Search results for: peak detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4754

Search results for: peak detection

3374 A Simple and Easy-To-Use Tool for Detecting Outer Contour of Leukocytes Based on Image Processing Techniques

Authors: Retno Supriyanti, Best Leader Nababan, Yogi Ramadhani, Wahyu Siswandari

Abstract:

Blood cell morphology is an important parameter in a hematology test. Currently, in developing countries, a lot of hematology is done manually, either by physicians or laboratory staff. According to the limitation of the human eye, examination based on manual method will result in a lower precision and accuracy. In addition, the hematology test by manual will further complicate the diagnosis in some areas that do not have competent medical personnel. This research aims to develop a simple tool in the detection of blood cell morphology-based computer. In this paper, we focus on the detection of the outer contour of leukocytes. The results show that the system that we developed is promising for detecting blood cell morphology automatically. It is expected, by implementing this method, the problem of accuracy, precision and limitations of the medical staff can be solved.

Keywords: morphology operation, developing countries, hematology test, limitation of medical personnel

Procedia PDF Downloads 337
3373 Design and Optimization Fire Alarm System to Protect Gas Condensate Reservoirs With the Use of Nano-Technology

Authors: Hefzollah Mohammadian, Ensieh Hajeb, Mohamad Baqer Heidari

Abstract:

In this paper, for the protection and safety of tanks gases (flammable materials) and also due to the considerable economic value of the reservoir, the new system for the protection, the conservation and fire fighting has been cloned. The system consists of several parts: the Sensors to detect heat and fire with Nanotechnology (nano sensor), Barrier for isolation and protection from a range of two electronic zones, analyzer for detection and locating point of fire accurately, Main electronic board to announce fire, Fault diagnosis in different locations, such as relevant alarms and activate different devices for fire distinguish and announcement. An important feature of this system, high speed and capability of fire detection system in a way that is able to detect the value of the ambient temperature that can be adjusted. Another advantage of this system is autonomous and does not require human operator in place. Using nanotechnology, in addition to speeding up the work, reduces the cost of construction of the sensor and also the notification system and fire extinguish.

Keywords: analyser, barrier, heat resistance, general fault, general alarm, nano sensor

Procedia PDF Downloads 456
3372 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 154
3371 Gearbox Defect Detection in the Semi Autogenous Mills Using the Vibration Analysis Technique

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Semi autogenous mills are designed for grinding or primary crushed ore, and are the most widely used in concentrators globally. Any defect occurrence in semi autogenous mills can stop the production line. A Gearbox is a significant part of a rotating machine or a mill, so, the gearbox monitoring is a necessary process to prevent the unwanted defects. When a defect happens in a gearbox bearing, this defect can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. Vibration analysis is one of the most effective and common ways to detect the bearing defects in the mills. Vibration signal in a mill can be made by different parts of the mill including electromotor, pinion girth gear, different rolling bearings, and tire. When a vibration signal, made by the aforementioned parts, is added to the gearbox vibration spectrum, an accurate and on time defect detection in the gearbox will be difficult. In this paper, a new method is proposed to detect the gearbox bearing defects in the semi autogenous mill on time and accurately, using the vibration signal analysis method. In this method, if the vibration values are increased in the vibration curve, the probability of defect occurrence is investigated by comparing the equipment vibration values and the standard ones. Then, all vibration frequencies are extracted from the vibration signal and the equipment defect is detected using the vibration spectrum curve. This method is implemented on the semi autogenous mills in the Golgohar mining and industrial company in Iran. The results show that the proposed method can detect the bearing looseness on time and accurately. After defect detection, the bearing is opened before the equipment failure and the predictive maintenance actions are implemented on it.

Keywords: condition monitoring, gearbox defects, predictive maintenance, vibration analysis

Procedia PDF Downloads 465
3370 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.

Keywords: editing prevention technique, gradient method, luminance change, video watermarking

Procedia PDF Downloads 456
3369 Progress in Accuracy, Reliability and Safety in Firedamp Detection

Authors: José Luis Lorenzo Bayona, Ljiljana Medic-Pejic, Isabel Amez Arenillas, Blanca Castells Somoza

Abstract:

The communication presents the study results carried out by the Official Laboratory J. M. Madariaga (LOM) of the Polytechnic University of Madrid to analyze the reliability of methane detection systems used in underground mining. Poor firedamp control in work can cause from production stoppages to fatal accidents and since there is currently a great variety of equipment with different functional characteristics, a study is needed to indicate which measurement principles have the highest degree of confidence. For the development of the project, a series of fixed, transportable and portable methane detectors with different measurement principles have been selected to subject them to laboratory tests following the methods described in the applicable regulations. The test equipment has been the one usually used in the certification and calibration of these devices, subject to the LOM quality system, and the tests have been carried out on detectors accessible in the market. The conclusions establish the main advantages and disadvantages of the equipment according to the measurement principle used; catalytic combustion, interferometry and infrared absorption.

