Search results for: trained graphic designers
362 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 552361 Community Crèche Is a Measure to Prevent Child Injuries: Its Challenges and Measures for Improvement
Authors: Rabbya Ashrafi, Mohammad Tarikul Islam , Al-Amin Bhuiyan, Aminur Rahman
Abstract:
Injury is the leading killer of children in Bangladesh. Anchal (community crèche) is an effective intervention to prevent injuries among children under 5. Through the SoLiD project, 1,600 Anchals are in place in three sub-districts in Bangladesh. The objectives of the Anchal are to provide supervision and early childhood development stimulations (ECD) to the children. A locally trained caregiver supervises 20-25 children, 9 to 59 months old, from 9 a.m. to 1 p.m., six days a week. Although it was found effective, during its implementation phase several challenges were noticed. To identify challenges and means to overcome those to improve the Anchal activities. In-depth interviews were conducted with Anchal caregivers, their supervisors, and trainers. Focus group discussions were conducted with the mothers of the Anchal children. The study was conducted in the Manohardi sub-district in November 2015. Decay of knowledge and skills after 2-3 months of training, lack of formal certification and inappropriate selection of women as Anchal caregivers, and enrollment of small children (less than 12 months) were the important challenges. The reluctance of parents to send children to the Anchal at the proper time, failure to engage children in various ECD activities, ineffective conduction of parents and community leaders meeting by the Anchal caregivers, insufficient accommodation, and poor supply of logistics for children were also the important challenges. The suggestion for improvement was to recruit caregivers as per standard criteria, provide them refreshers training at three months intervals, train them on effective conduction of parents and community leaders meetings, provide a formal certificate, and ensure regular supply of logistics. The identified challenges are needed to be addressed by utilizing the suggestions obtained from the IDIs and FGDs to make the Anchal intervention more effective in preventing childhood injuries.Keywords: comunity crech, earlychildhood development, measures for improvement, childhood injury
Procedia PDF Downloads 88360 Effect of Foot Reflexology Treatment on Arterial Blood Gases among Mechanically Ventilated Patients
Authors: Maha Salah Abdullah Ismail, Manal S. Ismail, Amir M. Saleh
Abstract:
Reflexology treatment is a method for enhancing body relaxation. It is a widely recognized as an alternative therapy, effective for many health conditions. This study aimed to evaluate the effect of reflexology treatment on arterial blood gases among mechanically ventilated patients. A quasi-experimental (pre and post-test) research design was used. Research hypothesis was mechanically ventilated patients who will receive the reflexology treatment will have improvement in their arterial blood gases than those who will not. The current study was carried out in different Intensive Care Units at the Cairo University Hospitals. A purposeful sample of 100 adults’ mechanically ventilated patients was recruited over a period of three months of data collection. The participants were divided into two equally matched groups; (1) The study group who has received the routine care, in addition, two reflexology sessions on the feet, (2) The control group who has received only the routine care. One tool was utilized to collect data pertinent to the study; mechanically ventilated patients' data sheet that consists of demographic and medical data. Result: Majority (58% of the study group and 82% of the control group) were males, with mean age of 50.9 years in both groups. Patients who received the reflexology treatment significantly increase in the oxygen saturation pre second session (t=5.15, p=.000), immediate post sessions (t=4.4, p=.000) and post two hours (t= 4.7, p= .000). The study group was more likely to have lower PaO2 (F=5.025, p=.015), PaCo2 (F=4.952, p=.025) and higher HCo3 (F=15.211, p=.000) than the control group. Conclusion: This study results support the positive effect of reflexology treatment in improving some arterial blood gases among mechanically ventilated patients’ with the conventional therapy as in the study group there was increase in the oxygen saturation. In differences between groups there decrease PaO2, PaCo2 and increase HCo3 in the study group. Recommendation: Nurses should be trained how to demonstrate the foot reflexology among mechanically ventilated patients.Keywords: arterial blood gases, foot, mechanical ventilated patient, reflexology
Procedia PDF Downloads 205359 The Current Level of Shared Decision-Making in Head-And-Neck Oncology: An Exploratory Study – Preliminary Results
Authors: Anne N. Heirman, Song Duimel, Rob van Son, Lisette van der Molen, Richard Dirven, Gyorgi B. Halmos, Julia van Weert, Michiel W.M. van den Brekel
Abstract:
Objectives: Treatments for head-neck cancer are drastic and often significantly impact the quality of life and appearance of patients. Shared decision-making (SDM) beholds a collaboration between patient and doctor in which the most suitable treatment can be chosen by integrating patient preferences, values, and medical information. SDM has a lot of advantages that would be useful in making difficult treatment choices. The objective of this study was to determine the current level of SDM among patients and head-and-neck surgeons. Methods: Consultations of patients with a non-cutaneous head-and-neck malignancy facing a treatment decision were selected and included. If given informed consent, the consultation was recorded with an audio recorder, and the patient and surgeon filled in a questionnaire immediately after the consultation. The SDM level of the consultation was scored objectively by independent observers who judged audio recordings of the consultation using the OPTION5-scale, ranging from 0% (no SDM) to 100% (optimum SDM), as well as subjectively by patients (using the SDM-Q-9 and Control preference scale) and clinicians (SDM-Q-Doc, modified control preference scale) percentages. Preliminary results: Five head-neck surgeons have each at least seven recorded conversations with different patients. One of them was trained in SDM. The other four had no experience with SDM. Most patients were male (74%), and oropharyngeal carcinoma was the most common diagnosis (41%), followed by oral cancer (33%). Five patients received palliative treatment of which two patients were not treated recording guidelines. At this moment, all recordings are scored by the two independent observers. Analysis of the results will follow soon. Conclusion: The current study will determine to what extent there is a discrepancy between the objective and subjective level of shared decision-making (SDM) during a doctor-patient consultation in Head-and-Neck surgery. The results of the analysis will follow shortly.Keywords: head-and-neck oncology, patient involvement, physician-patient relations, shared decision making
