Search results for: coupled model inter-comparison project
20393 Education for Sustainability Using PBL on an Engineering Course at the National University of Colombia
Authors: Hernán G. Cortés-Mora, José I. Péna-Reyes, Alfonso Herrera-Jiménez
Abstract:
This article describes the implementation experience of Project-Based Learning (PBL) in an engineering course of the Universidad Nacional de Colombia, with the aim of strengthening student skills necessary for the exercise of their profession under a sustainability framework. Firstly, we present a literature review on the education for sustainability field, emphasizing the skills and knowledge areas required for its development, as well as the commitment of the Faculty of Engineering of the Universidad Nacional de Colombia, and other engineering faculties of the country, regarding education for sustainability. This article covers the general aspects of the course, describes how students team were formed, and how their experience was during the first semester of 2017. During this period two groups of students decided to develop their course project aiming to solve a problem regarding a Non-Governmental Organization (NGO) that works with head-of-household mothers in a low-income neighborhood in Bogota (Colombia). Subsequently, we show how sustainability is involved in the course, how tools are provided to students, and how activities are developed as to strengthen their abilities, which allows them to incorporate sustainability in their projects while also working on the methodology used to develop said projects. Finally, we introduce the results obtained by the students who sent the prototypes of their projects to the community they were working on and the conclusions reached by them regarding the course experience.Keywords: sustainability, project-based learning, engineering education, higher education for sustainability
Procedia PDF Downloads 34920392 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model
Authors: Xiang Zhang, David Rey, S. Travis Waller
Abstract:
Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning
Procedia PDF Downloads 29820391 Seismic Preparedness Challenge in Ionian Islands (Greece) through 'Telemachus' Project
Authors: A. Kourou, M. Panoutsopoulou
Abstract:
Nowadays, disaster risk reduction requires innovative ways of working collaboratively, monitoring tools, management methods, risk communication, and knowledge, as key factors for decision-making actors. Experience has shown that the assessment of seismic risk and its effective management is still an important challenge. In Greece, Ionian Islands region is characterized as the most seismic area of the country and one of the most active worldwide. It is well known that in case of a disastrous earthquake the local authorities need to assess the situation in the affected area and coordinate the disaster response. In particular, the main outcomes of 'Telemachus' project are the development of an innovative operational system that hosts the needed data of seismic risk management in the Ionian Islands and the implementation of educational actions for the involved target groups. This project is funded in the Priority Axis 'Environmental Protection and Sustainable Development' of Operational Plan 'Ionian Islands 2014-2020'. EPPO is one of the partners of the project and it is responsible, among others, for the development of proper training material. This paper presents the training material of 'Telemachus' and its usage as a helpful, managerial tool in case of earthquake emergency. This material is addressed to different target groups, such as civil protection staff, people that involved with the tourism industry, educators of disabled people, etc. Very positive aspect of the project is the involvement of end-users that should evaluate the training products; test standards; clarify the personnel’s roles and responsibilities; improve interagency coordination; identify gaps in resources; improve individual performance; and identify opportunities for improvement. It is worth mentioning that even though the abovementioned material developed is useful for the training of specific target groups on emergency management issues within Ionian Islands Region, it could be used throughout Greece and other countries too.Keywords: education of civil protection staff, Ionian Islands Region of Greece, seismic risk, training material
Procedia PDF Downloads 12120390 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project
Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson
Abstract:
The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction
Procedia PDF Downloads 7820389 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.Keywords: the Bouc-Wen hysteresis model, particle swarm optimization, Prandtl-Ishlinskii model, automation engineering
Procedia PDF Downloads 51320388 On Crack Tip Stress Field in Pseudo-Elastic Shape Memory Alloys
Authors: Gulcan Ozerim, Gunay Anlas
Abstract:
In shape memory alloys, upon loading, stress increases around crack tip and a martensitic phase transformation occurs in early stages. In many studies the stress distribution in the vicinity of the crack tip is represented by using linear elastic fracture mechanics (LEFM) although the pseudo-elastic behavior results in a nonlinear stress-strain relation. In this study, the HRR singularity (Hutchinson, Rice and Rosengren), that uses Rice’s path independent J-integral, is tried to formulate the stress distribution around the crack tip. In HRR approach, the Ramberg-Osgood model for the stress-strain relation of power-law hardening materials is used to represent the elastic-plastic behavior. Although it is recoverable, the inelastic portion of the deformation in martensitic transformation (up to the end of transformation) resembles to that of plastic deformation. To determine the constants of the Ramberg-Osgood equation, the material’s response is simulated in ABAQUS using a UMAT based on ZM (Zaki-Moumni) thermo-mechanically coupled model, and the stress-strain curve of the material is plotted. An edge cracked shape memory alloy (Nitinol) plate is loaded quasi-statically under mode I and modeled using ABAQUS; the opening stress values ahead of the cracked tip are calculated. The stresses are also evaluated using the asymptotic equations of both LEFM and HRR. The results show that in the transformation zone around the crack tip, the stress values are much better represented when the HRR singularity is used although the J-integral does not show path independent behavior. For the nodes very close to the crack tip, the HRR singularity is not valid due to the non-proportional loading effect and high-stress values that go beyond the transformation finish stress.Keywords: crack, HRR singularity, shape memory alloys, stress distribution