Keywords: ATEX standards, gas detector, methane meter, mining safety

Procedia PDF Downloads 137
3368 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 149
3367 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab

Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco

Abstract:

Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.

Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus

Procedia PDF Downloads 66
3366 A Study of Common Carotid Artery Behavior from B-Mode Ultrasound Image for Different Gender and BMI Categories

Authors: Nabilah Ibrahim, Khaliza Musa

Abstract:

The increment thickness of intima-media thickness (IMT) which involves the changes of diameter of the carotid artery is one of the early symptoms of the atherosclerosis lesion. The manual measurement of arterial diameter is time consuming and lack of reproducibility. Thus, this study reports the automatic approach to find the arterial diameter behavior for different gender, and body mass index (BMI) categories, focus on tracked region. BMI category is divided into underweight, normal, and overweight categories. Canny edge detection is employed to the B-mode image to extract the important information to be deal as the carotid wall boundary. The result shows the significant difference of arterial diameter between male and female groups which is 2.5% difference. In addition, the significant result of differences of arterial diameter for BMI category is the decreasing of arterial diameter proportional to the BMI.

Keywords: B-mode Ultrasound Image, carotid artery diameter, canny edge detection, body mass index

Procedia PDF Downloads 444
3365 Using Artificial Vision Techniques for Dust Detection on Photovoltaic Panels

Authors: Gustavo Funes, Eduardo Peters, Jose Delpiano

Abstract:

It is widely known that photovoltaic technology has been massively distributed over the last decade despite its low-efficiency ratio. Dust deposition reduces this efficiency even more, lowering the energy production and module lifespan. In this work, we developed an artificial vision algorithm based on CIELAB color space to identify dust over panels in an autonomous way. We performed several experiments photographing three different types of panels, 30W, 340W and 410W. Those panels were soiled artificially with uniform and non-uniform distributed dust. The algorithm proposed uses statistical tools to provide a simulation with a 100% soiled panel and then performs a comparison to get the percentage of dirt in the experimental data set. The simulation uses a seed that is obtained by taking a dust sample from the maximum amount of dust from the dataset. The final result is the dirt percentage and the possible distribution of dust over the panel. Dust deposition is a key factor for plant owners to determine cleaning cycles or identify nonuniform depositions that could lead to module failure and hot spots.

Keywords: dust detection, photovoltaic, artificial vision, soiling

Procedia PDF Downloads 50
3364 Development of an Interactive and Robust Image Analysis and Diagnostic Tool in R for Early Detection of Cervical Cancer

Authors: Kumar Dron Shrivastav, Ankan Mukherjee Das, Arti Taneja, Harpreet Singh, Priya Ranjan, Rajiv Janardhanan

Abstract:

Cervical cancer is one of the most common cancer among women worldwide which can be cured if detected early. Manual pathology which is typically utilized at present has many limitations. The current gold standard for cervical cancer diagnosis is exhaustive and time-consuming because it relies heavily on the subjective knowledge of the oncopathologists which leads to mis-diagnosis and missed diagnosis resulting false negative and false positive. To reduce time and complexities associated with early diagnosis, we require an interactive diagnostic tool for early detection particularly in developing countries where cervical cancer incidence and related mortality is high. Incorporation of digital pathology in place of manual pathology for cervical cancer screening and diagnosis can increase the precision and strongly reduce the chances of error in a time-specific manner. Thus, we propose a robust and interactive cervical cancer image analysis and diagnostic tool, which can categorically process both histopatholgical and cytopathological images to identify abnormal cells in the least amount of time and settings with minimum resources. Furthermore, incorporation of a set of specific parameters that are typically referred to for identification of abnormal cells with the help of open source software -’R’ is one of the major highlights of the tool. The software has the ability to automatically identify and quantify the morphological features, color intensity, sensitivity and other parameters digitally to differentiate abnormal from normal cells, which may improve and accelerate screening and early diagnosis, ultimately leading to timely treatment of cervical cancer.

Keywords: cervical cancer, early detection, digital Pathology, screening

Procedia PDF Downloads 178
3363 Subband Coding and Glottal Closure Instant (GCI) Using SEDREAMS Algorithm

Authors: Harisudha Kuresan, Dhanalakshmi Samiappan, T. Rama Rao

Abstract:

In modern telecommunication applications, Glottal Closure Instants location finding is important and is directly evaluated from the speech waveform. Here, we study the GCI using Speech Event Detection using Residual Excitation and the Mean Based Signal (SEDREAMS) algorithm. Speech coding uses parameter estimation using audio signal processing techniques to model the speech signal combined with generic data compression algorithms to represent the resulting modeled in a compact bit stream. This paper proposes a sub-band coder SBC, which is a type of transform coding and its performance for GCI detection using SEDREAMS are evaluated. In SBCs code in the speech signal is divided into two or more frequency bands and each of these sub-band signal is coded individually. The sub-bands after being processed are recombined to form the output signal, whose bandwidth covers the whole frequency spectrum. Then the signal is decomposed into low and high-frequency components and decimation and interpolation in frequency domain are performed. The proposed structure significantly reduces error, and precise locations of Glottal Closure Instants (GCIs) are found using SEDREAMS algorithm.

