Search results for: network and energy consumption
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14392

Search results for: network and energy consumption

502 Voices of Dissent: Case Study of a Digital Archive of Testimonies of Political Oppression

Authors: Andrea Scapolo, Zaya Rustamova, Arturo Matute Castro

Abstract:

The “Voices in Dissent” initiative aims at collecting and making available in a digital format, testimonies, letters, and other narratives produced by victims of political oppression from different geographical spaces across the Atlantic. By recovering silenced voices behind the official narratives, this open-access online database will provide indispensable tools for rewriting the history of authoritarian regimes from the margins as memory debates continue to provoke controversy among academic and popular transnational circles. In providing an extensive database of non-hegemonic discourses in a variety of political and social contexts, the project will complement the existing European and Latin-American studies, and invite further interdisciplinary and trans-national research. This digital resource will be available to academic communities and the general audience and will be organized geographically and chronologically. “Voices in Dissent” will offer a first comprehensive study of these personal accounts of persecution and repression against determined historical backgrounds and their impact on collective memory formation in contemporary societies. The digitalization of these texts will allow to run metadata analyses and adopt comparatist approaches for a broad range of research endeavors. Most of the testimonies included in our archive are testimonies of trauma: the trauma of exile, imprisonment, torture, humiliation, censorship. The research on trauma has now reached critical mass and offers a broad spectrum of critical perspectives. By putting together testimonies from different geographical and historical contexts, our project will provide readers and scholars with an extraordinary opportunity to investigate how culture shapes individual and collective memories and provides or denies resources to make sense and cope with the trauma. For scholars dealing with the epistemological and rhetorical analysis of testimonies, an online open-access archive will prove particularly beneficial to test theories on truth status and the formation of belief as well as to study the articulation of discourse. An important aspect of this project is also its pedagogical applications since it will contribute to the creation of Open Educational Resources (OER) to support students and educators worldwide. Through collaborations with our Library System, the archive will form part of the Digital Commons database. The texts collected in this online archive will be made available in the original languages as well as in English translation. They will be accompanied by a critical apparatus that will contextualize them historically by providing relevant background information and bibliographical references. All these materials can serve as a springboard for a broad variety of educational projects and classroom activities. They can also be used to design specific content courses or modules. In conclusion, the desirable outcomes of the “Voices in Dissent” project are: 1. the collections and digitalization of political dissent testimonies; 2. the building of a network of scholars, educators, and learners involved in the design, development, and sustainability of the digital archive; 3. the integration of the content of the archive in both research and teaching endeavors, such as publication of scholarly articles, design of new upper-level courses, and integration of the materials in existing courses.

Keywords: digital archive, dissent, open educational resources, testimonies, transatlantic studies

Procedia PDF Downloads 106
501 Posts by Influencers Promoting Water Saving: The Impact of Distance and the Perception of Effectiveness on Behavior

Authors: Sancho-Esper Franco, Rodríguez Sánchez Carla, Sánchez Carolina, Orús-Sanclemente Carlos

Abstract:

Water scarcity is a reality that affects many regions of the world and is aggravated by climate change and population growth. Saving water has become an urgent need to ensure the sustainability of the planet and the survival of many communities, where youth and social networks play a key role in promoting responsible practices and adopting habits that contribute to environmental preservation. This study analyzes the persuasion capacity of messages designed to promote pro-environmental behaviors among youth. Specifically, it studies how the efficacy (effectiveness) of the response (personal response efficacy/effectiveness) and the perception of distance from the source of the message influence the water-saving behavior of the audience. To do so, two communication frameworks are combined. First, the Construal Level Theory, which is based on the concept of "psychological distance", that is, people, objects or events can be perceived as psychologically near or far, and this subjective distance (i.e., social, temporal, or spatial) determines their attitudes, emotions, and actions. This perceived distance can be social, temporal, or spatial. This research focuses on studying the spatial distance and social distance generated by cultural differences between influencers and their audience to understand how cultural distance can influence the persuasiveness of a message. Research on the effects of psychological distance between influencers-followers in the pro-environmental field is very limited, being relevant because people could learn specific behaviors suggested by opinion leaders such as influencers in social networks. Second, different approaches to behavioral change suggest that the perceived efficacy of a behavior can explain individual pro-environmental actions. People will be more likely to adopt a new behavior if they perceive that they are capable of performing it (efficacy belief) and that their behavior will effectively contribute to solving that problem (personal response efficacy). It is also important to study the different actors (social and individual) that are perceived as responsible for addressing environmental problems. Specifically, we analyze to what extent the belief individual’s water-saving actions are effective in solving the problem can influence water-saving behavior since this individual effectiveness increases people's sense of obligation and responsibility with the problem. However, in this regard, empirical evidence presents mixed results. Our study addresses the call for experimental studies manipulating different subtypes of response effectiveness to generate robust causal evidence. Based on all the above, this research analyzes whether cultural distance (local vs. international influencer) and the perception of effectiveness of behavior (personal response efficacy) (personal/individual vs. collective) affect the actual behavior and the intention to conserve water of social network users. An experiment of 2 (local influencer vs. international influencer) x 2 (effectiveness of individual vs. collective response) is designed and estimated. The results show that a message from a local influencer appealing to individual responsibility exerts greater influence on intention and actual water-saving behavior, given the cultural closeness between influencer-follower, and the appeal to individual responsibility increases the feeling of obligation to participate in pro-environmental actions. These results offer important implications for social marketing campaigns that seek to promote water conservation.

Keywords: social marketing, influencer, message framing, experiment, personal response efficacy, water saving

Procedia PDF Downloads 62
500 Cardiac Pacemaker in a Patient Undergoing Breast Radiotherapy-Multidisciplinary Approach

Authors: B. Petrović, M. Petrović, L. Rutonjski, I. Djan, V. Ivanović

Abstract:

Objective: Cardiac pacemakers are very sensitive to radiotherapy treatment from two sources: electromagnetic influence from the medical linear accelerator producing ionizing radiation- influencing electronics within the pacemaker, and the absorption of dose to the device. On the other hand, patients with cardiac pacemakers at the place of a tumor are rather rare, and single clinic hardly has experience with the management of such patients. The widely accepted international guidelines for management of radiation oncology patients recommend that these patients should be closely monitored and examined before, during and after radiotherapy treatment by cardiologist, and their device and condition followed up. The number of patients having both cancer and pacemaker, is growing every year, as both cancer incidence, as well as cardiac diseases incidence, are inevitably growing figures. Materials and methods: Female patient, age 69, was diagnozed with valvular cardiomyopathy and got implanted a pacemaker in 2005 and prosthetic mitral valve in 1993 (cancer was diagnosed in 2012). She was stable cardiologically and came to radiation therapy department with the diagnosis of right breast cancer, with the tumor in upper lateral quadrant of the right breast. Since she had all lymph nodes positive (28 in total), she had to have irradiated the supraclavicular region, as well as the breast with the tumor bed. She previously received chemotherapy, approved by the cardiologist. The patient was estimated to be with the high risk as device was within the field of irradiation, and the patient had high dependence on her pacemaker. The radiation therapy plan was conducted as 3D conformal therapy. The delineated target was breast with supraclavicular region, where the pacemaker was actually placed, with the addition of a pacemaker as organ at risk, to estimate the dose to the device and its components as recommended, and the breast. The targets received both 50 Gy in 25 fractions (where 20% of a pacemaker received 50 Gy, and 60% of a device received 40 Gy). The electrode to the heart received between 1 Gy and 50 Gy. Verification of dose planned and delivered was performed. Results: Evaluation of the patient status according to the guidelines and especially evaluation of all associated risks to the patient during treatment was done. Patient was irradiated by prescribed dose and followed up for the whole year, with no symptoms of failure of the pacemaker device during, or after treatment in follow up period. The functionality of a device was estimated to be unchanged, according to the parameters (electrode impedance and battery energy). Conclusion: Patient was closely monitored according to published guidelines during irradiation and afterwards. Pacemaker irradiated with the full dose did not show any signs of failure despite recommendations data, but in correlation with other published data.