Procedia PDF Downloads 32420387 Yang-Lee Edge Singularity of the Infinite-Range Ising Model
Authors: Seung-Yeon Kim
Abstract:
The Ising model, consisting magnetic spins, is the simplest system showing phase transitions and critical phenomena at finite temperatures. The Ising model has played a central role in our understanding of phase transitions and critical phenomena. Also, the Ising model explains the gas-liquid phase transitions accurately. However, the Ising model in a nonzero magnetic field has been one of the most intriguing and outstanding unsolved problems. We study analytically the partition function zeros in the complex magnetic-field plane and the Yang-Lee edge singularity of the infinite-range Ising model in an external magnetic field. In addition, we compare the Yang-Lee edge singularity of the infinite-range Ising model with that of the square-lattice Ising model in an external magnetic field.Keywords: Ising ferromagnet, magnetic field, partition function zeros, Yang-Lee edge singularity
Procedia PDF Downloads 73620386 The Impact of Funders on the Media Industry in the Kurdistan Region Iraqi
Authors: Abdulsamad Qadir Hussien
Abstract:
This paper examines the impact of funders on the media industry in the Kurdistan Region Iraqi (henceforth KRI). The key objectives of the study are also looking at: how the media industry funder influences the media organization and journalists’ practices in the Kurdish community; how the media organizations attempt to utilize the available capabilities to serve the goals of the funded entities, whether they are parties, NGOs, governments, commercial companies or have individual ownership of media institutes. Further, the research project seeks to discover the influence and role of the funder on the media content and determine the prioritizing that will broadcast on the media. Furthermore, the project tries to understand to what extent the media organizations have a commitment to achieve the public interest and public affairs by following the key ethical principles. The study also attempts to explain the situation of the public service media. These variables are measured through a survey questionnaire distributed among a sample of 108 journalists and media practitioners. This research project, therefore, explores a new topic for study in the Kurdish community regarding the media industry, funding, and financial support. This article adopted surveys (n=108) as data collection tools by using a statistical method (SPSS 21). The data of the study have been tabulated, coded, and presented in a descriptive form.Keywords: funding, journalists’ practices, Kurdish media industry, public services media
Procedia PDF Downloads 14420385 Global Service-Learning: Lessons Learned from Teacher Candidates
Authors: Miranda Lin
Abstract:
This project examined the impact of a globally focused service-learning project implemented in a multicultural education course in a Midwestern university. This project facilitated critical self-reflection and build cross-cultural competence while nurturing a partnership with two schools that serve students with disabilities in Vietnam. Through a service-learning project, pre-service teachers connected via Skype with the principals/teachers at schools in Vietnam to identify and subsequently develop needed instructional materials for students with mild, moderate, and severe disabilities. Qualitative data sources include students’ intercultural competence self-reflection survey (pre-test and post-test), reflections, discussions, service project, and lesson plans. Literature Review- Global service-learning is a teaching strategy that encompasses service experiences both in the local community and abroad. Drawing on elements of global learning and international service-learning, global service-learning experiences are guided by a framework that is designed to support global learning outcomes and involve direct engagement with difference. By engaging in real-world challenges, global service-learning experiences can support the achievement of learning outcomes such as civic. Knowledge and intercultural knowledge and competence. Intercultural competence development is considered essential for cooperative and reciprocal engagement with community partners.Method- Participants (n=27*) were mostly elementary and early childhood pre-service teachers who were enrolled in a multicultural education course. All but one was female. Among the pre-service teachers, one Asian American, two Latinas, and the rest were White. Two pre-service teachers identified themselves as from the low socioeconomic families and the rest were from the middle to upper middle class.The global service-learning project was implemented in the spring of 2018. Two Vietnamese schools that served students with disabilities agreed to be the global service-learning sites. Both schools were located in an urban city.Systematic collection of data coincided with the course schedule as follows: an initial intercultural competence self-reflection survey completed in week