Keywords: SEDREAMS, GCI, SBC, GOI

Procedia PDF Downloads 356
3362 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy

Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed

Abstract:

The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.

Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy

Procedia PDF Downloads 540
3361 Preparation and Characterization of Poly(L-Lactic Acid)/Oligo(D-Lactic Acid) Grafted Cellulose Composites

Authors: Md. Hafezur Rahaman, Mohd. Maniruzzaman, Md. Shadiqul Islam, Md. Masud Rana

Abstract:

With the growth of environmental awareness, enormous researches are running to develop the next generation materials based on sustainability, eco-competence, and green chemistry to preserve and protect the environment. Due to biodegradability and biocompatibility, poly (L-lactic acid) (PLLA) has a great interest in ecological and medical applications. Also, cellulose is one of the most abundant biodegradable, renewable polymers found in nature. It has several advantages such as low cost, high mechanical strength, biodegradability and so on. Recently, an immense deal of attention has been paid for the scientific and technological development of α-cellulose based composite material. PLLA could be used for grafting of cellulose to improve the compatibility prior to the composite preparation. Here it is quite difficult to form a bond between lower hydrophilic molecules like PLLA and α-cellulose. Dimmers and oligomers can easily be grafted onto the surface of the cellulose by ring opening or polycondensation method due to their low molecular weight. In this research, α-cellulose extracted from jute fiber is grafted with oligo(D-lactic acid) (ODLA) via graft polycondensation reaction in presence of para-toluene sulphonic acid and potassium persulphate in toluene at 130°C for 9 hours under 380 mmHg. Here ODLA is synthesized by ring opening polymerization of D-lactides in the presence of stannous octoate (0.03 wt% of lactide) and D-lactic acids at 140°C for 10 hours. Composites of PLLA with ODLA grafted α-cellulose are prepared by solution mixing and film casting method. Confirmation of grafting was carried out through FTIR spectroscopy and SEM analysis. A strongest carbonyl peak of FTIR spectroscopy at 1728 cm⁻¹ of ODLA grafted α-cellulose confirms the grafting of ODLA onto α-cellulose which is absent in α-cellulose. It is also observed from SEM photographs that there are some white areas (spot) on ODLA grafted α-cellulose as compared to α-cellulose may indicate the grafting of ODLA and consistent with FTIR results. Analysis of the composites is carried out by FTIR, SEM, WAXD and thermal gravimetric analyzer. Most of the FTIR characteristic absorption peak of the composites shifted to higher wave number with increasing peak area may provide a confirmation that PLLA and grafted cellulose have better compatibility in composites via intermolecular hydrogen bonding and this supports previously published results. Grafted α-cellulose distributions in composites are uniform which is observed by SEM analysis. WAXD studied show that only homo-crystalline structures of PLLA present in the composites. Thermal stability of the composites is enhanced with increasing the percentages of ODLA grafted α-cellulose in composites. As a consequence, the resultant composites have a resistance toward the thermal degradation. The effects of length of the grafted chain and biodegradability of the composites will be studied in further research.

Keywords: α-cellulose, composite, graft polycondensation, oligo(D-lactic acid), poly(L-lactic acid)

Procedia PDF Downloads 117
3360 Efficiency on the Enteric Viral Removal in Four Potable Water Treatment Plants in Northeastern Colombia

Authors: Raquel Amanda Villamizar Gallardo, Oscar Orlando Ortíz Rodríguez

Abstract:

Enteric viruses are cosmopolitan agents present in several environments including water. These viruses can cause different diseases including gastroenteritis, hepatitis, conjunctivitis, respiratory problems among others. Although in Colombia there are not regulations concerning to routine viral analysis of drinking water, an enhanced understanding of viral pollution and resistance to treatments is desired in order to assure pure water to the population. Viral detection is often complex due to the need of specialized and time-consuming procedures. In addition, viruses are highly diluted in water which is a drawback from the analytical point of view. To this end, a fast and selective detection method for detection enteric viruses (i.e. Hepatitis A and Rotavirus) were applied. Micro- magnetic particles were functionalized with monoclonal antibodies anti-Hepatitis and anti-Rotavirus and they were used to capture, concentrate and separate whole viral particles in raw water and drinking water samples from four treatment plants identified as CAR-01, MON-02, POR-03, TON-04 and located in the Northeastern Colombia. Viruses were molecularly by using RT-PCR One Step Superscript III. Each plant was analyzed at the entry and exit points, in order to determine the initial presence and eventual reduction of Hepatitis A and Rotavirus after disinfection. The results revealed the presence of both enteric viruses in a 100 % of raw water analyzed in all plants. This represents a potential health hazard, especially for those people whose use this water for agricultural purposes. However, in drinking water analysis, enteric viruses was only positive in CAR-01, where was found the presence of Rotavirus. As a conclusion, the results confirm Rotavirus as the best indicator to evaluate the efficacy of potable treatment plant in eliminating viruses. CAR potable water plant should improve their disinfection process in order to remove efficiently enteric viruses.