Procedia PDF Downloads 93358 Applying Push Notifications with Behavioral Change Strategies in Fitness Applications: A Survey of User's Perception Based on Consumer Engagement
Authors: Yali Liu, Maria Avello Iturriagagoitia
Abstract:
Background: Fitness applications (apps) are one of the most popular mobile health (mHealth) apps. These apps can help prevent/control health issues such as obesity, which is one of the most serious public health challenges in the developed world in recent decades. Compared with the traditional intervention like face-to-face treatment, it is cheaper and more convenient to use fitness apps to interfere with physical activities and healthy behaviors. Nevertheless, fitness applications apps tend to have high abandonment rates and low levels of user engagement. Therefore, maintaining the endurance of users' usage is challenging. In fact, previous research shows a variety of strategies -goal-setting, self-monitoring, coaching, etc.- for promoting fitness and health behavior change. These strategies can influence the users’ perseverance and self-monitoring of the program as well as favoring their adherence to routines that involve a long-term behavioral change. However, commercial fitness apps rarely incorporate these strategies into their design, thus leading to a lack of engagement with the apps. Most of today’s mobile services and brands engage their users proactively via push notifications. Push notifications. These notifications are visual or auditory alerts to inform mobile users about a wide range of topics that entails an effective and personal mean of communication between the app and the user. One of the research purposes of this article is to implement the application of behavior change strategies through push notifications. Proposes: This study aims to better understand the influence that effective use of push notifications combined with the behavioral change strategies will have on users’ engagement with the fitness app. And the secondary objectives are 1) to discuss the sociodemographic differences in utilization of push notifications of fitness apps; 2) to determine the impact of each strategy in customer engagement. Methods: The study uses a combination of the Consumer Engagement Theory and UTAUT2 based model to conduct an online survey among current users of fitness apps. The questionnaire assessed attitudes to each behavioral change strategy, and sociodemographic variables. Findings: Results show the positive effect of push notifications in the generation of consumer engagement and the different impacts of each strategy among different groups of population in customer engagement. Conclusions: Fitness apps with behavior change strategies have a positive impact on increasing users’ usage time and customer engagement. Theoretical experts can participate in designing fitness applications, along with technical designers.Keywords: behavioral change, customer engagement, fitness app, push notification, UTAUT2
Procedia PDF Downloads 135357 Detection of Safety Goggles on Humans in Industrial Environment Using Faster-Region Based on Convolutional Neural Network with Rotated Bounding Box
Authors: Ankit Kamboj, Shikha Talwar, Nilesh Powar
Abstract:
To successfully deliver our products in the market, the employees need to be in a safe environment, especially in an industrial and manufacturing environment. The consequences of delinquency in wearing safety glasses while working in industrial plants could be high risk to employees, hence the need to develop a real-time automatic detection system which detects the persons (violators) not wearing safety glasses. In this study a convolutional neural network (CNN) algorithm called faster region based CNN (Faster RCNN) with rotated bounding box has been used for detecting safety glasses on persons; the algorithm has an advantage of detecting safety glasses with different orientation angles on the persons. The proposed method of rotational bounding boxes with a convolutional neural network first detects a person from the images, and then the method detects whether the person is wearing safety glasses or not. The video data is captured at the entrance of restricted zones of the industrial environment (manufacturing plant), which is further converted into images at 2 frames per second. In the first step, the CNN with pre-trained weights on COCO dataset is used for person detection where the detections are cropped as images. Then the safety goggles are labelled on the cropped images using the image labelling tool called roLabelImg, which is used to annotate the ground truth values of rotated objects more accurately, and the annotations obtained are further modified to depict four coordinates of the rectangular bounding box. Next, the faster RCNN with rotated bounding box is used to detect safety goggles, which is then compared with traditional bounding box faster RCNN in terms of detection accuracy (average precision), which shows the effectiveness of the proposed method for detection of rotatory objects. The deep learning benchmarking is done on a Dell workstation with a 16GB Nvidia GPU.Keywords: CNN, deep learning, faster RCNN, roLabelImg rotated bounding box, safety goggle detection
Procedia PDF Downloads 127356 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 218355 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 104354 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University
Authors: Ruth Nsibirano
Abstract:
Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.Keywords: distance education, online course content, staff attitudes, best practices in online learning
Procedia PDF Downloads 252353 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 157352 A Profile of Out-of-Hospital Cardiac Arrest in ‘Amang’ Rodriguez Memorial Medical Center: A Prospective Cohort Study
Authors: Donna Erika E. De Jesus
Abstract:
Introduction: Cardiac arrest occurs when abrupt cessation of cardiac function results in loss of effective circulation and complete cardiovascular collapse. For every minute of cardiac arrest without early intervention (cardiopulmonary resuscitation [CPR], defibrillation), chances of survival drop by 7-10%. It is crucial that CPR be initiated within 4-6 minutes to avoid brain death. Most out-of-hospital cardiac arrests (OHCA) occur in a residential setting where access to trained personnel and equipment is not readily available, resulting in poor victim outcomes. Methods: This is a descriptive study done from August to November 2021 using a prospective cohort design. Participants of the study include adult patients aged 18 years and above brought to the emergency room who suffered from out-of-hospital cardiac arrest. Out of the total 102 cases of OHCA, 63 participants were included in the study. Descriptive statistics were used to summarize the demographic and clinical characteristics of the patients. Results: 43 were male patients, comprising the majority at 73.02%. Hypertension was identified as the top co-morbidity, followed by diabetes mellitus, heart failure, and chronic kidney disease (CKD). Medical causes of arrest were identified in 96.83% of the cases. 90.48% of cardiac arrests occurred at home. Only 26 patients (41.27%) received pre-hospital intervention prior to ER arrival, which comprised only hands-only CPR. Twenty-three of which were performed by individuals with background knowledge of CPR. 60.32% were brought via self-conduction, the remainder by ambulances, which were noted to have no available equipment necessary to provide proper resuscitation. The average travel time from dispatch to ER arrival is 20 minutes. Conclusion: Overall survival of OHCA in our local setting remains dismal, as a return of spontaneous circulation was not achieved in any of the patients. The small number of patients having pre-hospital CPR indicates the need for emphasis on training and community education.Keywords: out-of-hospital cardiac arrest, cardiopulmonary resuscitation, basic life support, emergency medical services
Procedia PDF Downloads 105351 Atomic Decomposition Audio Data Compression and Denoising Using Sparse Dictionary Feature Learning
Authors: T. Bryan , V. Kepuska, I. Kostnaic
Abstract:
A method of data compression and denoising is introduced that is based on atomic decomposition of audio data using “basis vectors” that are learned from the audio data itself. The basis vectors are shown to have higher data compression and better signal-to-noise enhancement than the Gabor and gammatone “seed atoms” that were used to generate them. The basis vectors are the input weights of a Sparse AutoEncoder (SAE) that is trained using “envelope samples” of windowed segments of the audio data. The envelope samples are extracted from the audio data by performing atomic decomposition with Gabor or gammatone seed atoms. This process identifies segments of audio data that are locally coherent with the seed atoms. Envelope samples are extracted by identifying locally coherent audio data segments with Gabor or gammatone seed atoms, found by matching pursuit. The envelope samples are formed by taking the kronecker products of the atomic envelopes with the locally coherent data segments. Oracle signal-to-noise ratio (SNR) verses data compression curves are generated for the seed atoms as well as the basis vectors learned from Gabor and gammatone seed atoms. SNR data compression curves are generated for speech signals as well as early American music recordings. The basis vectors are shown to have higher denoising capability for data compression rates ranging from 90% to 99.84% for speech as well as music. Envelope samples are displayed as images by folding the time series into column vectors. This display method is used to compare of the output of the SAE with the envelope samples that produced them. The basis vectors are also displayed as images. Sparsity is shown to play an important role in producing the highest denoising basis vectors.Keywords: sparse dictionary learning, autoencoder, sparse autoencoder, basis vectors, atomic decomposition, envelope sampling, envelope samples, Gabor, gammatone, matching pursuit
Procedia PDF Downloads 249350 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH
Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung
Abstract:
In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality
Procedia PDF Downloads 299349 Management of Small-Scale Companies in Nigeria. Case Study of Problems Faced by Entrepreneurs
Authors: Aderemi, Moses Aderibigbe
Abstract:
The supply chain of a manufacturing company can be classified into three categories, namely: 1) supplier chain, these are a network of suppliers of raw materials, machinery, and other requirements for daily operations for the company; 2) internal chain, which are departmental or functional relationships within the organization like production, finance, marketing, logistic and quality control departments all interacting together to achieve the goals and objective of the company; and 3) customer chain; these are networks used for products distribution to the final consumer which includes the product distributors and retailers in the marketplace as may be applicable. In a developing country like Nigeria, where government infrastructures are poor or, in some cases, none in existence, the survival of a small-scale manufacturing company often depends on how effectively its supply chain is managed. In Nigeria, suppliers of machinery and raw materials to most manufacturing companies are from low-cost but high-tech countries like China or India. The problem with the supply chain from these countries apart from the language barrier between these countries and Nigeria, is also that of product quality and after-sales support services. The internal chain also requires funding to employ an experienced and trained workforce to deliver the company’s goals and