one, guided reflections submitted in week 1, 9, and 16, written lesson plans and supporting materials for the service project submitted in week 16, and a final intercultural competence self-reflection survey completed in week 16. Significance-This global service-learning project has helped participants meet Merryfield’s goals in various degrees. They 1) learned knowledge and skills in the basics of instructional planning, 2) used a variety of instructional methods that encourage active learning, meet the different learning styles of students, and are congruent with content and educational goals, 3) gained the awareness and support of their students as individuals and as learners, 4) developed questioning techniques that build higher-level thinking skills, and 5) made progress in critically reflecting on and improving their own teaching and learning as a professional educator as a result of this project.Keywords: global service-learning, teacher education, intercultural competence, diversity
Procedia PDF Downloads 11520384 Execution of Joinery in Large Scale Projects: Middle East Region as a Case Study
Authors: Arsany Philip Fawzy
Abstract:
This study is going to address the hurdles of project management in the joinery field. It is widely divided into two sections; the first one will shed light on how to execute large-scale projects with a specific focus on the middle east region. It will also raise major obstacles that may face the joinery team from the site clearance and the coordination between the joinery team and the construction team. The second section is going to technically analyze the commercial side of the joinery and how to control the main cost of the project to avoid financial problems. It will also suggest empirical solutions to monitor the cost impact (e.g., Variation of contract quantity and claims).Keywords: clearance, quality, cost, variation, claim
Procedia PDF Downloads 9920383 The Global Language Teaching Spots to Accelerate Globalization and Equitable Economic Development Worldwide
Authors: Setyo Pamuji
Abstract:
The basis of this research is to create an international business project by developing an area in every country which focused on global language teaching to accelerate huge project of internationalization for mankind better with equity. It is to make an ease, learning more effective and efficient as well as economic development significantly at the place. Some have attempted to establish it, but could have not succeeded. This study uses stratified random sampling method to determine respondents. It is caused by population coming from around of Indonesia which is heterogeneity. Above all, researcher has already known well the spot including the mapping of students and societies, over 5-year, from beginning studying English (2011) until teaching English (2015). This quantitative research is able to analyze the vital factor of successful Language Village at Pare, Kediri, East Java, Indonesia which has never been obtained anywhere. This project provides valuable information regarding management used by the Language Village. Overall approach depicts vigorous marketing strategy and dedication blended. This will allow for more individual consideration of economist and may direct future research on the uniqueness of the Language Village to ascertain more profound understanding of the village which succeeds inviting people from other places to come, beside formal management and marketing.Keywords: internationalization, accelerate, global language, economic development, blended, globalization
Procedia PDF Downloads 17520382 An Ensemble System of Classifiers for Computer-Aided Volcano Monitoring
Authors: Flavio Cannavo
Abstract:
Continuous evaluation of the status of potentially hazardous volcanos plays a key role for civil protection purposes. The importance of monitoring volcanic activity, especially for energetic paroxysms that usually come with tephra emissions, is crucial not only for exposures to the local population but also for airline traffic. Presently, real-time surveillance of most volcanoes worldwide is essentially delegated to one or more human experts in volcanology, who interpret data coming from different kind of monitoring networks. Unfavorably, the high nonlinearity of the complex and coupled volcanic dynamics leads to a large variety of different volcanic behaviors. Moreover, continuously measured parameters (e.g. seismic, deformation, infrasonic and geochemical signals) are often not able to fully explain the ongoing phenomenon, thus making the fast volcano state assessment a very puzzling task for the personnel on duty at the control rooms. With the aim of aiding the personnel on duty in volcano surveillance, here we introduce a system based on an ensemble of data-driven classifiers to infer automatically the ongoing volcano status from all the available different kind of measurements. The system consists of a heterogeneous set of independent classifiers, each one built with its own data and algorithm. Each classifier gives an output about the volcanic status. The ensemble technique allows weighting the single classifier output to combine all the classifications into a single status that maximizes the performance. We tested the model on the Mt. Etna (Italy) case study by considering a long record of multivariate data from 2011 to 2015 and cross-validated it. Results indicate that the proposed model is effective and of great power for decision-making purposes.Keywords: Bayesian networks, expert system, mount Etna, volcano monitoring
Procedia PDF Downloads 24620381 Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays
Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md. Yusof
Abstract:
Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project.Keywords: final account closing, construction project, construction delay, supply chain management