Keywords: drinking water, hepatitis A, rotavirus, virus removal

Procedia PDF Downloads 233
3359 Spatial-Temporal Awareness Approach for Extensive Re-Identification

Authors: Tyng-Rong Roan, Fuji Foo, Wenwey Hseush

Abstract:

Recent development of AI and edge computing plays a critical role to capture meaningful events such as detection of an unattended bag. One of the core problems is re-identification across multiple CCTVs. Immediately following the detection of a meaningful event is to track and trace the objects related to the event. In an extensive environment, the challenge becomes severe when the number of CCTVs increases substantially, imposing difficulties in achieving high accuracy while maintaining real-time performance. The algorithm that re-identifies cross-boundary objects for extensive tracking is referred to Extensive Re-Identification, which emphasizes the issues related to the complexity behind a great number of CCTVs. The Spatial-Temporal Awareness approach challenges the conventional thinking and concept of operations which is labor intensive and time consuming. The ability to perform Extensive Re-Identification through a multi-sensory network provides the next-level insights – creating value beyond traditional risk management.

Keywords: long-short-term memory, re-identification, security critical application, spatial-temporal awareness

Procedia PDF Downloads 112
3358 Change Point Detection Using Random Matrix Theory with Application to Frailty in Elderly Individuals

Authors: Malika Kharouf, Aly Chkeir, Khac Tuan Huynh

Abstract:

Detecting change points in time series data is a challenging problem, especially in scenarios where there is limited prior knowledge regarding the data’s distribution and the nature of the transitions. We present a method designed for detecting changes in the covariance structure of high-dimensional time series data, where the number of variables closely matches the data length. Our objective is to achieve unbiased test statistic estimation under the null hypothesis. We delve into the utilization of Random Matrix Theory to analyze the behavior of our test statistic within a high-dimensional context. Specifically, we illustrate that our test statistic converges pointwise to a normal distribution under the null hypothesis. To assess the effectiveness of our proposed approach, we conduct evaluations on a simulated dataset. Furthermore, we employ our method to examine changes aimed at detecting frailty in the elderly.

Keywords: change point detection, hypothesis tests, random matrix theory, frailty in elderly

Procedia PDF Downloads 52
3357 Study on Seismic Performance of Reinforced Soil Walls in Order to Offer Modified Pseudo Static Method

Authors: Majid Yazdandoust

Abstract:

This study, tries to suggest a design method based on displacement using finite difference numerical modeling in reinforcing soil retaining wall with steel strip. In this case, dynamic loading characteristics such as duration, frequency, peak ground acceleration, geometrical characteristics of reinforced soil structure and type of the site are considered to correct the pseudo static method and finally introduce the pseudo static coefficient as a function of seismic performance level and peak ground acceleration. For this purpose, the influence of dynamic loading characteristics, reinforcement length, height of reinforced system and type of the site are investigated on seismic behavior of reinforcing soil retaining wall with steel strip. Numerical results illustrate that the seismic response of this type of wall is highly dependent to cumulative absolute velocity, maximum acceleration, and height and reinforcement length so that the reinforcement length can be introduced as the main factor in shape of failure. Considering the loading parameters, mechanically stabilized earth wall parameters and type of the site showed that the used method in this study leads to most efficient designs in comparison with other methods which are generally suggested in cods that are usually based on limit-equilibrium concept. The outputs show the over-estimation of equilibrium design methods in comparison with proposed displacement based methods here.

Keywords: pseudo static coefficient, seismic performance design, numerical modeling, steel strip reinforcement, retaining walls, cumulative absolute velocity, failure shape

Procedia PDF Downloads 485
3356 Accurate Mass Segmentation Using U-Net Deep Learning Architecture for Improved Cancer Detection

Authors: Ali Hamza

Abstract:

Accurate segmentation of breast ultrasound images is of paramount importance in enhancing the diagnostic capabilities of breast cancer detection. This study presents an approach utilizing the U-Net architecture for segmenting breast ultrasound images aimed at improving the accuracy and reliability of mass identification within the breast tissue. The proposed method encompasses a multi-stage process. Initially, preprocessing techniques are employed to refine image quality and diminish noise interference. Subsequently, the U-Net architecture, a deep learning convolutional neural network (CNN), is employed for pixel-wise segmentation of regions of interest corresponding to potential breast masses. The U-Net's distinctive architecture, characterized by a contracting and expansive pathway, enables accurate boundary delineation and detailed feature extraction. To evaluate the effectiveness of the proposed approach, an extensive dataset of breast ultrasound images is employed, encompassing diverse cases. Quantitative performance metrics such as the Dice coefficient, Jaccard index, sensitivity, specificity, and Hausdorff distance are employed to comprehensively assess the segmentation accuracy. Comparative analyses against traditional segmentation methods showcase the superiority of the U-Net architecture in capturing intricate details and accurately segmenting breast masses. The outcomes of this study emphasize the potential of the U-Net-based segmentation approach in bolstering breast ultrasound image analysis. The method's ability to reliably pinpoint mass boundaries holds promise for aiding radiologists in precise diagnosis and treatment planning. However, further validation and integration within clinical workflows are necessary to ascertain their practical clinical utility and facilitate seamless adoption by healthcare professionals. In conclusion, leveraging the U-Net architecture for breast ultrasound image segmentation showcases a robust framework that can significantly enhance diagnostic accuracy and advance the field of breast cancer detection. This approach represents a pivotal step towards empowering medical professionals with a more potent tool for early and accurate breast cancer diagnosis.