objectives effectively and efficiently, which is always a challenge for small-scale manufacturers, including product marketing. In Nigeria, the management of the supply chain by small-scale manufacturers is further complicated by unfavourable government policies. This empirical research is a review and analysis of the supply chain management of a small-scale manufacturing company located in Lagos, Nigeria. The company's performance for the past five years has been on the decline and company management thinks there is a need for a review of its supply chain management for business survival. The company’s supply chain is analyzed and compared with best global practices in this research, and recommendations are made to the company management. The research outcome justifies the company’s need for a strategic change in its supply chain management for business sustainability and provides a learning point to small-scale manufacturing companies from developing countries in AfricaKeywords: management, small scale, supply chain, companies, leaders
Procedia PDF Downloads 22348 The Effectiveness of a School-Based Addiction Prevention Program: Pilot Evaluation of Rajasthan Addiction Prevention Project
Authors: Sadhana Sharma, Neha Sharma, Hardik Khandelwal, Arti Sharma
Abstract:
Background: It is widely acknowledged globally that parents must advocate for their children's drug and substance abuse prevention. However, many parents find it difficult to advocate due to systemic and logistical barriers. Alternatives to introducing advocacy, awareness, and support for the prevention of drug and substance abuse to children could occur in schools. However, little research has been conducted on the development of advocates for substance abuse in school settings. Objective: to evaluate the effectiveness of a school-based addiction prevention and control created as part of the Rajasthan Addiction Prevention Project (a partnership between state-community initiative). Methods: We conducted an evaluation in this study to determine the impact of a RAPP on a primary outcome (substance abuse knowledge) and other outcomes (family–school partnership, empowerment, and support). Specifically, between September-December 2022, two schools participated in the intervention group (advocacy training), and two schools participated in the control group (waiting list). The RAPP designed specialised 2-hrs training to equip teachers-parents with the knowledge and skills necessary to advocate for their own children and those of other families. All participants were required to complete a pre- and post-survey. Results: The intervention group established school advocates in schools where trained parents volunteered to lead support groups for high-risk children. Compared to the participants in the wait list control group, those in the intervention group demonstrated greater education knowledge, P = 0.002, and self-mastery, P = 0.04, and decreased family–school partnership quality, P = 0.002.Conclusions: The experimental evaluation of school-based advocacy programme revealed positive effects on substance abuse that persist over time. The approach wa s deemed feasible and acceptable by both parents and the school.Keywords: prevention, school based, addiction, advocacy
Procedia PDF Downloads 92347 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan
Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima
Abstract:
Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.Keywords: farmers, quinoa, adoption, contact, training and visit
Procedia PDF Downloads 355346 Thermal and Visual Comfort Assessment in Office Buildings in Relation to Space Depth
Authors: Elham Soltani Dehnavi
Abstract:
In today’s compact cities, bringing daylighting and fresh air to buildings is a significant challenge, but it also presents opportunities to reduce energy consumption in buildings by reducing the need for artificial lighting and mechanical systems. Simple adjustments to building form can contribute to their efficiency. This paper examines how the relationship between the width and depth of the rooms in office buildings affects visual and thermal comfort, and consequently energy savings. Based on these evaluations, we can determine the best location for sedentary areas in a room. We can also propose improvements to occupant experience and minimize the difference between the predicted and measured performance in buildings by changing other design parameters, such as natural ventilation strategies, glazing properties, and shading. This study investigates the condition of spatial daylighting and thermal comfort for a range of room configurations using computer simulations, then it suggests the best depth for optimizing both daylighting and thermal comfort, and consequently energy performance in each room type. The Window-to-Wall Ratio (WWR) is 40% with 0.8m window sill and 0.4m window head. Also, there are some fixed parameters chosen according to building codes and standards, and the simulations are done in Seattle, USA. The simulation results are presented as evaluation grids using the thresholds for different metrics such as Daylight Autonomy (DA), spatial Daylight Autonomy (sDA), Annual Sunlight Exposure (ASE), and Daylight Glare Probability (DGP) for visual comfort, and Predicted Mean Vote (PMV), Predicted Percentage of Dissatisfied (PPD), occupied Thermal Comfort Percentage (occTCP), over-heated percent, under-heated percent, and Standard Effective Temperature (SET) for thermal comfort that are extracted from Grasshopper scripts. The simulation tools are Grasshopper plugins such as Ladybug, Honeybee, and EnergyPlus. According to the results, some metrics do not change much along the room depth and some of them change significantly. So, we can overlap these grids in order to determine the comfort zone. The overlapped grids contain 8 metrics, and the pixels that meet all 8 mentioned metrics’ thresholds define the comfort zone. With these overlapped maps, we can determine the comfort zones inside rooms and locate sedentary areas there. Other parts can be used for other tasks that are not used permanently or need lower or higher amounts of daylight and thermal comfort is less critical to user experience. The results can be reflected in a table to be used as a guideline by designers in the early stages of the design process.Keywords: occupant experience, office buildings, space depth, thermal comfort, visual comfort