Procedia PDF Downloads 36520380 Probability Modeling and Genetic Algorithms in Small Wind Turbine Design Optimization: Mentored Interdisciplinary Undergraduate Research at LaGuardia Community College
Authors: Marina Nechayeva, Malgorzata Marciniak, Vladimir Przhebelskiy, A. Dragutan, S. Lamichhane, S. Oikawa
Abstract:
This presentation is a progress report on a faculty-student research collaboration at CUNY LaGuardia Community College (LaGCC) aimed at designing a small horizontal axis wind turbine optimized for the wind patterns on the roof of our campus. Our project combines statistical and engineering research. Our wind modeling protocol is based upon a recent wind study by a faculty-student research group at MIT, and some of our blade design methods are adopted from a senior engineering project at CUNY City College. Our use of genetic algorithms has been inspired by the work on small wind turbines’ design by David Wood. We combine these diverse approaches in our interdisciplinary project in a way that has not been done before and improve upon certain techniques used by our predecessors. We employ several estimation methods to determine the best fitting parametric probability distribution model for the local wind speed data obtained through correlating short-term on-site measurements with a long-term time series at the nearby airport. The model serves as a foundation for engineering research that focuses on adapting and implementing genetic algorithms (GAs) to engineering optimization of the wind turbine design using Blade Element Momentum Theory. GAs are used to create new airfoils with desirable aerodynamic specifications. Small scale models of best performing designs are 3D printed and tested in the wind tunnel to verify the accuracy of relevant calculations. Genetic algorithms are applied to selected airfoils to determine the blade design (radial cord and pitch distribution) that would optimize the coefficient of power profile of the turbine. Our approach improves upon the traditional blade design methods in that it lets us dispense with assumptions necessary to simplify the system of Blade Element Momentum Theory equations, thus resulting in more accurate aerodynamic performance calculations. Furthermore, it enables us to design blades optimized for a whole range of wind speeds rather than a single value. Lastly, we improve upon known GA-based methods in that our algorithms are constructed to work with XFoil generated airfoils data which enables us to optimize blades using our own high glide ratio airfoil designs, without having to rely upon available empirical data from existing airfoils, such as NACA series. Beyond its immediate goal, this ongoing project serves as a training and selection platform for CUNY Research Scholars Program (CRSP) through its annual Aerodynamics and Wind Energy Research Seminar (AWERS), an undergraduate summer research boot camp, designed to introduce prospective researchers to the relevant theoretical background and methodology, get them up to speed with the current state of our research, and test their abilities and commitment to the program. Furthermore, several aspects of the research (e.g., writing code for 3D printing of airfoils) are adapted in the form of classroom research activities to enhance Calculus sequence instruction at LaGCC.Keywords: engineering design optimization, genetic algorithms, horizontal axis wind turbine, wind modeling
Procedia PDF Downloads 23120379 Validation of a Fluid-Structure Interaction Model of an Aortic Dissection versus a Bench Top Model
Authors: K. Khanafer
Abstract:
The aim of this investigation was to validate the fluid-structure interaction (FSI) model of type B aortic dissection with our experimental results from a bench-top-model. Another objective was to study the relationship between the size of a septectomy that increases the outflow of the false lumen and its effect on the values of the differential of pressure between true lumen and false lumen. FSI analysis based on Galerkin’s formulation was used in this investigation to study flow pattern and hemodynamics within a flexible type B aortic dissection model using boundary conditions from our experimental data. The numerical results of our model were verified against the experimental data for various tear size and location. Thus, CFD tools have a potential role in evaluating different scenarios and aortic dissection configurations.Keywords: aortic dissection, fluid-structure interaction, in vitro model, numerical
Procedia PDF Downloads 26920378 An Assessment on the Effect of Participation of Rural Woman on Sustainable Rural Water Supply in Yemen
Authors: Afrah Saad Mohsen Al-Mahfadi
Abstract:
In rural areas of developing countries, participation of all stakeholders in water supply projects is an important step towards further development. As most of the beneficiaries are women, it is important that they should be involved to achieve successful and sustainable water supply projects. Women are responsible for the management of water both inside and outside home, and often spend more than six-hours a day fetching drinking water from distant water sources. The problem is that rural women play a role of little importance in the water supply projects’ phases in rural Yemen. Therefore, this research aimed at analyzing the different reasons of their lack of participation in projects and in what way a full participation -if achieved- could contribute to sustainable water supply projects in the rural mountainous areas in Yemen. Four water supply projects were selected as a case study in Al-Della'a Alaala sub-district in the Al-Mahweet governorate, two of them were implemented by the Social Fund and Development (SFD), while others were implemented by the General Authority for Rural Water Supply Projects (GARWSSP). Furthermore, the successful Al-Galba project, which is located in Badan district in Ibb governorate, was selected for comparison. The rural women's active participation in water projects have potential consequences including continuity and maintenance improvement, equipment security, and improvement in the overall health and education status of these areas. The majority of respondents taking part in GARWSSP projects estimated that there is no reason to involve women in the project activities. In the comparison project - in which a woman worked as a supervisor and implemented the project – all respondents indicated that the participation of women is vital for sustainability. Therefore, the results of this research are intended to stimulate rural women's participation in the mountainous areas of Yemen.Keywords: assessment, rural woman, sustainability, water management