Keywords: mage segmentation, U-Net, deep learning, breast cancer detection, diagnostic accuracy, mass identification, convolutional neural network

Procedia PDF Downloads 84
3355 Improvement of the Geometric of Dental Bridge Framework through Automatic Program

Authors: Rong-Yang Lai, Jia-Yu Wu, Chih-Han Chang, Yung-Chung Chen

Abstract:

The dental bridge is one of the clinical methods of the treatment for missing teeth. The dental bridge is generally designed for two layers, containing the inner layer of the framework(zirconia) and the outer layer of the porcelain-fused to framework restorations. The design of a conventional bridge is generally based on the antagonist tooth profile so that the framework evenly indented by an equal thickness from outer contour. All-ceramic dental bridge made of zirconia have well demonstrated remarkable potential to withstand a higher physiological occlusal load in posterior region, but it was found that there is still the risk of all-ceramic bridge failure in five years. Thus, how to reduce the incidence of failure is still a problem to be solved. Therefore, the objective of this study is to develop mechanical designs for all-ceramic dental bridges framework by reducing the stress and enhancing fracture resistance under given loading conditions by finite element method. In this study, dental design software is used to design dental bridge based on tooth CT images. After building model, Bi-directional Evolutionary Structural Optimization (BESO) Method algorithm implemented in finite element software was employed to analyze results of finite element software and determine the distribution of the materials in dental bridge; BESO searches the optimum distribution of two different materials, namely porcelain and zirconia. According to the previous calculation of the stress value of each element, when the element stress value is higher than the threshold value, the element would be replaced by the framework material; besides, the difference of maximum stress peak value is less than 0.1%, calculation is complete. After completing the design of dental bridge, the stress distribution of the whole structure is changed. BESO reduces the peak values of principle stress of 10% in outer-layer porcelain and avoids producing tensile stress failure.

Keywords: dental bridge, finite element analysis, framework, automatic program

Procedia PDF Downloads 282
3354 Improving the Detection of Depression in Sri Lanka: Cross-Sectional Study Evaluating the Efficacy of a 2-Question Screen for Depression

Authors: Prasad Urvashi, Wynn Yezarni, Williams Shehan, Ravindran Arun

Abstract:

Introduction: Primary health services are often the first point of contact that patients with mental illness have with the healthcare system. A number of tools have been developed to increase detection of depression in the context of primary care. However, one challenge amongst many includes utilizing these tools within the limited primary care consultation timeframe. Therefore, short questionnaires that screen for depression that are just as effective as more comprehensive diagnostic tools may be beneficial in improving detection rates of patients visiting a primary care setting. Objective: To develop and determine the sensitivity and specificity of a 2-Question Questionnaire (2-QQ) to screen for depression in in a suburban primary care clinic in Ragama, Sri Lanka. The purpose is to develop a short screening tool for depression that is culturally adapted in order to increase the detection of depression in the Sri Lankan patient population. Methods: This was a cross-sectional study involving two steps. Step one: verbal administration of 2-QQ to patients by their primary care physician. Step two: completion of the Peradeniya Depression Scale, a validated diagnostic tool for depression, the patient after their consultation with the primary care physician. The results from the PDS were then correlated to the results from the 2-QQ for each patient to determine sensitivity and specificity of the 2-QQ. Results: A score of 1/+ on the 2-QQ was most sensitive but least specific. Thus, setting the threshold at this level is effective for correctly identifying depressed patients, but also inaccurately captures patients who are not depressed. A score of 6 on the 2-QQ was most specific but least sensitive. Setting the threshold at this level is effective for correctly identifying patients without depression, but not very effective at capturing patients with depression. Discussion: In the context of primary care, it may be worthwhile setting the 2-QQ screen at a lower threshold for positivity (such as a score of 1 or above). This would generate a high test sensitivity and thus capture the majority of patients that have depression. On the other hand, by setting a low threshold for positivity, patients who do not have depression but score higher than 1 on the 2-QQ will also be falsely identified as testing positive for depression. However, the benefits of identifying patients who present with depression may outweigh the harms of falsely identifying a non-depressed patient. It is our hope that the 2-QQ will serve as a quick primary screen for depression in the primary care setting and serve as a catalyst to identify and treat individuals with depression.