Keywords: cardiac pacemaker, breast cancer, radiotherapy treatment planning, complications of treatment

Procedia PDF Downloads 438
499 Environmental Resilience in Sustainability Outcomes of Spatial-Economic Model Structure on the Topology of Construction Ecology

Authors: Moustafa Osman Mohammed

Abstract:

The resilient and sustainable of construction ecology is essential to world’s socio-economic development. Environmental resilience is crucial in relating construction ecology to topology of spatial-economic model. Sustainability of spatial-economic model gives attention to green business to comply with Earth’s System for naturally exchange patterns of ecosystems. The systems ecology has consistent and periodic cycles to preserve energy and materials flow in Earth’s System. When model structure is influencing communication of internal and external features in system networks, it postulated the valence of the first-level spatial outcomes (i.e., project compatibility success). These instrumentalities are dependent on second-level outcomes (i.e., participant security satisfaction). These outcomes of model are based on measuring database efficiency, from 2015 to 2025. The model topology has state-of-the-art in value-orientation impact and correspond complexity of sustainability issues (e.g., build a consistent database necessary to approach spatial structure; construct the spatial-economic model; develop a set of sustainability indicators associated with model; allow quantification of social, economic and environmental impact; use the value-orientation as a set of important sustainability policy measures), and demonstrate environmental resilience. The model is managing and developing schemes from perspective of multiple sources pollutants through the input–output criteria. These criteria are evaluated the external insertions effects to conduct Monte Carlo simulations and analysis for using matrices in a unique spatial structure. The balance “equilibrium patterns” such as collective biosphere features, has a composite index of the distributed feedback flows. These feedback flows have a dynamic structure with physical and chemical properties for gradual prolong of incremental patterns. While these structures argue from system ecology, static loads are not decisive from an artistic/architectural perspective. The popularity of system resilience, in the systems structure related to ecology has not been achieved without the generation of confusion and vagueness. However, this topic is relevant to forecast future scenarios where industrial regions will need to keep on dealing with the impact of relative environmental deviations. The model attempts to unify analytic and analogical structure of urban environments using database software to integrate sustainability outcomes where the process based on systems topology of construction ecology.

Keywords: system ecology, construction ecology, industrial ecology, spatial-economic model, systems topology

Procedia PDF Downloads 19
498 Seismic Impact and Design on Buried Pipelines

Authors: T. Schmitt, J. Rosin, C. Butenweg

Abstract:

Seismic design of buried pipeline systems for energy and water supply is not only important for plant and operational safety, but in particular for the maintenance of supply infrastructure after an earthquake. Past earthquakes have shown the vulnerability of pipeline systems. After the Kobe earthquake in Japan in 1995 for instance, in some regions the water supply was interrupted for almost two months. The present paper shows special issues of the seismic wave impacts on buried pipelines, describes calculation methods, proposes approaches and gives calculation examples. Buried pipelines are exposed to different effects of seismic impacts. This paper regards the effects of transient displacement differences and resulting tensions within the pipeline due to the wave propagation of the earthquake. Other effects are permanent displacements due to fault rupture displacements at the surface, soil liquefaction, landslides and seismic soil compaction. The presented model can also be used to calculate fault rupture induced displacements. Based on a three-dimensional Finite Element Model parameter studies are performed to show the influence of several parameters such as incoming wave angle, wave velocity, soil depth and selected displacement time histories. In the computer model, the interaction between the pipeline and the surrounding soil is modeled with non-linear soil springs. A propagating wave is simulated affecting the pipeline punctually independently in time and space. The resulting stresses mainly are caused by displacement differences of neighboring pipeline segments and by soil-structure interaction. The calculation examples focus on pipeline bends as the most critical parts. Special attention is given to the calculation of long-distance heat pipeline systems. Here, in regular distances expansion bends are arranged to ensure movements of the pipeline due to high temperature. Such expansion bends are usually designed with small bending radii, which in the event of an earthquake lead to high bending stresses at the cross-section of the pipeline. Therefore, Karman's elasticity factors, as well as the stress intensity factors for curved pipe sections, must be taken into account. The seismic verification of the pipeline for wave propagation in the soil can be achieved by observing normative strain criteria. Finally, an interpretation of the results and recommendations are given taking into account the most critical parameters.

Keywords: buried pipeline, earthquake, seismic impact, transient displacement

Procedia PDF Downloads 187
497 Comparative Assessment of the Thermal Tolerance of Spotted Stemborer, Chilo partellus Swinhoe (Lepidoptera: Crambidae) and Its Larval Parasitoid, Cotesia sesamiae Cameron (Hymenoptera: Braconidae)

Authors: Reyard Mutamiswa, Frank Chidawanyika, Casper Nyamukondiwa

Abstract:

Under stressful thermal environments, insects adjust their behaviour and physiology to maintain key life-history activities and improve survival. For interacting species, mutual or antagonistic, thermal stress may affect the participants in differing ways, which may then affect the outcome of the ecological relationship. In agroecosystems, this may be the fate of relationships between insect pests and their antagonistic parasitoids under acute and chronic thermal variability. Against this background, we therefore investigated the thermal tolerance of different developmental stages of Chilo partellus Swinhoe (Lepidoptera: Crambidae) and its larval parasitoid Cotesia sesamiae Cameron (Hymenoptera: Braconidae) using both dynamic and static protocols. In laboratory experiments, we determined lethal temperature assays (upper and lower lethal temperatures) using direct plunge protocols in programmable water baths (Systronix, Scientific, South Africa), effects of ramping rate on critical thermal limits following standardized protocols using insulated double-jacketed chambers (‘organ pipes’) connected to a programmable water bath (Lauda Eco Gold, Lauda DR.R. Wobser GMBH and Co. KG, Germany), supercooling points (SCPs) following dynamic protocols using a Pico logger connected to a programmable water bath, heat knock-down time (HKDT) and chill-coma recovery (CCRT) time following static protocols in climate chambers (HPP 260, Memmert GmbH + Co.KG, Germany) connected to a camera (HD Covert Network Camera, DS-2CD6412FWD-20, Hikvision Digital Technology Co., Ltd, China). When exposed for two hours to a static temperature, lower lethal temperatures ranged -9 to 6; -14 to -2 and -1 to 4ºC while upper lethal temperatures ranged from 37 to 48; 41 to 49 and 36 to 39ºC for C. partellus eggs, larvae and C. sesamiae adults respectively. Faster heating rates improved critical thermal maxima (CTmax) in C. partellus larvae and adult C. partellus and C. sesamiae. Lower cooling rates improved critical thermal minima (CTmin) in C. partellus and C. sesamiae adults while compromising CTmin in C. partellus larvae. The mean SCPs for C. partellus larvae, pupae and adults were -11.82±1.78, -10.43±1.73 and -15.75±2.47 respectively with adults having the lowest SCPs. Heat knock-down time and chill-coma recovery time varied significantly between C. partellus larvae and adults. Larvae had higher HKDT than adults, while the later recovered significantly faster following chill-coma. Current results suggest developmental stage differences in C. partellus thermal tolerance (with respect to lethal temperatures and critical thermal limits) and a compromised temperature tolerance of parasitoid C. sesamiae relative to its host, suggesting potential asynchrony between host-parasitoid population phenology and consequently biocontrol efficacy under global change. These results have broad implications to biological pest management insect-natural enemy interactions under rapidly changing thermal environments.