Procedia PDF Downloads 68820377 A comparative Analysis of the Good Faith Principle in Construction Contracts
Authors: Nadine Rashed, A. Samer Ezeldin, Engy Serag
Abstract:
The principle of good faith plays a critical role in shaping contractual relationships, yet its application varies significantly across different types of construction contracts and legal systems. This paper presents a comparative analysis of how various construction contracts perceive the principle of good faith, a fundamental aspect that influences contractual relationships and project outcomes. The primary objective of this analysis is to examine the differences in the application and interpretation of good faith across key construction contracts, including JCT (Joint Contracts Tribunal), FIDIC (Fédération Internationale des Ingénieurs-Conseils), NEC (New Engineering Contract), and ICE (Institution of Civil Engineers) Contracts. To accomplish this, a mixed-methods approach will be employed, integrating a thorough literature review of current legal frameworks and academic publications with primary data gathered from a structured questionnaire aimed at industry professionals such as contract managers, legal advisors, and project stakeholders. This combined strategy will enable a holistic understanding of the theoretical foundations of good faith in construction contracts and its practical effects in real-world contexts. The findings of this analysis are expected to yield valuable insights into how varying interpretations of good faith can impact project performance, dispute resolution, and collaborative practices within the construction industry. This paper contributes to a deeper understanding of how the principle of good faith is evolving in the construction industry, providing insights for contract drafters, legal practitioners, and project managers seeking to navigate the complexities of contractual obligations across different legal systems.Keywords: construction contracts, contractual obligations, ethical practices, good faith
Procedia PDF Downloads 1920376 Oil Reservoir Asphalting Precipitation Estimating during CO2 Injection
Authors: I. Alhajri, G. Zahedi, R. Alazmi, A. Akbari
Abstract:
In this paper, an Artificial Neural Network (ANN) was developed to predict Asphaltene Precipitation (AP) during the injection of carbon dioxide into crude oil reservoirs. In this study, the experimental data from six different oil fields were collected. Seventy percent of the data was used to develop the ANN model, and different ANN architectures were examined. A network with the Trainlm training algorithm was found to be the best network to estimate the AP. To check the validity of the proposed model, the model was used to predict the AP for the thirty percent of the data that was unevaluated. The Mean Square Error (MSE) of the prediction was 0.0018, which confirms the excellent prediction capability of the proposed model. In the second part of this study, the ANN model predictions were compared with modified Hirschberg model predictions. The ANN was found to provide more accurate estimates compared to the modified Hirschberg model. Finally, the proposed model was employed to examine the effect of different operating parameters during gas injection on the AP. It was found that the AP is mostly sensitive to the reservoir temperature. Furthermore, the carbon dioxide concentration in liquid phase increases the AP.Keywords: artificial neural network, asphaltene, CO2 injection, Hirschberg model, oil reservoirs
Procedia PDF Downloads 36320375 Chemical Analysis of Particulate Matter (PM₂.₅) and Volatile Organic Compound Contaminants
Authors: S. Ebadzadsahraei, H. Kazemian
Abstract:
The main objective of this research was to measure particulate matter (PM₂.₅) and Volatile Organic Compound (VOCs) as two classes of air pollutants, at Prince George (PG) neighborhood in warm and cold seasons. To fulfill this objective, analytical protocols were developed for accurate sampling and measurement of the targeted air pollutants. PM₂.₅ samples were analyzed for their chemical composition (i.e., toxic trace elements) in order to assess their potential source of emission. The City of Prince George, widely known as the capital of northern British Columbia (BC), Canada, has been dealing with air pollution challenges for a long time. The city has several local industries including pulp mills, a refinery, and a couple of asphalt plants that are the primary contributors of industrial VOCs. In this research project, which is the first study of this kind in this region it measures physical and chemical properties of particulate air pollutants (PM₂.₅) at the city neighborhood. Furthermore, this study quantifies the percentage of VOCs at the city air samples. One of the outcomes of this project is updated data about PM₂.₅ and VOCs inventory in the selected neighborhoods. For examining PM₂.₅ chemical composition, an elemental analysis methodology was developed to measure major trace elements including but not limited to mercury and lead. The toxicity of inhaled particulates depends on both their physical and chemical properties; thus, an understanding of aerosol properties is essential for the evaluation of such hazards, and the treatment of such respiratory and other related diseases. Mixed cellulose ester (MCE) filters were selected for this research as a suitable filter for PM₂.