Keywords: depression, primary care, screening tool, Sri Lanka

Procedia PDF Downloads 257
3353 Optimal Configuration for Polarimetric Surface Plasmon Resonance Sensors

Authors: Ibrahim Watad, Ibrahim Abdulhalim

Abstract:

Conventional spectroscopic surface plasmon resonance (SPR) sensors are widely used, both in fundamental research and environmental monitoring as well as healthcare diagnostics. However, they still lack the low limit of detection (LOD) and there still a place for improvement. SPR conventional sensors are based on the detection of a dip in the reflectivity spectrum which is relatively wide. To improve the performance of these sensors, many techniques and methods proposed either to reduce the width of the dip or to increase the sensitivity. Together with that, profiting from the sharp jump in the phase spectrum under SPR, several works suggested the extraction of the phase of the reflected wave. However, existing phase measurement setups are in general more complicated compared to the conventional setups, require more stability and are very sensitive to external vibrations and noises. In this study, a simple polarimetric technique for phase extraction under SPR is presented, followed by a theoretical error analysis and an experimental verification. The advantages of the proposed technique upon existing techniques will be elaborated, together with conclusions regarding the best polarimetric function, and its corresponding optimal metal layer range of thicknesses to use under the conventional Kretschmann-Raether configuration.

Keywords: plasmonics, polarimetry, thin films, optical sensors

Procedia PDF Downloads 404
3352 First-Year Growth and Development of 445 Preterm Infants: A Clinical Study

Authors: Ying Deng, Fan Yang

Abstract:

Aim: To study the growth pattern of preterm infants during the first year of life and explore the association between head circumference (HC) and neurodevelopment sequences and to get a general knowledge of the incidence of anemia in preterm babies in Chengdu, Southwest China. Method: We conducted a prospective longitudinal study, neonates with gestational age < 37 weeks were enrolled this study from 2012.1.1 to 2014.7.9. Anthropometry (weight, height, HC) was obtained at birth, every month before 6 months-old and every 2 months in the next half year. All the infants’ age were corrected to 40 weeks. Growth data presented as Z-scores which was calculated by WHO Anthro software. Z-score defined as (the actual value minus the average value)/standard deviation. Neurodevelopment was assessed at 12 months-old [9-11 months corrected age (CA)] by using “Denver Development Screen Test (DDST)". The hemoglobin (Hb) was examined at 6 months for CA. Result: 445 preterm infants were followed-up 1 year, including 64 very low birth weight infants (VLBW), 246 low birth weight infants (LBW) and 135 normal birth weight infants(NBW). From full-term to 12 months after birth, catch-up growth was observed in most preterm infants. From VLBW to NBW, HCZ was -1.17 (95 % CI: -1.53,-0.80; P value < 0.0001) lower during the first12 months. WAZ was-1.12(95 % CI: -1.47,-0.76; p < 0.0001) lower. WHZ and HAZ were -1.04 (95%CI:-1.38, -0.69; P<0.0001) and -0.69 (95%CI:-1.06,-0.33; P < 0.0001) lower respectively. The peak of WAZ appeared during 0-3 months CA among preterm infants. For VLBW infants, the peak of HAZ and HCZ emerged at 8-11 months CA. However, the trend of HAZ and HCZ is the same as WAZ in LBW and NBW infants. Growth in the small for gestational age (SGA) infants was poorer than appropriate for gestational age (AGA) infants. The rate of DQ < 70 in VLBW and LBW were 29.6%, 7.7%, respectively (P < 0.0001). HCZ < -1SD at 3 months emerged as an independent predictor of DQ scores below 85 at 12 months after birth. The incidence of anemia in preterm infants was 11% at 6 months for CA. Moreover, 7 children (1.7%) diagnosed with Cerebral palsy (CP). Conclusions: The catch-up growth was observed in most preterm infants. VLBW and SGA showed poor growth. There was imbalance between WAZ and HAZ in VLBW infants. The VLBW babies had higher severe abnormal scores than LBW and NBW, especially in boys. Z score for HC at 3 months < -1SDwas a significant risk factor for abnormal DQ scores at the first year. The iron supplement reduced the morbidity of anemia in preterm infants.

Keywords: preterm infant, growth and development, DDST, Z-scores

Procedia PDF Downloads 226
3351 Peptide Aptasensor for Electrochemical Detection of Rheumatoid Arthritis

Authors: Shah Abbas

Abstract:

Rheumatoid arthritis is a systemic, inflammatory autoimmune disease, affecting an overall 1% of the global population. Despite being tremendous efforts by scientists, early diagnosis of RA still has not been achieved. In the current study, a Graphene oxide (GO) based electrochemical sensor has been developed for early diagnosis of RA through Cyclic voltammetry. Chitosan (CHI), a CPnatural polymer has also been incorporated along with GO in order to enhance the biocompatibility and functionalization potential of the biosensor. CCPs are known antigens for Anti Citrullinated Peptide Antibodies (ACPAs) which can be detected in serum even 14 years before the appearance of symptoms, thus they are believed to be an ideal target for the early diagnosis of RA. This study has yielded some promising results regarding the binding and detection of ACPAs through changes in the electrochemical properties of biosensing material. The cyclic voltammogram of this biosensor reflects the binding of ACPAs to the biosensor surface, due to its shifts observed in the current flow (cathodic current) as compared to the when no ACPAs bind as it is absent in RA negative patients.