Keywords: chill-coma recovery time, climate change, heat knock-down time, lethal temperatures, supercooling point

Procedia PDF Downloads 238
496 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 116
495 Protective Role of Autophagy Challenging the Stresses of Type 2 Diabetes and Dyslipidemia

Authors: Tanima Chatterjee, Maitree Bhattacharyya

Abstract:

The global challenge of type 2 diabetes mellitus is a major health concern in this millennium, and researchers are continuously exploring new targets to develop a novel therapeutic strategy. Type 2 diabetes mellitus (T2DM) is often coupled with dyslipidemia increasing the risks for cardiovascular (CVD) complications. Enhanced oxidative and nitrosative stresses appear to be the major risk factors underlying insulin resistance, dyslipidemia, β-cell dysfunction, and T2DM pathogenesis. Autophagy emerges to be a promising defense mechanism against stress-mediated cell damage regulating tissue homeostasis, cellular quality control, and energy production, promoting cell survival. In this study, we have attempted to explore the pivotal role of autophagy in T2DM subjects with or without dyslipidemia in peripheral blood mononuclear cells and insulin-resistant HepG2 cells utilizing flow cytometric platform, confocal microscopy, and molecular biology techniques like western blotting, immunofluorescence, and real-time polymerase chain reaction. In the case of T2DM with dyslipidemia higher population of autophagy, positive cells were detected compared to patients with the only T2DM, which might have resulted due to higher stress. Autophagy was observed to be triggered both by oxidative and nitrosative stress revealing a novel finding of our research. LC3 puncta was observed in peripheral blood mononuclear cells and periphery of HepG2 cells in the case of the diabetic and diabetic-dyslipidemic conditions. Increased expression of ATG5, LC3B, and Beclin supports the autophagic pathway in both PBMC and insulin-resistant Hep G2 cells. Upon blocking autophagy by 3-methyl adenine (3MA), the apoptotic cell population increased significantly, as observed by caspase‐3 cleavage and reduced expression of Bcl2. Autophagy has also been evidenced to control oxidative stress-mediated up-regulation of inflammatory markers like IL-6 and TNF-α. To conclude, this study elucidates autophagy to play a protective role in the case of diabetes mellitus with dyslipidemia. In the present scenario, this study demands to have a significant impact on developing a new therapeutic strategy for diabetic dyslipidemic subjects by enhancing autophagic activity.

Keywords: autophagy, apoptosis, dyslipidemia, reactive oxygen species, reactive nitrogen species, Type 2 diabetes

Procedia PDF Downloads 129
494 The Impact of Climate Change on Sustainable Aquaculture Production

Authors: Peyman Mosberian-Tanha, Mona Rezaei

Abstract:

Aquaculture sector is the fastest growing food sector with annual growth rate of about 10%. The sustainability of aquaculture production, however, has been debated mainly in relation to the feed ingredients used for farmed fish. The industry has been able to decrease its dependency on marine-based ingredients in line with policies for more sustainable production. As a result, plant-based ingredients have increasingly been incorporated in aquaculture feeds, especially in feeds for popular carnivorous species, salmonids. The effect of these ingredients on salmonids’ health and performance has been widely studied. In most cases, plant-based diets are associated with varying degrees of health and performance issues across salmonids, partly depending on inclusion levels of plant ingredients and the species in question. However, aquaculture sector is facing another challenge of concern. Environmental challenges in association with climate change is another issue the aquaculture sector must deal with. Data from trials in salmonids subjected to environmental challenges of various types show adverse physiological responses, partly in relation to stress. To date, there are only a limited number of studies reporting the interactive effects of adverse environmental conditions and dietary regimens on salmonids. These studies have shown that adverse environmental conditions exacerbate the detrimental effect of plant-based diets on digestive function and health in salmonids. This indicates an additional challenge for the aquaculture sector to grow in a sustainable manner. The adverse environmental conditions often studied in farmed fish is the change in certain water quality parameters such as oxygen and/or temperature that are typically altered in response to climate change and, more specifically, global warming. In a challenge study, we observed that the in the fish fed a plant-based diet, the fish’s ability to absorb dietary energy was further reduced when reared under low oxygen level. In addition, gut health in these fish was severely impaired. Some other studies also confirm the adverse effect of environmental challenge on fish’s gut health. These effects on the digestive function and gut health of salmonids may result in less resistance to diseases and weaker performance with significant economic and ethical implications. Overall, various findings indicate the multidimensional negative effects of climate change, as a major environmental issue, in different sectors, including aquaculture production. Therefore, a comprehensive evaluation of different ways to cope with climate change is essential for planning more sustainable strategies in aquaculture sector.

Keywords: aquaculture, climate change, sustainability, salmonids

Procedia PDF Downloads 188
493 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 153
492 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 137
491 A Low-Cost Memristor Based on Hybrid Structures of Metal-Oxide Quantum Dots and Thin Films

Authors: Amir Shariffar, Haider Salman, Tanveer Siddique, Omar Manasreh

Abstract:

According to the recent studies on metal-oxide memristors, researchers tend to improve the stability, endurance, and uniformity of resistive switching (RS) behavior in memristors. Specifically, the main challenge is to prevent abrupt ruptures in the memristor’s filament during the RS process. To address this problem, we are proposing a low-cost hybrid structure of metal oxide quantum dots (QDs) and thin films to control the formation of filaments in memristors. We aim to use metal oxide quantum dots because of their unique electronic properties and quantum confinement, which may improve the resistive switching behavior. QDs have discrete energy spectra due to electron confinement in three-dimensional space. Because of Coulomb repulsion between electrons, only a few free electrons are contained in a quantum dot. This fact might guide the growth direction for the conducting filaments in the metal oxide memristor. As a result, it is expected that QDs can improve the endurance and uniformity of RS behavior in memristors. Moreover, we use a hybrid structure of intrinsic n-type quantum dots and p-type thin films to introduce a potential barrier at the junction that can smooth the transition between high and low resistance states. A bottom-up approach is used for fabricating the proposed memristor using different types of metal-oxide QDs and thin films. We synthesize QDs including, zinc oxide, molybdenum trioxide, and nickel oxide combined with spin-coated thin films of titanium dioxide, copper oxide, and hafnium dioxide. We employ fluorine-doped tin oxide (FTO) coated glass as the substrate for deposition and bottom electrode. Then, the active layer composed of one type of quantum dots, and the opposite type of thin films is spin-coated onto the FTO. Lastly, circular gold electrodes are deposited with a shadow mask by using electron-beam (e-beam) evaporation at room temperature. The fabricated devices are characterized using a probe station with a semiconductor parameter analyzer. The current-voltage (I-V) characterization is analyzed for each device to determine the conduction mechanism. We evaluate the memristor’s performance in terms of stability, endurance, and retention time to identify the optimal memristive structure. Finally, we assess the proposed hypothesis before we proceed to the optimization process for fabricating the memristor.

Keywords: memristor, quantum dot, resistive switching, thin film

Procedia PDF Downloads 122
490 Apatite Flotation Using Fruits' Oil as Collector and Sorghum as Depressant

Authors: Elenice Maria Schons Silva, Andre Carlos Silva

Abstract:

The crescent demand for raw material has increased mining activities. Mineral industry faces the challenge of process more complexes ores, with very small particles and low grade, together with constant pressure to reduce production costs and environment impacts. Froth flotation deserves special attention among the concentration methods for mineral processing. Besides its great selectivity for different minerals, flotation is a high efficient method to process fine particles. The process is based on the minerals surficial physicochemical properties and the separation is only possible with the aid of chemicals such as collectors, frothers, modifiers, and depressants. In order to use sustainable and eco-friendly reagents, oils extracted from three different vegetable species (pequi’s pulp, macauba’s nut and pulp, and Jatropha curcas) were studied and tested as apatite collectors. Since the oils are not soluble in water, an alkaline hydrolysis (or saponification), was necessary before their contact with the minerals. The saponification was performed at room temperature. The tests with the new collectors were carried out at pH 9 and Flotigam 5806, a synthetic mix of fatty acids industrially adopted as apatite collector manufactured by Clariant, was used as benchmark. In order to find a feasible replacement for cornstarch the flour and starch of a graniferous variety of sorghum was tested as depressant. Apatite samples were used in the flotation tests. XRF (X-ray fluorescence), XRD (X-ray diffraction), and SEM/EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) were used to characterize the apatite samples. Zeta potential measurements were performed in the pH range from 3.5 to 12.5. A commercial cornstarch was used as depressant benchmark. Four depressants dosages and pH values were tested. A statistical test was used to verify the pH, dosage, and starch type influence on the minerals recoveries. For dosages equal or higher than 7.5 mg/L, pequi oil recovered almost all apatite particles. In one hand, macauba’s pulp oil showed excellent results for all dosages, with more than 90% of apatite recovery, but in the other hand, with the nut oil, the higher recovery found was around 84%. Jatropha curcas oil was the second best oil tested and more than 90% of the apatite particles were recovered for the dosage of 7.5 mg/L. Regarding the depressant, the lower apatite recovery with sorghum starch were found for a dosage of 1,200 g/t and pH 11, resulting in a recovery of 1.99%. The apatite recovery for the same conditions as 1.40% for sorghum flour (approximately 30% lower). When comparing with cornstarch at the same conditions sorghum flour produced an apatite recovery 91% lower.