₅ air sampling. Chemical analyses were conducted using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for elemental analysis. VOCs measurement of the air samples was performed using a Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) allowing for quantitative measurement of VOC molecules in sub-ppb levels. In this study, sorbent tube (Anasorb CSC, Coconut Charcoal), 6 x 70-mm size, 2 sections, 50/100 mg sorbent, 20/40 mesh was used for VOCs air sampling followed by using solvent extraction and solid-phase micro extraction (SPME) techniques to prepare samples for measuring by a GC-MS/FID instrument. Air sampling for both PM₂.₅ and VOC were conducted in summer and winter seasons for comparison. Average concentrations of PM₂.₅ are very different between wildfire and daily samples. At wildfire time average of concentration is 83.0 μg/m³ and daily samples are 23.7 μg/m³. Also, higher concentrations of iron, nickel and manganese found at all samples and mercury element is found in some samples. It is able to stay too high doses negative effects.Keywords: air pollutants, chemical analysis, particulate matter (PM₂.₅), volatile organic compound, VOCs
Procedia PDF Downloads 14120374 Toward a Risk Assessment Model Based on Multi-Agent System for Cloud Consumer
Authors: Saadia Drissi
Abstract:
The cloud computing is an innovative paradigm that introduces several changes in technology that have resulted a new ways for cloud providers to deliver their services to cloud consumers mainly in term of security risk assessment, thus, adapting a current risk assessment tools to cloud computing is a very difficult task due to its several characteristics that challenge the effectiveness of risk assessment approaches. As consequence, there is a need of risk assessment model adapted to cloud computing. This paper requires a new risk assessment model based on multi-agent system and AHP model as fundamental steps towards the development of flexible risk assessment approach regarding cloud consumers.Keywords: cloud computing, risk assessment model, multi-agent system, AHP model, cloud consumer
Procedia PDF Downloads 54320373 Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites
Authors: Paola Villoria Saez, Mercedes Del Rio Merino, Jaime Santacruz Astorqui, Cesar Porras Amores
Abstract:
In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R).Keywords: building waste, CDW, gypsum, recycling, resources
Procedia PDF Downloads 32820372 A Proposal of Advanced Key Performance Indicators for Assessing Six Performances of Construction Projects
Authors: Wi Sung Yoo, Seung Woo Lee, Youn Kyoung Hur, Sung Hwan Kim
Abstract:
Large-scale construction projects are continuously increasing, and the need for tools to monitor and evaluate the project success is emphasized. At the construction industry level, there are limitations in deriving performance evaluation factors that reflect the diversity of construction sites and systems that can objectively evaluate and manage performance. Additionally, there are difficulties in integrating structured and unstructured data generated at construction sites and deriving improvements. In this study, we propose the Key Performance Indicators (KPIs) to enable performance evaluation that reflects the increased diversity of construction sites and the unstructured data generated, and present a model for measuring performance by the derived indicators. The comprehensive performance of a unit construction site is assessed based on 6 areas (Time, Cost, Quality, Safety, Environment, Productivity) and 26 indicators. We collect performance indicator information from 30 construction sites that meet legal standards and have been successfully performed. And We apply data augmentation and optimization techniques into establishing measurement standards for each indicator. In other words, the KPI for construction site performance evaluation presented in this study provides standards for evaluating performance in six areas using institutional requirement data and document data. This can be expanded to establish a performance evaluation system considering the scale and type of construction project. Also, they are expected to be used as a comprehensive indicator of the construction industry and used as basic data for tracking competitiveness at the national level and establishing policies.Keywords: key performance indicator, performance measurement, structured and unstructured data, data augmentation
Procedia PDF Downloads 4120371 Hydro Solidarity and Turkey’s Role as a Waterpower in the Middle East: The Peace Water Pipeline Project
Authors: Filippo Verre
Abstract:
This paper explores Turkey’s role as an influential waterpower in the Middle East, emphasizing the Peace Water Pipeline Project (PWPP) as a paradigm of hydro solidarity rather than conventional water diplomacy. Hydro solidarity transcends the strategic and often competitive nature of water diplomacy, highlighting cooperative, inclusive, and mutually beneficial approaches to water resource management. The PWPP, which aimed to transport freshwater from Turkey’s Manavgat River to several water-scarce nations in the Middle East, exemplifies this ethos. By providing a reliable water supply to address the chronic shortages in the region, the project underscored Turkey’s commitment to fostering regional cooperation, stability, and collective well-being through shared water resources. This paper provides an in-depth analysis of the Peace Water Pipeline Project, examining its technical specifications, environmental impact, and political implications. It discusses how the project’s foundation on principles of hydro solidarity could facilitate stronger regional ties, mitigate water-related conflicts, and promote sustainable development. By prioritizing collective benefits over