Keywords: rheumatoid arthritis, peptide sensor, graphene oxide, anti citrullinated peptide antibodies, cyclic voltammetry

Procedia PDF Downloads 143
3350 Changes in Pulmonary Functions in Diabetes Mellitus Type 2

Authors: N. Anand, P. S. Nayyer, V. Rana, S. Verma

Abstract:

Background: Diabetes mellitus is a group of disorders characterized by hyperglycemia and associated with microvascular and macrovascular complications. Among the lesser known complications is the involvement of respiratory system. Changes in pulmonary volume, diffusion and elastic properties of lungs as well as the performance of the respiratory muscles lead to a restrictive pattern in lung functions. The present study was aimed to determine the changes in various parameters of pulmonary function tests amongst patients with Type 2 Diabetes Mellitus and also try to study the effect of duration of Diabetes Mellitus on pulmonary function tests. Methods: It was a cross sectional study performed at Dr Baba Saheb Ambedkar Hospital and Medical College in, Delhi, A Tertiary care referral centre which included 200 patients divided into 2 groups. The first group included diagnosed patients with diabetes and the second group included controls. Cases and controls symptomatic for any acute or chronic Respiratory or Cardiovascular illness or a history of smoking were excluded. Both the groups were subjected to spirometry to evaluate for the pulmonary function tests. Result: The mean Forced Vital Capacity (FVC), Forced Expiratory Volume in first second (FEV1), Peak Expiratory Flow Rate(PEFR) was found to be significantly decreased ((P < 0.001) as compared to controls while the mean ratio of Forced Expiratory Volume in First second to Forced Vital Capacity was not significantly decreased( p>0.005). There was no correlation seen with duration of the disease. Conclusion: Forced Vital Capacity (FVC), Forced Expiratory Volume in first second (FEV1), Peak Expiratory Flow Rate(PEFR) were found to be significantly decreased in patients of Diabetes mellitus while ratio of Forced Expiratory Volume in First second to Forced Vital Capacity (FEV1/FVC) was not significantly decreased. The duration of Diabetes mellitus was not found to have any statistically significant effect on Pulmonary function tests (p > 0.005).

Keywords: diabetes mellitus, pulmonary function tests, forced vital capacity, forced expiratory volume in first second

Procedia PDF Downloads 369
3349 Profit-Based Artificial Neural Network (ANN) Trained by Migrating Birds Optimization: A Case Study in Credit Card Fraud Detection

Authors: Ashkan Zakaryazad, Ekrem Duman

Abstract:

A typical classification technique ranks the instances in a data set according to the likelihood of belonging to one (positive) class. A credit card (CC) fraud detection model ranks the transactions in terms of probability of being fraud. In fact, this approach is often criticized, because firms do not care about fraud probability but about the profitability or costliness of detecting a fraudulent transaction. The key contribution in this study is to focus on the profit maximization in the model building step. The artificial neural network proposed in this study works based on profit maximization instead of minimizing the error of prediction. Moreover, some studies have shown that the back propagation algorithm, similar to other gradient–based algorithms, usually gets trapped in local optima and swarm-based algorithms are more successful in this respect. In this study, we train our profit maximization ANN using the Migrating Birds optimization (MBO) which is introduced to literature recently.

Keywords: neural network, profit-based neural network, sum of squared errors (SSE), MBO, gradient descent

Procedia PDF Downloads 475
3348 Degraded Document Analysis and Extraction of Original Text Document: An Approach without Optical Character Recognition

Authors: L. Hamsaveni, Navya Prakash, Suresha

Abstract:

Document Image Analysis recognizes text and graphics in documents acquired as images. An approach without Optical Character Recognition (OCR) for degraded document image analysis has been adopted in this paper. The technique involves document imaging methods such as Image Fusing and Speeded Up Robust Features (SURF) Detection to identify and extract the degraded regions from a set of document images to obtain an original document with complete information. In case, degraded document image captured is skewed, it has to be straightened (deskew) to perform further process. A special format of image storing known as YCbCr is used as a tool to convert the Grayscale image to RGB image format. The presented algorithm is tested on various types of degraded documents such as printed documents, handwritten documents, old script documents and handwritten image sketches in documents. The purpose of this research is to obtain an original document for a given set of degraded documents of the same source.