Keywords: collectors, depressants, flotation, mineral processing

Procedia PDF Downloads 152
489 Enhancing Photocatalytic Hydrogen Production: Modification of TiO₂ by Coupling with Semiconductor Nanoparticles

Authors: Saud Hamdan Alshammari

Abstract:

Photocatalytic water splitting to produce hydrogen (H₂) has obtained significant attention as an environmentally friendly technology. This process, which produces hydrogen from water and sunlight, represents a renewable energy source. Titanium dioxide (TiO₂) plays a critical role in photocatalytic hydrogen production due to its chemical stability, availability, and low cost. Nevertheless, TiO₂'s wide band gap (3.2 eV) limits its visible light absorption and might affect the effectiveness of the photocatalytic. Coupling TiO₂ with other semiconductors is a strategy that can enhance TiO₂ by narrowing its band gap and improving visible light absorption. This paper studies the modification of TiO₂ by coupling it with another semiconductor such as CdS nanoparticles using a reflux reactor and autoclave reactor that helps form a core-shell structure. Characterization techniques, including TEM and UV-Vis spectroscopy, confirmed successful coating of TiO₂ on CdS core, reduction of the band gap from 3.28 eV to 3.1 eV, and enhanced light absorption in the visible region. These modifications are attributed to the heterojunction structure between TiO₂ and CdS.The essential goal of this study is to improve TiO₂ for use in photocatalytic water splitting to enhance hydrogen production. The core-shell TiO₂@CdS nanoparticles exhibited promising results, due to band gap narrowing and improved light absorption. Future work will involve adding Pt as a co-catalyst, which is known to increase surface reaction activity by enhancing proton adsorption. Evaluation of the TiO₂@CdS@Pt catalyst will include performance assessments and hydrogen productivity tests, considering factors such as effective shapes and material ratios. Moreover, the study could be enhanced by studying further modifications to the catalyst and displaying additional performance evaluations. For instance, doping TiO₂ with metals such as nickel (Ni), iron (Fe), and cobalt (Co) and non-metals such as nitrogen (N), carbon (C), and sulfur (S) could positively influence the catalyst by reducing the band gap, enhancing the separation of photogenerated electron-hole pairs, and increasing the surface area, respectively. Additionally, to further improve catalytic performance, examining different catalyst morphologies, such as nanorods, nanowires, and nanosheets, in hydrogen production could be highly beneficial. Optimizing photoreactor design for efficient photon delivery and illumination will further enhance the photocatalytic process. These strategies collectively aim to overcome current challenges and improve the efficiency of hydrogen production via photocatalysis.

Keywords: hydrogen production, photocatalytic, water spliiting, semiconductor, nanoparticles

Procedia PDF Downloads 22
488 Kinematic Modelling and Task-Based Synthesis of a Passive Architecture for an Upper Limb Rehabilitation Exoskeleton

Authors: Sakshi Gupta, Anupam Agrawal, Ekta Singla

Abstract:

An exoskeleton design for rehabilitation purpose encounters many challenges, including ergonomically acceptable wearing technology, architectural design human-motion compatibility, actuation type, human-robot interaction, etc. In this paper, a passive architecture for upper limb exoskeleton is proposed for assisting in rehabilitation tasks. Kinematic modelling is detailed for task-based kinematic synthesis of the wearable exoskeleton for self-feeding tasks. The exoskeleton architecture possesses expansion and torsional springs which are able to store and redistribute energy over the human arm joints. The elastic characteristics of the springs have been optimized to minimize the mechanical work of the human arm joints. The concept of hybrid combination of a 4-bar parallelogram linkage and a serial linkage were chosen, where the 4-bar parallelogram linkage with expansion spring acts as a rigid structure which is used to provide the rotational degree-of-freedom (DOF) required for lowering and raising of the arm. The single linkage with torsional spring allows for the rotational DOF required for elbow movement. The focus of the paper is kinematic modelling, analysis and task-based synthesis framework for the proposed architecture, keeping in considerations the essential tasks of self-feeding and self-exercising during rehabilitation of partially healthy person. Rehabilitation of primary functional movements (activities of daily life, i.e., ADL) is routine activities that people tend to every day such as cleaning, dressing, feeding. We are focusing on the feeding process to make people independent in respect of the feeding tasks. The tasks are focused to post-surgery patients under rehabilitation with less than 40% weakness. The challenges addressed in work are ensuring to emulate the natural movement of the human arm. Human motion data is extracted through motion-sensors for targeted tasks of feeding and specific exercises. Task-based synthesis procedure framework will be discussed for the proposed architecture. The results include the simulation of the architectural concept for tracking the human-arm movements while displaying the kinematic and static study parameters for standard human weight. D-H parameters are used for kinematic modelling of the hybrid-mechanism, and the model is used while performing task-based optimal synthesis utilizing evolutionary algorithm.

Keywords: passive mechanism, task-based synthesis, emulating human-motion, exoskeleton

Procedia PDF Downloads 137
487 Finite Element Study of Coke Shape Deep Beam to Column Moment Connection Subjected to Cyclic Loading

Authors: Robel Wondimu Alemayehu, Sihwa Jung, Manwoo Park, Young K. Ju

Abstract:

Following the aftermath of the 1994 Northridge earthquake, intensive research on beam to column connections is conducted, leading to the current design basis. The current design codes require the use of either a prequalified connection or a connection that passes the requirements of large-scale cyclic qualification test prior to use in intermediate or special moment frames. The second alternative is expensive both in terms of money and time. On the other hand, the maximum beam depth in most of the prequalified connections is limited to 900mm due to the reduced rotation capacity of deeper beams. However, for long span beams the need to use deeper beams may arise. In this study, a beam to column connection detail suitable for deep beams is presented. The connection detail comprises of thicker-tapered beam flange adjacent to the beam to column connection. Within the thicker-tapered flange region, two reduced beam sections are provided with the objective of forming two plastic hinges within the tapered-thicker flange region. In addition, the length, width, and thickness of the tapered-thicker flange region are proportioned in such a way that a third plastic hinge forms at the end of the tapered-thicker flange region. As a result, the total rotation demand is distributed over three plastic zones. Making it suitable for deeper beams that have lower rotation capacity at one plastic hinge. The effectiveness of this connection detail is studied through finite element analysis. For the study, a beam that has a depth of 1200mm is used. Additionally, comparison with welded unreinforced flange-welded web (WUF-W) moment connection and reduced beam section moment connection is made. The results show that the rotation capacity of a WUF-W moment connection is increased from 2.0% to 2.2% by applying the proposed moment connection detail. Furthermore, the maximum moment capacity, energy dissipation capacity and stiffness of the WUF-W moment connection is increased up to 58%, 49%, and 32% respectively. In contrast, applying the reduced beam section detail to the same WUF-W moment connection reduced the rotation capacity from 2.0% to 1.50% plus the maximum moment capacity and stiffness of the connection is reduced by 22% and 6% respectively. The proposed connection develops three plastic hinge regions as intended and it shows improved performance compared to both WUF-W moment connection and reduced beam section moment connection. Moreover, the achieved rotation capacity satisfies the minimum required for use in intermediate moment frames.