unilateral gains, Turkey’s approach exemplified a transformative model of resource sharing that could inspire similar initiatives globally. This paper argues that the Peace Water Pipeline Project serves as a crucial case study in demonstrating how shared natural resources can be leveraged to build trust, enhance cooperation, and achieve common goals in a geopolitically volatile region. The findings emphasize the importance of adopting hydro solidarity as a guiding principle for future transboundary water projects, showcasing how collaborative water management can play a pivotal role in fostering peace, security, and sustainable development in the Middle East and beyond. This research is based on a mixed methodological approach combining qualitative and quantitative methods. The most relevant qualitative methods will involve Case Studies and Content Analysis. Concretely, the Friendship Dam Project (FDP) between Turkey and Syria will be mentioned to underline the importance of hydro solidarity approaches as opposed to water diplomacy. Analyzing this case aims to identify factors that contribute to successful hydro solidarity agreements, such as effective communication channels, trust-building measures, and adaptive management practices. Concerning Content Analysis, reviewing and analyzing policy documents, treaties, media reports, and public statements will help identify the official narratives and discourses surrounding the PWPP. This method fully comprehends how different stakeholders frame the issues and what solutions they propose. The quantitative methodology used in this research, which complements the qualitative approaches, involves economic valuation, which quantifies the PWPP’s economic impacts on Turkey and the Middle Eastern region. This includes assessing the cost of construction and maintenance and the financial benefits derived from improved water access and reduced conflict. Hydrological modelling will also be used as a quantitative research method. Using hydrological models to simulate the water flow and distribution scenarios helps quantify the pipeline’s potential impacts on water resources. By assessing the sustainability of water extraction and predicting how changes in water availability might affect different regions, these models play a crucial role in this research, shedding light on the impact of transboundary infrastructures on water management.Keywords: hydro-solidarity, Middle East, transboundary water management, peace water pipeline project, water scarcity
Procedia PDF Downloads 3920370 A Computational Fluid Dynamics Study of Turbulence Flow and Parameterization of an Aerofoil
Authors: Mohamed Z. M. Duwahir, Shian Gao
Abstract:
The main objective of this project was to introduce and test a new scheme for parameterization of subsonic aerofoil, using a function called Shape Function. Python programming was used to create a user interactive environment for geometry generation of aerofoil using NACA and Shape Function methodologies. Two aerofoils, NACA 0012 and NACA 1412, were generated using this function. Testing the accuracy of the Shape Function scheme was done by Linear Square Fitting using Python and CFD modelling the aerofoil in Fluent. NACA 0012 (symmetrical aerofoil) was better approximated using Shape Function than NACA 1412 (cambered aerofoil). The second part of the project involved comparing two turbulent models, k-ε and Spalart-Allmaras (SA), in Fluent by modelling the aerofoils NACA 0012 and NACA 1412 in conditions of Reynolds number of 3 × 106. It was shown that SA modelling is better for aerodynamic purpose. The experimental coefficient of lift (Cl) and coefficient of drag (Cd) were compared with empirical wind tunnel data for a range of angle of attack (AOA). As a further step, this project involved drawing and meshing 3D wings in Gambit. The 3D wing flow was solved and compared with 2D aerofoil section experimental results and wind tunnel data.Keywords: CFD simulation, shape function, turbulent modelling, aerofoil
Procedia PDF Downloads 35720369 Stability Analysis of Rabies Model with Vaccination Effect and Culling in Dogs
Authors: Eti Dwi Wiraningsih, Folashade Agusto, Lina Aryati, Syamsuddin Toaha, Suzanne Lenhart, Widodo, Willy Govaerts
Abstract:
This paper considers a deterministic model for the transmission dynamics of rabies virus in the wild dogs-domestic dogs-human zoonotic cycle. The effect of vaccination and culling in dogs is considered on the model, then the stability was analysed to get basic reproduction number. We use the next generation matrix method and Routh-Hurwitz test to analyze the stability of the Disease-Free Equilibrium and Endemic Equilibrium of this model.Keywords: stability analysis, rabies model, vaccination effect, culling in dogs
Procedia PDF Downloads 62520368 Solar Powered Front Wheel Drive (FWD) Electric Trike: An Innovation
Authors: Michael C. Barbecho, Romeo B. Morcilla
Abstract:
This study focused on the development of a solar powered front wheel drive electric trike for personal use and short distance travel, utilizing solar power and a variable speed transmission to adapt in places where varying road grades and unavailability of plug-in charging stations are of great problems. The actual performance of the vehicle was measured in terms of duration of charging using solar power, distance travel and battery power duration, top speed developed at full power, and load capacity. This project followed the research and development process which involved planning, designing, construction, and testing. Solar charging tests revealed that the vehicle requires 6 to 8 hours sunlight exposure to fully charge the batteries. At full charge, the vehicle can travel 35 km utilizing battery power down to 42%. Vehicle showed top speed of 25 kph at 0 to 3% road grade carrying a maximum load of 122 kg. The maximum climbing grade was 23% with the vehicle carrying a maximum load of 122 kg. Technically the project was feasible and can be a potential model for possible conversion of traditional Philippine made “pedicabs” and gasoline engine powered tricycle into modern electric vehicles. Moreover, it has several technical features and advantages over a commercialized electric vehicle such as the use solar charging system and variable speed power transmission and front drive power train for adaptability in any road gradient.Keywords: electric vehicle, solar vehicles, front drive, solar, solar power