Procedia PDF Downloads 181345 Forensic Entomology in Algeria
Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa
Abstract:
Forensic entomology is the use of insects and their arthropod relatives as silent witnesses to aid legal investigations by interpreting information concerning a death. The main purpose of forensic entomology is to establish the postmortem interval or PMI Postmortem interval is a matter of crucial importance in the investigations of homicide and other untimely deaths when the body found is after three days. Forensic entomology has grown immensely as a discipline in the past thirty years. In Algeria, forensic entomology was introduced in 2010 by the National Institute for Criminalistics and Criminology of the National Gendarmerie (NICC). However, all the work that has been done so far in this growing field in Algeria has been unknown at both the national and international levels. In this context, the aim of this paper is to describe the state of forensic entomology in Algeria. The Laboratory of Entomology of the NICC is the only one of its kind in Algeria. It started its activities in 2010, consisting of two specialists. The main missions of the laboratory are estimation of the PMI by the analysis of entomological evidence, and determination if the body was moved. Currently, the laboratory is performing different tasks such as the expert work required by investigators to estimate the PMI using the insects. The estimation is performed by the accumulated degree days method (ADD) in most of the cases except for those where the cadaver is in dry decay. To assure the quality of the entomological evidence, crime scene personnel are trained by the laboratory of Entomology of the NICC. Recently, undergraduate and graduate students have been studying carrion ecology and insect activity in different geographic locations of Algeria using rabbits and wild boar cadavers as animal models. The Laboratory of Entomology of the NICC has also been involved in some of these research projects. Entomotoxicology experiments are also conducted with the collaboration of the Toxicology Department of the NICC. By dint of hard work that has been performed by the Laboratory of Entomology of the NICC, official bodies have been adopting more and more the use of entomological evidence in criminal investigations in Algeria, which is commendable. It is important, therefore, that steps are taken to fill in the gaps in the knowledge necessary for entomological evidence to have a useful future in criminal investigations in Algeria.Keywords: forensic entomology, corpse, insects, postmortem interval, expertise, Algeria
Procedia PDF Downloads 405344 Effect of Urea Deep Placement Technology Adoption on the Production Frontier: Evidence from Irrigation Rice Farmers in the Northern Region of Ghana
Authors: Shaibu Baanni Azumah, William Adzawla
Abstract:
Rice is an important staple crop, with current demand higher than the domestic supply in Ghana. This has led to a high and unfavourable import bill. Therefore, recent policies and interventions in the agricultural sub-sector aim at promoting various improved agricultural technologies in order to improve domestic production and reduce the importation of rice. In this study, we examined the effect of the adoption of Urea Deep Placement (UDP) technology by rice farmers on the position of the production frontier. This involved 200 farmers selected through a multi stage sampling technique in the Northern region of Ghana. A Cobb-Douglas stochastic frontier model was fitted. The result showed that the adoption of UDP technology shifts the output frontier outward and also move the farmers closer to the frontier. Farmers were also operating under diminishing returns to scale which calls for redress. Other factors that significantly influenced rice production were farm size, labour, use of certified seeds and NPK fertilizer. Although there was an opportunity for improvement, the farmers were highly efficient (92%), compared to previous studies. Farmers’ efficiency was improved through increased education, household size, experience, access to credit, and lack of extension service provision by MoFA. The study recommends the revision of Ghana’s agricultural policy to include the UDP technology. Agricultural Extension officers of the Ministry of Food and Agriculture (MoFA) should be trained on the UDP technology to support IFDC’s drive to improve adoption by rice farmers. Rice farmers are also encouraged to expand their farm lands, improve plant population, and also increase the usage of fertilizer to improve yields. Mechanisms through which credit can be made easily accessible and effectively utilised should be identified and promoted.Keywords: efficiency, rice farmers, stochastic frontier, UDP technology
Procedia PDF Downloads 407343 Healthcare Professional’s Well-Being: Case Study of Two Care Units in a Big Hospital in Canada
Authors: Zakia Hammouni
Abstract:
Healthcare professionals’ well-being is becoming a priority during this Covid-19 pandemic due to stress, fatigue, and workload. Well before this pandemic, contemporary hospitals are endowed with environmental attributes that contribute to achieving well-being within their environment with the emphasis on the patient. The patient-centered care approach has been followed by the patient-centered design approach. Studies that have focused on the physical environment in hospitals have dealt with the patient's recovery process and his well-being. Prior scientific literature has placed less emphasis on the healthcare professionals’ interactions within the physical environment and to guide hospital designers to make evidence-based design choices to meet the needs and expectations of hospital users by considering, in addition to patients, healthcare professionals. This paper examines these issues related to the daily stress of professionals who provide care in a hospital environment. In this exploratory study, the interest was to grasp the issues related to this environment and explores the current realities of newly built hospitals based on design approaches and what attributes of the physical setting support healthcare professional’s well-being. Within a constructivist approach, this study was