Keywords: connections, finite element analysis, seismic design, steel intermediate moment frame

Procedia PDF Downloads 166
486 Enhanced Stability of Piezoelectric Crystalline Phase of Poly(Vinylidene Fluoride) (PVDF) and Its Copolymer upon Epitaxial Relationships

Authors: Devi Eka Septiyani Arifin, Jrjeng Ruan

Abstract:

As an approach to manipulate the performance of polymer thin film, epitaxy crystallization within polymer blends of poly(vinylidene fluoride) (PVDF) and its copolymer poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) was studied in this research, which involves the competition between phase separation and crystal growth of constitutive semicrystalline polymers. The unique piezoelectric feature of poly(vinylidene fluoride) crystalline phase is derived from the packing of molecular chains in all-trans conformation, which spatially arranges all the substituted fluorene atoms on one side of the molecular chain and hydrogen atoms on the other side. Therefore, the net dipole moment is induced across the lateral packing of molecular chains. Nevertheless, due to the mutual repulsion among fluorene atoms, this all-trans molecular conformation is not stable, and ready to change above curie temperature, where thermal energy is sufficient to cause segmental rotation. This research attempts to explore whether the epitaxial interactions between piezoelectric crystals and crystal lattice of hexamethylbenzene (HMB) crystalline platelet is able to stabilize this metastable all-trans molecular conformation or not. As an aromatic crystalline compound, the melt of HMB was surprisingly found able to dissolve the poly(vinylidene fluoride), resulting in homogeneous eutectic solution. Thus, after quenching this binary eutectic mixture to room temperature, subsequent heating or annealing processes were designed to explore the involve phase separation and crystallization behavior. The phase transition behaviors were observed in-situ by X-ray diffraction and differential scanning calorimetry (DSC). The molecular packing was observed via transmission electron microscope (TEM) and the principles of electron diffraction were brought to study the internal crystal structure epitaxially developed within thin films. Obtained results clearly indicated the occurrence of heteroepitaxy of PVDF/PVDF-TrFE on HMB crystalline platelet. Both the concentration of poly(vinylidene fluoride) and the mixing ratios of these two constitutive polymers have been adopted as the influential factors for studying the competition between the epitaxial crystallization of PVDF and P(VDF-TrFE) on HMB crystalline. Furthermore, the involved epitaxial relationship is to be deciphered and studied as a potential factor capable of guiding the wide spread of piezoelectric crystalline form.

Keywords: epitaxy, crystallization, crystalline platelet, thin film and mixing ratio

Procedia PDF Downloads 223
485 Creep Analysis and Rupture Evaluation of High Temperature Materials

Authors: Yuexi Xiong, Jingwu He

Abstract:

The structural components in an energy facility such as steam turbine machines are operated under high stress and elevated temperature in an endured time period and thus the creep deformation and creep rupture failure are important issues that need to be addressed in the design of such components. There are numerous creep models being used for creep analysis that have both advantages and disadvantages in terms of accuracy and efficiency. The Isochronous Creep Analysis is one of the simplified approaches in which a full-time dependent creep analysis is avoided and instead an elastic-plastic analysis is conducted at each time point. This approach has been established based on the rupture dependent creep equations using the well-known Larson-Miller parameter. In this paper, some fundamental aspects of creep deformation and the rupture dependent creep models are reviewed and the analysis procedures using isochronous creep curves are discussed. Four rupture failure criteria are examined from creep fundamental perspectives including criteria of Stress Damage, Strain Damage, Strain Rate Damage, and Strain Capability. The accuracy of these criteria in predicting creep life is discussed and applications of the creep analysis procedures and failure predictions of simple models will be presented. In addition, a new failure criterion is proposed to improve the accuracy and effectiveness of the existing criteria. Comparisons are made between the existing criteria and the new one using several examples materials. Both strain increase and stress relaxation form a full picture of the creep behaviour of a material under high temperature in an endured time period. It is important to bear this in mind when dealing with creep problems. Accordingly there are two sets of rupture dependent creep equations. While the rupture strength vs LMP equation shows how the rupture time depends on the stress level under load controlled condition, the strain rate vs rupture time equation reflects how the rupture time behaves under strain-controlled condition. Among the four existing failure criteria for rupture life predictions, the Stress Damage and Strain Damage Criteria provide the most conservative and non-conservative predictions, respectively. The Strain Rate and Strain Capability Criteria provide predictions in between that are believed to be more accurate because the strain rate and strain capability are more determined quantities than stress to reflect the creep rupture behaviour. A modified Strain Capability Criterion is proposed making use of the two sets of creep equations and therefore is considered to be more accurate than the original Strain Capability Criterion.

Keywords: creep analysis, high temperature mateials, rapture evalution, steam turbine machines

Procedia PDF Downloads 290
484 Association of Maternal Diet Quality Indices and Dietary Patterns during Lactation and the Growth of Exclusive Breastfed Infant

Authors: Leila Azadbakht, Maedeh Moradi, Mohammad Reza Merasi, Farzaneh Jahangir

Abstract:

Maternal dietary intake during lactation might affect the growth rate of an exclusive breastfed infant. The present study was conducted to evaluate the effect of maternal dietary patterns and quality during lactation on the growth of the exclusive breastfed infant. Methods: 484 healthy lactating mothers with their infant were enrolled in this study. Only exclusive breastfed infants were included in this study which was conducted in Iran. Dietary intake of lactating mothers was assessed using a validated and reliable semi-quantitative food frequency questionnaire. Diet quality indices such as alternative Healthy eating index (HEI), Dietary energy density (DED), and adherence to Mediterranean dietary pattern score, Nordic and dietary approaches to stop hypertension (DASH) eating pattern were created. Anthropometric features of infant (weight, height, and head circumference) were recorded at birth, two and four months. Results: Weight, length, weight for height and head circumference of infants at two months and four months age were mostly in the normal range among those that mothers adhered more to the HEI in lactation period (normal weight: 61%; normal height: 59%). The prevalence of stunting at four months of age among those whose mothers adhered more to the HEI was 31% lower than those with the least adherence to HEI. Mothers in the top tertiles of HEI score had the lowest frequency of having underweight infants (18% vs. 33%; P=0.03). Odds ratio of being overweight or obese at four months age was the lowest among those infants whose mothers adhered more to the HEI (OR: 0.67 vs 0.91; Ptrend=0.03). However, there was not any significant association between adherence of mothers to Mediterranean diet as well as DASH diet and Nordic eating pattern and the growth of infants (none of weight, height or head circumference). Infant weight, length, weight for height and head circumference at two months and four months did not show significant differences among different tertile categories of mothers’ DED. Conclusions: Higher diet quality indices and more adherence of lactating mother to HEI (as an indicator of diet quality) may be associated with better growth indices of the breastfed infant. However, it seems that DED of the lactating mother does not affect the growth of the breastfed infant. Adherence to the different dietary patterns such as Mediterranean, DASH or Nordic among mothers had no different effect on the growth indices of the infants. However, higher diet quality indices and more adherence of lactating mother to HEI may be associated with better growth indices of the breastfed infant. Breastfeeding is a complete way that is not affected much by the dietary patterns of the mother. However, better diet quality might be associated with better growth.