Keywords: grayscale image format, image fusing, RGB image format, SURF detection, YCbCr image format

Procedia PDF Downloads 377
3347 Study of Atmospheric Cascades Generated by Primary Comic Rays, from Simulations in Corsika for the City of Tunja in Colombia

Authors: Tathiana Yesenia Coy Mondragón, Jossitt William Vargas Cruz, Cristian Leonardo Gutiérrez Gómez

Abstract:

The study of cosmic rays is based on two fundamental pillars: the detection of secondary cosmic rays on the Earth's surface and the detection of the source and origin of the cascade. In addition, the constant flow of RC generates a lot of interest for study due to the incidence of various natural phenomena, which makes it relevant to characterize their incidence parameters to determine their effect not only at subsoil or terrestrial surface levels but also throughout the atmosphere. To determine the physical parameters of the primary cosmic ray, the implementation of robust algorithms capable of reconstructing the cascade from the measured values is required, with a high level of reliability. Therefore, it is proposed to build a machine learning system that will be fed from the cosmic ray simulations in CORSIKA at different energies that lie in a range [10⁹-10¹²] eV. in order to generate a trained particle and pattern recognition system to obtain greater efficiency when inferring the nature of the origin of the cascade for EAS in the atmosphere considering atmospheric models.

Keywords: CORSIKA, cosmic rays, eas, Colombia

Procedia PDF Downloads 81
3346 QR Technology to Automate Health Condition Detection in Payment System: A Case Study in the Kingdom of Saudi Arabia’s Schools

Authors: Amjad Alsulami, Farah Albishri, Kholod Alzubidi, Lama Almehemadi, Salma Elhag

Abstract:

Food allergy is a common and rising problem among children. Many students have their first allergic reaction at school, one of these is anaphylaxis, which can be fatal. This study discovered that several schools' processes lacked safety regulations and information on how to handle allergy issues and chronic diseases like diabetes where students were not supervised or monitored during the cafeteria purchasing process. There is no obvious prevention or effort in academic institutions when purchasing food containing allergens or negatively impacting the health status of students who suffer from chronic diseases. Students must always be stable to reflect positively on their educational development process. To address this issue, this paper uses a business reengineering process to propose the automation of the whole food-purchasing process, which will aid in detecting and avoiding allergic occurrences and preventing any side effects from eating foods that are conflicting with students' health. This may be achieved by designing a smart card with an embedded QR code that reveals which foods cause an allergic reaction in a student. A survey was distributed to determine and examine how the cafeteria will handle allergic children and whether any management or policy is applied in the school. Also, the survey findings indicate that the integration of QR technology into the food purchasing process would improve health condition detection. The suggested system would be beneficial to all parties, the family agreed, as they would ensure that their children didn't eat foods that were bad for their health. Moreover, by analyzing and simulating the as-is process and the suggested process the results demonstrate that there is an improvement in quality and time.

Keywords: QR code, smart card, food allergies, business process reengineering, health condition detection

Procedia PDF Downloads 75
3345 Fluorescence-Based Biosensor for Dopamine Detection Using Quantum Dots

Authors: Sylwia Krawiec, Joanna Cabaj, Karol Malecha

Abstract:

Nowadays, progress in the field of the analytical methods is of great interest for reliable biological research and medical diagnostics. Classical techniques of chemical analysis, despite many advantages, do not permit to obtain immediate results or automatization of measurements. Chemical sensors have displaced the conventional analytical methods - sensors combine precision, sensitivity, fast response and the possibility of continuous-monitoring. Biosensor is a chemical sensor, which except of conventer also possess a biologically active material, which is the basis for the detection of specific chemicals in the sample. Each biosensor device mainly consists of two elements: a sensitive element, where is recognition of receptor-analyte, and a transducer element which receives the signal and converts it into a measurable signal. Through these two elements biosensors can be divided in two categories: due to the recognition element (e.g immunosensor) and due to the transducer (e.g optical sensor). Working of optical sensor is based on measurements of quantitative changes of parameters characterizing light radiation. The most often analyzed parameters include: amplitude (intensity), frequency or polarization. Changes in the optical properties one of the compound which reacts with biological material coated on the sensor is analyzed by a direct method, in an indirect method indicators are used, which changes the optical properties due to the transformation of the testing species. The most commonly used dyes in this method are: small molecules with an aromatic ring, like rhodamine, fluorescent proteins, for example green fluorescent protein (GFP), or nanoparticles such as quantum dots (QDs). Quantum dots have, in comparison with organic dyes, much better photoluminescent properties, better bioavailability and chemical inertness. These are semiconductor nanocrystals size of 2-10 nm. This very limited number of atoms and the ‘nano’-size gives QDs these highly fluorescent properties. Rapid and sensitive detection of dopamine is extremely important in modern medicine. Dopamine is very important neurotransmitter, which mainly occurs in the brain and central nervous system of mammals. Dopamine is responsible for the transmission information of moving through the nervous system and plays an important role in processes of learning or memory. Detection of dopamine is significant for diseases associated with the central nervous system such as Parkinson or schizophrenia. In developed optical biosensor for detection of dopamine, are used graphene quantum dots (GQDs). In such sensor dopamine molecules coats the GQD surface - in result occurs quenching of fluorescence due to Resonance Energy Transfer (FRET). Changes in fluorescence correspond to specific concentrations of the neurotransmitter in tested sample, so it is possible to accurately determine the concentration of dopamine in the sample.

Keywords: biosensor, dopamine, fluorescence, quantum dots

Procedia PDF Downloads 364