conducted in two care units in a new hospital in a big city in Canada before the Covid-19 pandemic (august 2nd to November 2nd 2018). A spatial evaluation of these care units allowed us to understand the interaction of health professionals in their work environment, to understand the spatial behavior of these professionals, and the narratives from 44 interviews of various healthcare professionals. The mental images validated the salient components of the hospital environment as perceived by these healthcare professionals. Thematic analysis and triangulation of the data set were conducted. Among the key attributes promoting the healthcare professionals’ well-being as revealed by the healthcare professionals are the overall light-color atmosphere in the hospital and care unit, particularly in the corridors and public areas of the hospital, the maintenance and cleanliness. The presence of the art elements also brings well-being to the health professionals as well as panoramic views from the staff lounge and corridors of the care units or elevator lobbies. Despite the overall positive assessment of this environment, some attributes need to be improved to ensure the well-being of healthcare professionals and to provide them with a restructuring environment. These are the supply of natural light, softer colors, sufficient furniture, comfortable seating in the restroom, and views, which are important in allowing these healthcare professionals to recover from their work stress. Noise is another attribute that needs to be further improved in the hospital work environment, especially in the nursing workstations and consultant's room. In conclusion, this study highlights the importance of providing healthcare professionals with work and rest areas that allow them to resist the stress they face, particularly during periods of extreme stress and fatigue such as a Covid-19 pandemic.Keywords: healthcare facilities, healthcare professionals, physical environment, well-being
Procedia PDF Downloads 127342 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection
Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra
Abstract:
In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging
Procedia PDF Downloads 85341 The Layout Analysis of Handwriting Characters and the Fusion of Multi-style Ancient Books’ Background
Authors: Yaolin Tian, Shanxiong Chen, Fujia Zhao, Xiaoyu Lin, Hailing Xiong
Abstract:
Ancient books are significant culture inheritors and their background textures convey the potential history information. However, multi-style texture recovery of ancient books has received little attention. Restricted by insufficient ancient textures and complex handling process, the generation of ancient textures confronts with new challenges. For instance, training without sufficient data usually brings about overfitting or mode collapse, so some of the outputs are prone to be fake. Recently, image generation and style transfer based on deep learning are widely applied in computer vision. Breakthroughs within the field make it possible to conduct research upon multi-style texture recovery of ancient books. Under the circumstances, we proposed a network of layout analysis and image fusion system. Firstly, we trained models by using Deep Convolution Generative against Networks (DCGAN) to synthesize multi-style ancient textures; then, we analyzed layouts based on the Position Rearrangement (PR) algorithm that we proposed to adjust the layout structure of foreground content; at last, we realized our goal by fusing rearranged foreground texts and generated background. In experiments, diversified samples such as ancient Yi, Jurchen, Seal were selected as our training sets. Then, the performances of different fine-turning models were gradually improved by adjusting DCGAN model in parameters as well as structures. In order to evaluate the results scientifically, cross entropy loss function and Fréchet Inception Distance (FID) are selected to be our assessment criteria. Eventually, we got model M8 with lowest FID score. Compared with DCGAN model proposed by Radford at el., the FID score of M8 improved by 19.26%, enhancing the quality of the synthetic images profoundly.Keywords: deep learning, image fusion, image generation, layout analysis
Procedia PDF Downloads 156340 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack
Authors: Vincent Andrew Cappellano
Abstract:
In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.Keywords: architecture, resiliency, availability, cyber-attack
Procedia PDF Downloads 106339 Development, Evaluation and Scale-Up of a Mental Health Care Plan (MHCP) in Nepal
Authors: Nagendra P. Luitel, Mark J. D. Jordans
Abstract:
Globally, there is a significant gap between the number of individuals in need of mental health care and those who actually receive treatment. The evidence is accumulating that mental health services can be delivered effectively by primary health care workers through community-based programs and task-sharing approaches. Changing the role of specialist mental health workers from service delivery to building clinical capacity of the primary health care (PHC) workers could help in reducing treatment gap in low and middle-income countries (LMICs). We developed a comprehensive mental health care plan in 2012 and evaluated its feasibility and effectiveness over the past three years. Initially, a mixed method formative study was conducted for the development of mental health care plan (MHCP). Routine monitoring and evaluation data, including client flow and reports of satisfaction, were obtained from beneficiaries (n=135) during the pilot-testing phase. Repeated community survey (N=2040); facility detection survey (N=4704) and the cohort study (N=576) were conducted for evaluation of the MHCP. The resulting MHCP consists of twelve packages divided over the community, health facility, and healthcare organization platforms. Detection of mental health problems increased significantly after introducing MHCP. Service implementation data support the real-life applicability of the MHCP, with reasonable treatment uptake. Currently, MHCP has been implemented in the entire Chitwan district where over 1400 people (438 people with depression, 406 people with psychosis, 181 people with epilepsy, 360 people with alcohol use disorder and 51 others) have received mental health services from trained health workers. Key barriers were identified and addressed, namely dissatisfaction with privacy, perceived burden among health workers, high drop-out rates and continue the supply of medicines. The results indicated that involvement of PHC workers in detection and management of mental health problems is an effective strategy to minimize treatment gap on mental health care in Nepal.Keywords: mental health, Nepal, primary care, treatment gap