Keywords: breastfeeding, growth, infant, maternal diet

Procedia PDF Downloads 208
483 Microstructural Characterization of Bitumen/Montmorillonite/Isocyanate Composites by Atomic Force Microscopy

Authors: Francisco J. Ortega, Claudia Roman, Moisés García-Morales, Francisco J. Navarro

Abstract:

Asphaltic bitumen has been largely used in both industrial and civil engineering, mostly in pavement construction and roofing membrane manufacture. However, bitumen as such is greatly susceptible to temperature variations, and dramatically changes its in-service behavior from a viscoelastic liquid, at medium-high temperatures, to a brittle solid at low temperatures. Bitumen modification prevents these problems and imparts improved performance. Isocyanates like polymeric MDI (mixture of 4,4′-diphenylmethane di-isocyanate, 2,4’ and 2,2’ isomers, and higher homologues) have shown to remarkably enhance bitumen properties at the highest in-service temperatures expected. This comes from the reaction between the –NCO pendant groups of the oligomer and the most polar groups of asphaltenes and resins in bitumen. In addition, oxygen diffusion and/or UV radiation may provoke bitumen hardening and ageing. With the purpose of minimizing these effects, nano-layered-silicates (nanoclays) are increasingly being added to bitumen formulations. Montmorillonites, a type of naturally occurring mineral, may produce a nanometer scale dispersion which improves bitumen thermal, mechanical and barrier properties. In order to increase their lipophilicity, these nanoclays are normally treated so that organic cations substitute the inorganic cations located in their intergallery spacing. In the present work, the combined effect of polymeric MDI and the commercial montmorillonite Cloisite® 20A was evaluated. A selected bitumen with penetration within the range 160/220 was modified with 10 wt.% Cloisite® 20A and 2 wt.% polymeric MDI, and the resulting ternary composites were characterized by linear rheology, X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). The rheological tests evidenced a notable solid-like behavior at the highest temperatures studied when bitumen was just loaded with 10 wt.% Cloisite® 20A and high-shear blended for 20 minutes. However, if polymeric MDI was involved, the sequence of addition exerted a decisive control on the linear rheology of the final ternary composites. Hence, in bitumen/Cloisite® 20A/polymeric MDI formulations, the previous solid-like behavior disappeared. By contrast, an inversion in the order of addition (bitumen/polymeric MDI/ Cloisite® 20A) enhanced further the solid-like behavior imparted by the nanoclay. In order to gain a better understanding of the factors that govern the linear rheology of these ternary composites, a morphological and microstructural characterization based on XRD and AFM was conducted. XRD demonstrated the existence of clay stacks intercalated by bitumen molecules to some degree. However, the XRD technique cannot provide detailed information on the extent of nanoclay delamination, unless the entire fraction has effectively been fully delaminated (situation in which no peak is observed). Furthermore, XRD was unable to provide precise knowledge neither about the spatial distribution of the intercalated/exfoliated platelets nor about the presence of other structures at larger length scales. In contrast, AFM proved its power at providing conclusive information on the morphology of the composites at the nanometer scale and at revealing the structural modification that yielded the rheological properties observed. It was concluded that high-shear blending brought about a nanoclay-reinforced network. As for the bitumen/Cloisite® 20A/polymeric MDI formulations, the solid-like behavior was destroyed as a result of the agglomeration of the nanoclay platelets promoted by chemical reactions.

Keywords: Atomic Force Microscopy, bitumen, composite, isocyanate, montmorillonite.

Procedia PDF Downloads 261
482 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well

Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar

Abstract:

During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.

Keywords: pin end, microstructure, grain size, stress corrosion cracks

Procedia PDF Downloads 80
481 Occurrence of Half-Metallicity by Sb-Substitution in Non-Magnetic Fe₂TiSn

Authors: S. Chaudhuri, P. A. Bhobe

Abstract:

Fe₂TiSn is a non-magnetic full Heusler alloy with a small gap (~ 0.07 eV) at the Fermi level. The electronic structure is highly symmetric in both the spin bands and a small percentage of substitution of holes or electrons can push the system towards spin polarization. A stable 100% spin polarization or half-metallicity is very desirable in the field of spintronics, making Fe₂TiSn a highly attractive material. However, this composition suffers from an inherent anti-site disorder between Fe and Ti sites. This paper reports on the method adopted to control the anti-site disorder and the realization of the half-metallic ground state in Fe₂TiSn, achieved by chemical substitution. Here, Sb was substituted at Sn site to obtain Fe₂TiSn₁₋ₓSbₓ compositions with x = 0, 0.1, 0.25, 0.5 and 0.6. All prepared compositions with x ≤ 0.6 exhibit long-range L2₁ ordering and a decrease in Fe – Ti anti-site disorder. The transport and magnetic properties of Fe₂TiSn₁₋ₓSbₓ compositions were investigated as a function of temperature in the range, 5 K to 400 K. Electrical resistivity, magnetization, and Hall voltage measurements were carried out. All the experimental results indicate the presence of the half-metallic ground state in x ≥ 0.25 compositions. However, the value of saturation magnetization is small, indicating the presence of compensated magnetic moments. The observed magnetic moments' values are in close agreement with the Slater–Pauling rule in half-metallic systems. Magnetic interactions in Fe₂TiSn₁₋ₓSbₓ are understood from the local crystal structural perspective using extended X-ray absorption fine structure (EXAFS) spectroscopy. The changes in bond distances extracted from EXAFS analysis can be correlated with the hybridization between constituent atoms and hence the RKKY type magnetic interactions that govern the magnetic ground state of these alloys. To complement the experimental findings, first principle electronic structure calculations were also undertaken. The spin-polarized DOS complies with the experimental results for Fe₂TiSn₁₋ₓSbₓ. Substitution of Sb (an electron excess element) at Sn–site shifts the majority spin band to the lower energy side of Fermi level, thus making the system 100% spin polarized and inducing long-range magnetic order in an otherwise non-magnetic Fe₂TiSn. The present study concludes that a stable half-metallic system can be realized in Fe₂TiSn with ≥ 50% Sb – substitution at Sn – site.

Keywords: antisite disorder, EXAFS, Full Heusler alloy, half metallic ferrimagnetism, RKKY interactions

Procedia PDF Downloads 139
480 An Intelligence-Led Methodologly for Detecting Dark Actors in Human Trafficking Networks

Authors: Andrew D. Henshaw, James M. Austin

Abstract:

Introduction: Human trafficking is an increasingly serious transnational criminal enterprise and social security issue. Despite ongoing efforts to mitigate the phenomenon and a significant expansion of security scrutiny over past decades, it is not receding. This is true for many nations in Southeast Asia, widely recognized as the global hub for trafficked persons, including men, women, and children. Clearly, human trafficking is difficult to address because there are numerous drivers, causes, and motivators for it to persist, such as non-military and non-traditional security challenges, i.e., climate change, global warming displacement, and natural disasters. These make displaced persons and refugees particularly vulnerable. The issue is so large conservative estimates put a dollar value at around $150 billion-plus per year (Niethammer, 2020) spanning sexual slavery and exploitation, forced labor, construction, mining and in conflict roles, and forced marriages of girls and women. Coupled with corruption throughout military, police, and civil authorities around the world, and the active hands of powerful transnational criminal organizations, it is likely that such figures are grossly underestimated as human trafficking is misreported, under-detected, and deliberately obfuscated to protect those profiting from it. For example, the 2022 UN report on human trafficking shows a 56% reduction in convictions in that year alone (UNODC, 2022). Our Approach: To better understand this, our research utilizes a bespoke methodology. Applying a JAM (Juxtaposition Assessment Matrix), which we previously developed to detect flows of dark money around the globe (Henshaw, A & Austin, J, 2021), we now focus on the human trafficking paradigm. Indeed, utilizing a JAM methodology has identified key indicators of human trafficking not previously explored in depth. Being a set of structured analytical techniques that provide panoramic interpretations of the subject matter, this iteration of the JAM further incorporates behavioral and driver indicators, including the employment of Open-Source Artificial Intelligence (OS-AI) across multiple collection points. The extracted behavioral data was then applied to identify non-traditional indicators as they contribute to human trafficking. Furthermore, as the JAM OS-AI analyses data from the inverted position, i.e., the viewpoint of the traffickers, it examines the behavioral and physical traits required to succeed. This transposed examination of the requirements of success delivers potential leverage points for exploitation in the fight against human trafficking in a new and novel way. Findings: Our approach identified new innovative datasets that have previously been overlooked or, at best, undervalued. For example, the JAM OS-AI approach identified critical 'dark agent' lynchpins within human trafficking that are difficult to detect and harder to connect to actors and agents within a network. Our preliminary data suggests this is in part due to the fact that ‘dark agents’ in extant research have been difficult to detect and potentially much harder to directly connect to the actors and organizations in human trafficking networks. Our research demonstrates that using new investigative techniques such as OS-AI-aided JAM introduces a powerful toolset to increase understanding of human trafficking and transnational crime and illuminate networks that, to date, avoid global law enforcement scrutiny.

