demonstrate the effectiveness of our study in improving the prediction accuracy.Keywords: machine learning, sentiment analysis, stock price prediction, tweet processing
Procedia PDF Downloads 1574895 The Concept of Birthday: A Theoretical, Historical, and Social Overview, in Judaism and Other Cultures
Authors: Orly Redlich
Abstract:
In the age of social distance, which has been added to an individual and competitive worldview, it has become important to find a way to promote closeness and personal touch. The sense of social belonging and the existence of positive interaction with others have recently become a considerable necessity. Therefore, this theoretical paper will review one of the familiar and common concepts among different cultures around the world – birthday. This paper has a theoretical contribution that deepens the understanding of the birthday concept. Birthday rituals are historical and universal events, which noted since the prehistoric eras. In ancient history, birthday rituals were solely reserved for kings and nobility members, but over the years, birthday celebrations have evolved into a worldwide tradition. Some of the familiar birthday customs and symbols are currently common among most cultures, while some cultures have adopted for themselves unique birthday customs, which characterized their values and traditions. The birthday concept has a unique significance in Judaism as well, historically, religiously, and socially: It is considered as a lucky day and a private holiday for the celebrant. Therefore, the present paper reviews diverse birthday customs around the world in different cultures, including Judaism, and marks important birthdays throughout history. The paper also describes how the concept of birthday appears over the years in songs, novels, and art, and presents quotes from distinguished sages. The theoretical review suggests that birthday has a special meaning as a time-mark in the cycle of life, and as a socialization means in human development. Moreover, the birthday serves as a symbol of belonging and group cohesiveness, a day in which the celebrant's sense of belonging and sense of importance are strengthened and nurtured. Thus, the reappearance of these elements in a family or group interaction during the birthday ceremony allows the celebrant to absorb positive impressions about himself. In view of the extensive theoretical review, it seems that the unique importance of birthdays can serve as the foundation for intervention programs that may affect the participants’ sense of belonging and empowerment. In the group aspect, perhaps it can also yield therapeutic factors within a group. Concrete recommendations are presented at the end of the paper.Keywords: birthday, universal events, positive interaction, group cohesiveness, rituals
Procedia PDF Downloads 1444894 The Lexical Eidos as an Invariant of a Polysemantic Word
Authors: S. Pesina, T. Solonchak
Abstract:
Phenomenological analysis is not based on natural language, but ideal language which is able to be a carrier of ideal meanings – eidos representing typical structures or essences. For this purpose, it’s necessary to release from the spatio-temporal definiteness of a subject and then state its noetic essence (eidos) by means of free fantasy generation. Herewith, as if a totally new objectness is created - the universal, confirming the thesis that thinking process takes place in generalizations passing by numerous means through the specific to the general and from the general through the specific to the singular.Keywords: lexical eidos, phenomenology, noema, polysemantic word, semantic core
Procedia PDF Downloads 2784893 A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings
Authors: Selim M. Khan, Dustin D. Pearson, Tryggve Rönnqvist, Markus E. Nielsen, Joshua M. Taron, Aaron A. Goodarzi
Abstract:
Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada.Keywords: radon health risk, time-series, deep machine learning, lung cancer, Canada, Sweden
Procedia PDF Downloads 86