Procedia PDF Downloads 293338 Radar Fault Diagnosis Strategy Based on Deep Learning
Authors: Bin Feng, Zhulin Zong
Abstract:
Radar systems are critical in the modern military, aviation, and maritime operations, and their proper functioning is essential for the success of these operations. However, due to the complexity and sensitivity of radar systems, they are susceptible to various faults that can significantly affect their performance. Traditional radar fault diagnosis strategies rely on expert knowledge and rule-based approaches, which are often limited in effectiveness and require a lot of time and resources. Deep learning has recently emerged as a promising approach for fault diagnosis due to its ability to learn features and patterns from large amounts of data automatically. In this paper, we propose a radar fault diagnosis strategy based on deep learning that can accurately identify and classify faults in radar systems. Our approach uses convolutional neural networks (CNN) to extract features from radar signals and fault classify the features. The proposed strategy is trained and validated on a dataset of measured radar signals with various types of faults. The results show that it achieves high accuracy in fault diagnosis. To further evaluate the effectiveness of the proposed strategy, we compare it with traditional rule-based approaches and other machine learning-based methods, including decision trees, support vector machines (SVMs), and random forests. The results demonstrate that our deep learning-based approach outperforms the traditional approaches in terms of accuracy and efficiency. Finally, we discuss the potential applications and limitations of the proposed strategy, as well as future research directions. Our study highlights the importance and potential of deep learning for radar fault diagnosis. It suggests that it can be a valuable tool for improving the performance and reliability of radar systems. In summary, this paper presents a radar fault diagnosis strategy based on deep learning that achieves high accuracy and efficiency in identifying and classifying faults in radar systems. The proposed strategy has significant potential for practical applications and can pave the way for further research.Keywords: radar system, fault diagnosis, deep learning, radar fault
Procedia PDF Downloads 90337 Leading Virtual Project Teams in the Post Pandemic Era: Trust and Conflict Management Strategies
Authors: Vidya Badrinarayanan, Appa Iyer Sivakumar
Abstract:
The coronavirus pandemic has sent an important message that future project teams need to be trained to work under virtual conditions, which has already become the new norm in organizations across the world. As organizations increasingly rely on virtual teams to achieve project objectives, it is essential to comprehend how leadership functions in virtual project teams. The purpose of this research is to analyze the leadership behaviors exhibited by project managers for building trust and managing conflicts effectively in virtual project teams. This convergent parallel mixed method research was conducted by surveying 185 virtual leaders and conducting a semi-structured interview with 13 senior virtual leaders involved in managing projects across the industry sectors. The research findings indicate that establishing trust and managing conflicts were ranked as significant challenges in leading virtual project teams in the post-pandemic era. In contrast to earlier findings, our research findings suggest that productivity was not ranked as a significant challenge in leading virtual project teams. This indeed is a positive finding for organizations to consider adopting virtual project teams in the long run. Additionally, the research findings recommend that virtual leaders need to strive to build a high-trust environment and develop effective conflict resolution skills to improve the effectiveness of virtual project teams. As the project management profession struggles with low project success rates, mixed-method research aims to contribute to the knowledge in the growing research area of virtual project leadership. This research contributes to the knowledge by offering first-person accounts from senior virtual leaders on the innovative strategies they had implemented for building trust and resolving conflicts effectively in the virtual project when there were limited opportunities for face-to-face interaction on account of the pandemic. In addition, the leadership framework created as a part of this research for trust development and conflict management in virtual project teams will guide project managers to improve virtual project team effectiveness.Keywords: conflict management, trust building, virtual leadership, virtual teams
Procedia PDF Downloads 187336 Female Entrepreneurship in Transitional Economies: An In-Depth Comparative Study about Challenges Facing Female Entrepreneurs in Nigeria and Egypt
Authors: Dina Mohamed Ayman, Rafieu Akin
Abstract:
In an attempt to increase the female total entrepreneurial activities (TEA) within Egypt and Nigeria, this paper aims to investigate the challenges facing female entrepreneurs operating in Egypt, in relative to Nigeria. In this regard, both researchers undertook a qualitative approach due to the scarcity of the literature reviewed on the topic; in those particular countries, and as an in-depth comparative mode. Therefore, ten Egyptian entrepreneurs in relative to ten Nigerian entrepreneurs were in-depth investigated. The research findings prove that female entrepreneurs face complex problems for being both gender and country-specific. Regarding the gender-specific obstacles, the work/life imbalance due to the scarcity of child-care nurseries and the prevalence of the gender-role division while performing the house chores rather than the concept of co-operation, acted as a main source of cultural challenge because women are considered mostly as 'housewives'. However, interestingly, this specific gender-discrimination challenge is proven to have no grounded effect in terms of the business-establishment and daily dealings neither in Egypt nor Nigeria, as one of the sample exclaimed 'as long as you pay, then no gender difference is set on the table'. Other country-specific challenges facing female entrepreneurs, lied in, the aggregate weak entrepreneurial framework governing both countries, also, women faced the difficulty of access to financial institutions with collateral requirements that are usually "hardly to be met", besides, the absence of the "micro-credit-Grameen-banks" concept. As well, the scarcity of incubators and business training centers providing network, consultancy and well-trained workforce to female entrepreneurs constitute a major hurdle for women entrepreneurs operating in both countries. Finally, this paper will conclude the research by offering a set of public-policy recommendations to pave the way for females to choose self-employment as a career path.Keywords: entrepreneurship, female entrepreneurship, obstacles, framework conditions, culture, micro-credit
Procedia PDF Downloads 371335 Exploring the Applications of Neural Networks in the Adaptive Learning Environment
Authors: Baladitya Swaika, Rahul Khatry
Abstract:
Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.Keywords: computer adaptive tests, item response theory, machine learning, neural networks
Procedia PDF Downloads 173334 Outcome of Bowel Management Program in Patient with Spinal Cord Injury
Authors: Roongtiwa Chobchuen, Angkana Srikhan, Pattra Wattanapan
Abstract:
Background: Neurogenic bowel is common condition after spinal cord injury. Most of spinal cord injured patients have motor weakness, mobility impairment which leads to constipation. Moreover, the neural pathway involving bowel function is interrupted. Therefore, the bowel management program should be implemented in nursing care in the earliest time after the onset of the disease to prevent the morbidity and mortality. Objective: To study the outcome of bowel management program of the patients with spinal cord injury who admitted for rehabilitation program. Study design: Descriptive study. Setting: Rehabilitation ward in Srinagarind Hospital. Populations: patients with subacute to chronic spinal cord injury who admitted at rehabilitation ward, Srinagarind hospital, aged over 18 years old. Instrument: The neurogenic bowel dysfunction score (NBDS) was used to determine the severity of neurogenic bowel. Procedure and statistical analysis: All participants were asked to complete the demographic data; age gender, duration of disease, diagnosis. The individual bowel function was assessed using NBDS at admission. The patients and caregivers were trained by nurses about the bowel management program which consisted of diet modification, abdominal massage, digital stimulation, stool evacuation including medication and physical activity. The outcome of the bowel management program was assessed by NBDS at discharge. The chi-square test was used to detect the difference in severity of neurogenic bowel at admission and discharge. Results: Sixteen spinal cord injured patients were enrolled in the study (age 45 ± 17 years old, 69% were male). Most of them (50%) were tetraplegia. On the admission, 12.5%, 12.5%, 43.75% and 31.25% were categorized as very minor (NBDS 0-6), minor (NBDS 7-9), moderate (NBDS 10-13) and severe (NBDS 14+) respectively. The severity of neurogenic bowel was decreased significantly at discharge (56.25%, 18.755%, 18.75% and 6.25% for very minor, minor, moderate and severe group respectively; p < 0.001) compared with NBDS at admission. Conclusions: Implementation of the effective bowel program decrease the severity of the neurogenic bowel in patient with spinal cord injury.Keywords: neurogenic bowel, NBDS, spinal cord injury, bowel program
Procedia PDF Downloads 242333 Sparse Representation Based Spatiotemporal Fusion Employing Additional Image Pairs to Improve Dictionary Training
Authors: Dacheng Li, Bo Huang, Qinjin Han, Ming Li
Abstract:
Remotely sensed imagery with the high spatial and temporal characteristics, which it is hard to acquire under the current land observation satellites, has been considered as a key factor for monitoring environmental changes over both global and local scales. On a basis of the limited high spatial-resolution observations, challenged studies called spatiotemporal fusion have been developed for generating high spatiotemporal images through employing other auxiliary low spatial-resolution data while with high-frequency observations. However, a majority of spatiotemporal fusion approaches yield to satisfactory assumption, empirical but unstable parameters, low accuracy or inefficient performance. Although the spatiotemporal fusion methodology via sparse representation theory has advantage in capturing reflectance changes, stability and execution efficiency (even more efficient when overcomplete dictionaries have been pre-trained), the retrieval of high-accuracy dictionary and its response to fusion results are still pending issues. In this paper, we employ additional image pairs (here each image-pair includes a Landsat Operational Land Imager and a Moderate Resolution Imaging Spectroradiometer acquisitions covering the partial area of Baotou, China) only into the coupled dictionary training process based on K-SVD (K-means Singular Value Decomposition) algorithm, and attempt to improve the fusion results of two existing sparse representation based fusion models (respectively utilizing one and two available image-pair). The results show that more eligible image pairs are probably related to a more accurate overcomplete dictionary, which generally indicates a better image representation, and is then contribute to an effective fusion performance in case that the added image-pair has similar seasonal aspects and image spatial structure features to the original image-pair. It is, therefore, reasonable to construct multi-dictionary training pattern for generating a series of high spatial resolution images based on limited acquisitions.Keywords: spatiotemporal fusion, sparse representation, K-SVD algorithm, dictionary learning
Procedia PDF Downloads 258