Keywords: human trafficking, open-source intelligence, transnational crime, human security, international human rights, intelligence analysis, JAM OS-AI, Dark Money

Procedia PDF Downloads 90
479 Xylanase Impact beyond Performance: A Prebiotic Approach in Laying Hens

Authors: Veerle Van Hoeck, Ingrid Somers, Dany Morisset

Abstract:

Anti-nutritional factors such as non-starch polysaccharides (NSP) are present in viscous cereals used to feed poultry. Therefore, exogenous carbohydrases are commonly added to monogastric feed to degrade these NSP. Our hypothesis is that xylanase not only improves laying hen performance and digestibility but also induces a significant shift in microbial composition within the intestinal tract and, thereby, can cause a prebiotic effect. In this context, a better understanding of whether and how the chicken gut flora can be modulated by xylanase is needed. To do so, in the herein laying hen study, the effects of dietary supplementation of xylanase on performance, digestibility, and cecal microbiome were evaluated. A total of 96 HiSex laying hens was used in this experiment (3 diets and 16 replicates of 2 hens). Xylanase was added to the diets at concentrations of 0, 45,000 (15 g/t XygestTM HT) and 90,000 U/kg (30 g/t Xygest HT). The diets were based on wheat (~55 %), soybean, and sunflower meal. The lowest dosage, 45,000 U/kg, significantly increased average egg weight and improved feed efficiency compared to the control treatment (p < 0.05). Egg quality parameters were significantly improved in the experiment in response to the xylanase addition. For example, during the last 28 days of the trial, the 45,000 U/kg and the 90,000 U/kg treatments exhibited an increase in Haugh units and albumin heights (p < 0.05). Compared with the control, organic matter digestibility and N retention were drastically improved in the 45,000 U/kg treatment group, which implies better nutrient digestibility at this lowest recommended dosage compared to the control (p < 0.05). Furthermore, gross energy and crude fat digestibility were improved significantly for birds fed 90,000 U/kg group compared to the control. Importantly, 16S rRNA gene analysis revealed that xylanase at 45,000 U/kg dosages can exert a prebiotic effect. This conclusion was drawn based on studying the sequence variation in the 16S rRNA gene in order to characterize diverse microbial communities of the cecal content. A significant increase in beneficial bacteria (Lactobacilli spp and Enterococcus casseliflavus) was documented when adding 45,000 U/kg xylanase to the diet of laying hens. In conclusion, dietary supplementation of xylanase, even at the lowest dose of (45,000 U/kg), significantly improved laying hen performance and digestibility. Furthermore, it is generally accepted that a proper bacterial balance between the number of beneficial bacteria and pathogenic bacteria in the intestine is vital for the host. It seems that the xylanase enzyme is able to modulate the laying hen microbiome beneficially and thus exerts a prebiotic effect. This microbiome plasticity in response to the xylanase provides an attractive target for stimulating intestinal health.

Keywords: laying hen, prebiotic, XygestTM HT, xylanase

Procedia PDF Downloads 128
478 Deciphering Information Quality: Unraveling the Impact of Information Distortion in the UK Aerospace Supply Chains

Authors: Jing Jin

Abstract:

The incorporation of artificial intelligence (AI) and machine learning (ML) in aircraft manufacturing and aerospace supply chains leads to the generation of a substantial amount of data among various tiers of suppliers and OEMs. Identifying the high-quality information challenges decision-makers. The application of AI/ML models necessitates access to 'high-quality' information to yield desired outputs. However, the process of information sharing introduces complexities, including distortion through various communication channels and biases introduced by both human and AI entities. This phenomenon significantly influences the quality of information, impacting decision-makers engaged in configuring supply chain systems. Traditionally, distorted information is categorized as 'low-quality'; however, this study challenges this perception, positing that distorted information, contributing to stakeholder goals, can be deemed high-quality within supply chains. The main aim of this study is to identify and evaluate the dimensions of information quality crucial to the UK aerospace supply chain. Guided by a central research question, "What information quality dimensions are considered when defining information quality in the UK aerospace supply chain?" the study delves into the intricate dynamics of information quality in the aerospace industry. Additionally, the research explores the nuanced impact of information distortion on stakeholders' decision-making processes, addressing the question, "How does the information distortion phenomenon influence stakeholders’ decisions regarding information quality in the UK aerospace supply chain system?" This study employs deductive methodologies rooted in positivism, utilizing a cross-sectional approach and a mono-quantitative method -a questionnaire survey. Data is systematically collected from diverse tiers of supply chain stakeholders, encompassing end-customers, OEMs, Tier 0.5, Tier 1, and Tier 2 suppliers. Employing robust statistical data analysis methods, including mean values, mode values, standard deviation, one-way analysis of variance (ANOVA), and Pearson’s correlation analysis, the study interprets and extracts meaningful insights from the gathered data. Initial analyses challenge conventional notions, revealing that information distortion positively influences the definition of information quality, disrupting the established perception of distorted information as inherently low-quality. Further exploration through correlation analysis unveils the varied perspectives of different stakeholder tiers on the impact of information distortion on specific information quality dimensions. For instance, Tier 2 suppliers demonstrate strong positive correlations between information distortion and dimensions like access security, accuracy, interpretability, and timeliness. Conversely, Tier 1 suppliers emphasise strong negative influences on the security of accessing information and negligible impact on information timeliness. Tier 0.5 suppliers showcase very strong positive correlations with dimensions like conciseness and completeness, while OEMs exhibit limited interest in considering information distortion within the supply chain. Introducing social network analysis (SNA) provides a structural understanding of the relationships between information distortion and quality dimensions. The moderately high density of ‘information distortion-by-information quality’ underscores the interconnected nature of these factors. In conclusion, this study offers a nuanced exploration of information quality dimensions in the UK aerospace supply chain, highlighting the significance of individual perspectives across different tiers. The positive influence of information distortion challenges prevailing assumptions, fostering a more nuanced understanding of information's role in the Industry 4.0 landscape.

Keywords: information distortion, information quality, supply chain configuration, UK aerospace industry

Procedia PDF Downloads 64
477 Leveraging Information for Building Supply Chain Competitiveness

Authors: Deepika Joshi

Abstract:

Operations in automotive industry rely greatly on information shared between Supply Chain (SC) partners. This leads to efficient and effective management of SC activity. Automotive sector in India is growing at 14.2 percent per annum and has huge economic importance. We find that no study has been carried out on the role of information sharing in SC management of Indian automotive manufacturers. Considering this research gap, the present study is planned to establish the significance of information sharing in Indian auto-component supply chain activity. An empirical research was conducted for large scale auto component manufacturers from India. Twenty four Supply Chain Performance Indicators (SCPIs) were collected from existing literature. These elements belong to eight diverse but internally related areas of SC management viz., demand management, cost, technology, delivery, quality, flexibility, buyer-supplier relationship, and operational factors. A pair-wise comparison and an open ended questionnaire were designed using these twenty four SCPIs. The questionnaire was then administered among managerial level employees of twenty-five auto-component manufacturing firms. Analytic Network Process (ANP) technique was used to analyze the response of pair-wise questionnaire. Finally, twenty-five priority indexes are developed, one for each respondent. These were averaged to generate an industry specific priority index. The open-ended questions depicted strategies related to information sharing between buyers and suppliers and their influence on supply chain performance. Results show that the impact of information sharing on certain performance indicators is relatively greater than their corresponding variables. For example, flexibility, delivery, demand and cost related elements have massive impact on information sharing. Technology is relatively less influenced by information sharing but it immensely influence the quality of information shared. Responses obtained from managers reveal that timely and accurate information sharing lowers the cost, increases flexibility and on-time delivery of auto parts, therefore, enhancing the competitiveness of Indian automotive industry. Any flaw in dissemination of information can disturb the cycle time of both the parties and thus increases the opportunity cost. Due to supplier’s involvement in decisions related to design of auto parts, quality conformance is found to improve, leading to reduction in rejection rate. Similarly, mutual commitment to share right information at right time between all levels of SC enhances trust level. SC partners share information to perform comprehensive quality planning to ingrain total quality management. This study contributes to operations management literature which faces scarcity of empirical examination on this subject. It views information sharing as a building block which firms can promote and evolve to leverage the operational capability of all SC members. It will provide insights for Indian managers and researchers as every market is unique and suppliers and buyers are driven by local laws, industry status and future vision. While major emphasis in this paper is given to SC operations happening between domestic partners, placing more focus on international SC can bring in distinguished results.