Procedia PDF Downloads 56920367 The DC Behavioural Electrothermal Model of Silicon Carbide Power MOSFETs under SPICE
Authors: Lakrim Abderrazak, Tahri Driss
Abstract:
This paper presents a new behavioural electrothermal model of power Silicon Carbide (SiC) MOSFET under SPICE. This model is based on the MOS model level 1 of SPICE, in which phenomena such as Drain Leakage Current IDSS, On-State Resistance RDSon, gate Threshold voltage VGSth, the transconductance (gfs), I-V Characteristics Body diode, temperature-dependent and self-heating are included and represented using behavioural blocks ABM (Analog Behavioural Models) of Spice library. This ultimately makes this model flexible and easily can be integrated into the various Spice -based simulation softwares. The internal junction temperature of the component is calculated on the basis of the thermal model through the electric power dissipated inside and its thermal impedance in the form of the localized Foster canonical network. The model parameters are extracted from manufacturers' data (curves data sheets) using polynomial interpolation with the method of simulated annealing (S A) and weighted least squares (WLS). This model takes into account the various important phenomena within transistor. The effectiveness of the presented model has been verified by Spice simulation results and as well as by data measurement for SiC MOS transistor C2M0025120D CREE (1200V, 90A).Keywords: SiC power MOSFET, DC electro-thermal model, ABM Spice library, SPICE modelling, behavioural model, C2M0025120D CREE.
Procedia PDF Downloads 57620366 Application of Machine Learning Techniques in Forest Cover-Type Prediction
Authors: Saba Ebrahimi, Hedieh Ashrafi
Abstract:
Predicting the cover type of forests is a challenge for natural resource managers. In this project, we aim to perform a comprehensive comparative study of two well-known classification methods, support vector machine (SVM) and decision tree (DT). The comparison is first performed among different types of each classifier, and then the best of each classifier will be compared by considering different evaluation metrics. The effect of boosting and bagging for decision trees is also explored. Furthermore, the effect of principal component analysis (PCA) and feature selection is also investigated. During the project, the forest cover-type dataset from the remote sensing and GIS program is used in all computations.Keywords: classification methods, support vector machine, decision tree, forest cover-type dataset
Procedia PDF Downloads 21520365 Online Yoga Asana Trainer Using Deep Learning
Authors: Venkata Narayana Chejarla, Nafisa Parvez Shaik, Gopi Vara Prasad Marabathula, Deva Kumar Bejjam
Abstract:
Yoga is an advanced, well-recognized method with roots in Indian philosophy. Yoga benefits both the body and the psyche. Yoga is a regular exercise that helps people relax and sleep better while also enhancing their balance, endurance, and concentration. Yoga can be learned in a variety of settings, including at home with the aid of books and the internet as well as in yoga studios with the guidance of an instructor. Self-learning does not teach the proper yoga poses, and doing them without the right instruction could result in significant injuries. We developed "Online Yoga Asana Trainer using Deep Learning" so that people could practice yoga without a teacher. Our project is developed using Tensorflow, Movenet, and Keras models. The system makes use of data from Kaggle that includes 25 different yoga poses. The first part of the process involves applying the movement model for extracting the 17 key points of the body from the dataset, and the next part involves preprocessing, which includes building a pose classification model using neural networks. The system scores a 98.3% accuracy rate. The system is developed to work with live videos.Keywords: yoga, deep learning, movenet, tensorflow, keras, CNN
Procedia PDF Downloads 24020364 Integrated Wastewater Reuse Project of the Faculty of Sciences AinChock, Morocco
Authors: Nihad Chakri, Btissam El Amrani, Faouzi Berrada, Fouad Amraoui
Abstract:
In Morocco, water scarcity requires the exploitation of non-conventional resources. Rural areas are under-equipped with sanitation infrastructure, unlike urban areas. Decentralized and low-cost solutions could improve the quality of life of the population and the environment. In this context, the Faculty of Sciences Ain Chock "FSAC" has undertaken an integrated project to treat part of its wastewater using a decentralized compact system. The project will propose alternative solutions that are inexpensive and adapted to the context of peri-urban and rural areas in order to treat the wastewater generated and use it for irrigation, watering, and cleaning. For this purpose, several tests were carried out in the laboratory in order to develop a liquid waste treatment system optimized for local conditions. Based on the results obtained at the laboratory scale of the different proposed scenarios, we designed and implemented a prototype of a mini wastewater treatment plant for the Faculty. In this article, we will outline the steps of dimensioning, construction, and monitoring of the mini-station in our Faculty.Keywords: wastewater, purification, optimization, vertical filter, MBBR process, sizing, decentralized pilot, reuse, irrigation, sustainable development
Procedia PDF Downloads 112