Keywords: Indian auto component industry, information sharing, operations management, supply chain performance indicators

Procedia PDF Downloads 550
476 Experimental Recovery of Gold, Silver and Palladium from Electronic Wastes Using Ionic Liquids BmimHSO4 and BmimCl as Solvents

Authors: Lisa Shambare, Jean Mulopo, Sehliselo Ndlovu

Abstract:

One of the major challenges of sustainable development is promoting an industry which is both ecologically durable and economically viable. This requires processes that are material and energy efficient whilst also being able to limit the production of waste and toxic effluents through effective methods of process synthesis and intensification. In South Africa and globally, both miniaturisation and technological advances have substantially increased the amount of electronic wastes (e-waste) generated annually. Vast amounts of e-waste are being generated yearly with only a minute quantity being recycled officially. The passion for electronic devices cannot ignore the scarcity and cost of mining the noble metal resources which contribute significantly to the efficiency of most electronic devices. It has hence become imperative especially in an African context that sustainable strategies which are environmentally friendly be developed for recycling of the noble metals from e-waste. This paper investigates the recovery of gold, silver and palladium from electronic wastes, which consists of a vast array of metals, using ionic liquids which have the potential of reducing the gaseous and aqueous emissions associated with existing hydrometallurgical and pyrometallurgical technologies while also maintaining the economy of the overall recycling scheme through solvent recovery. The ionic liquids 1-butyl-3-methyl imidazolium hydrogen sulphate (BmimHSO4) which behaves like a protic acid and was used in the present research for the selective leaching of gold and silver from e-waste. Different concentrations of the aqueous ionic liquid were used in the experiments ranging from 10% to 50%. Thiourea was used as the complexing agent in the investigation with Fe3+ as the oxidant. The pH of the reaction was maintained in the range of 0.8 to 1.5. The preliminary investigations conducted were successful in the leaching of silver and palladium at room temperature with optimum results being at 48hrs. The leaching results could not be explained because of the leaching of palladium with the absence of gold. Hence a conclusion could not be drawn and there was the need for further experiments to be run. The leaching of palladium was carried out with hydrogen peroxide as oxidant and 1-butyl-3-methyl imidazolium chloride (BmimCl) as the solvent. The experiments at carried out at a temperature of 60 degrees celsius and a very low pH. The chloride ion was used to complex with palladium metal. From the preliminary results, it could be concluded that pretreatment of the treatment e-waste was necessary to improve the efficiency of the metal recovery process. A conclusion could not be drawn for the leaching experiments.

Keywords: BmimCl, BmimHSO4, gold, palladium, silver

Procedia PDF Downloads 291
475 Determination of Activation Energy for Thermal Decomposition of Selected Soft Tissues Components

Authors: M. Ekiert, T. Uhl, A. Mlyniec

Abstract:

Tendons are the biological soft tissue structures composed of collagen, proteoglycan, glycoproteins, water and cells of extracellular matrix (ECM). Tendons, which primary function is to transfer force generated by the muscles to the bones causing joints movement, are exposed to many micro and macro damages. In fact, tendons and ligaments trauma are one of the most numerous injuries of human musculoskeletal system, causing for many people (particularly for athletes and physically active people), recurring disorders, chronic pain or even inability of movement. The number of tendons reconstruction and transplantation procedures is increasing every year. Therefore, studies on soft tissues storage conditions (influencing i.e. tissue aging) seem to be an extremely important issue. In this study, an atomic-scale investigation on the kinetics of decomposition of two selected tendon components – collagen type I (which forms a 60-85% of a tendon dry mass) and elastin protein (which combine with ECM creates elastic fibers of connective tissues) is presented. A molecular model of collagen and elastin was developed based on crystal structure of triple-helical collagen-like 1QSU peptide and P15502 human elastin protein, respectively. Each model employed 4 linear strands collagen/elastin strands per unit cell, distributed in 2x2 matrix arrangement, placed in simulation box filled with water molecules. A decomposition phenomena was simulated with molecular dynamics (MD) method using ReaxFF force field and periodic boundary conditions. A set of NVT-MD runs was performed for 1000K temperature range in order to obtained temperature-depended rate of production of decomposition by-products. Based on calculated reaction rates activation energies and pre-exponential factors, required to formulate Arrhenius equations describing kinetics of decomposition of tested soft tissue components, were calculated. Moreover, by adjusting a model developed for collagen, system scalability and correct implementation of the periodic boundary conditions were evaluated. An obtained results provide a deeper insight into decomposition of selected tendon components. A developed methodology may also be easily transferred to other connective tissue elements and therefore might be used for further studies on soft tissues aging.

Keywords: decomposition, molecular dynamics, soft tissue, tendons

Procedia PDF Downloads 210
474 Heat Transfer Performance of a Small Cold Plate with Uni-Directional Porous Copper for Cooling Power Electronics

Authors: K. Yuki, R. Tsuji, K. Takai, S. Aramaki, R. Kibushi, N. Unno, K. Suzuki

Abstract:

A small cold plate with uni-directional porous copper is proposed for cooling power electronics such as an on-vehicle inverter with the heat generation of approximately 500 W/cm2. The uni-directional porous copper with the pore perpendicularly orienting the heat transfer surface is soldered to a grooved heat transfer surface. This structure enables the cooling liquid to evaporate in the pore of the porous copper and then the vapor to discharge through the grooves. In order to minimize the cold plate, a double flow channel concept is introduced for the design of the cold plate. The cold plate consists of a base plate, a spacer, and a vapor discharging plate, totally 12 mm in thickness. The base plate has multiple nozzles of 1.0 mm in diameter for the liquid supply and 4 slits of 2.0 mm in width for vapor discharging, and is attached onto the top surface of the porous copper plate of 20 mm in diameter and 5.0 mm in thickness. The pore size is 0.36 mm and the porosity is 36 %. The cooling liquid flows into the porous copper as an impinging jet flow from the multiple nozzles, and then the vapor, which is generated in the pore, is discharged through the grooves and the vapor slits outside the cold plate. A heated test section consists of the cold plate, which was explained above, and a heat transfer copper block with 6 cartridge heaters. The cross section of the heat transfer block is reduced in order to increase the heat flux. The top surface of the block is the grooved heat transfer surface of 10 mm in diameter at which the porous copper is soldered. The grooves are fabricated like latticework, and the width and depth are 1.0 mm and 0.5 mm, respectively. By embedding three thermocouples in the cylindrical part of the heat transfer block, the temperature of the heat transfer surface ant the heat flux are extrapolated in a steady state. In this experiment, the flow rate is 0.5 L/min and the flow velocity at each nozzle is 0.27 m/s. The liquid inlet temperature is 60 °C. The experimental results prove that, in a single-phase heat transfer regime, the heat transfer performance of the cold plate with the uni-directional porous copper is 2.1 times higher than that without the porous copper, though the pressure loss with the porous copper also becomes higher than that without the porous copper. As to the two-phase heat transfer regime, the critical heat flux increases by approximately 35% by introducing the uni-directional porous copper, compared with the CHF of the multiple impinging jet flow. In addition, we confirmed that these heat transfer data was much higher than that of the ordinary single impinging jet flow. These heat transfer data prove high potential of the cold plate with the uni-directional porous copper from the view point of not only the heat transfer performance but also energy saving.

Keywords: cooling, cold plate, uni-porous media, heat transfer

Procedia PDF Downloads 295
473 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing

Authors: Tolulope Aremu

Abstract:

The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.

Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods

Procedia PDF Downloads 20