Search results for: vertical electrical sounding(VES)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3122

Search results for: vertical electrical sounding(VES)

1772 An Acoustical Diagnosis of a Shaft-Wood Phyto-Pathogenic Damage of Sequoiadendron giganteum (Lindl.) Buccholz

Authors: Yuri V. Plugatar, Vladimir P. Koba, Vladimir V. Papelbu, Vladimir N. Gerasimchuk, Tatjana M. Sakhno

Abstract:

Using a supersonic shaft–wood tomography, the evaluation of a shaft-wood phyto-pathogenic damage level of Sequoiadendron giganteum (Lindl.) Buccholz was prosecuted. The digital bivariate reflections of the shaft tissue damage were obtained, the characteristics of comparative parameters of the wood-decay degree were given. The investigation results allowed to show up the role of some edaphic factors in their affection on a vital condition and the level of destructive processes while shaft tissue damaging of S.giganteum. It was pinned up that soil consolidation, and hydro-morphication equally make for a phyto-pathogenic damage of plants. While soil consolidation negative acting the shaft-wood damage is located in an underneath of a shaft. In the conditions of an enlarged hydro-morphication a tissue degradation runs less intensively, the destructive processes more active spread in a vertical section of a shaft. The use of a supersonic tomography method gives wide possibilities to diagnose a shaft-wood phyto-pathogenic damage.

Keywords: Sequoiadendron giganteum (Lindl.) Buccholz, supersonic tomography, diagnosis, phyto-pathogenic damage, a vital condition

Procedia PDF Downloads 213
1771 Analysis of Aquifer Productivity in the Mbouda Area (West Cameroon)

Authors: Folong Tchoffo Marlyse Fabiola, Anaba Onana Achille Basile

Abstract:

Located in the western region of Cameroon, in the BAMBOUTOS department, the city of Mbouda belongs to the Pan-African basement. The water resources exploited in this region consist of surface water and groundwater from weathered and fractured aquifers within the same basement. To study the factors determining the productivity of aquifers in the Mbouda area, we adopted a methodology based on collecting data from boreholes drilled in the region, identifying different types of rocks, analyzing structures, and conducting geophysical surveys in the field. The results obtained allowed us to distinguish two main types of rocks: metamorphic rocks composed of amphibolites and migmatitic gneisses and igneous rocks, namely granodiorites and granites. Several types of structures were also observed, including planar structures (foliation and schistosity), folded structures (folds), and brittle structures (fractures and lineaments). A structural synthesis combines all these elements into three major phases of deformation. Phase D1 is characterized by foliation and schistosity, phase D2 is marked by shear planes and phase D3 is characterized by open and sealed fractures. The analysis of structures (fractures in outcrops, Landsat lineaments, subsurface structures) shows a predominance of ENE-WSW and WNW-ESE directions. Through electrical surveys and borehole data, we were able to identify the sequence of different geological formations. Four geo-electric layers were identified, each with a different electrical conductivity: conductive, semi-resistive, or resistive. The last conductive layer is considered a potentially aquiferous zone. The flow rates of the boreholes ranged from 2.6 to 12 m3/h, classified as moderate to high according to the CIEH classification. The boreholes were mainly located in basalts, which are mineralogically rich in ferromagnesian minerals. This mineral composition contributes to their high productivity as they are more likely to be weathered. The boreholes were positioned along linear structures or at their intersections.

Keywords: Mbouda, Pan-African basement, productivity, west-Cameroon

Procedia PDF Downloads 62
1770 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 313
1769 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.

Keywords: flammable zones, gas pipelines, numerical simulation, wind effects

Procedia PDF Downloads 166
1768 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections

Authors: M. C. O. Ezeibe, F. I. O. Ezeibe

Abstract:

Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.

Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate

Procedia PDF Downloads 63
1767 Performance of On-site Earthquake Early Warning Systems for Different Sensor Locations

Authors: Ting-Yu Hsu, Shyu-Yu Wu, Shieh-Kung Huang, Hung-Wei Chiang, Kung-Chun Lu, Pei-Yang Lin, Kuo-Liang Wen

Abstract:

Regional earthquake early warning (EEW) systems are not suitable for Taiwan, as most destructive seismic hazards arise due to in-land earthquakes. These likely cause the lead-time provided by regional EEW systems before a destructive earthquake wave arrives to become null. On the other hand, an on-site EEW system can provide more lead-time at a region closer to an epicenter, since only seismic information of the target site is required. Instead of leveraging the information of several stations, the on-site system extracts some P-wave features from the first few seconds of vertical ground acceleration of a single station and performs a prediction of the oncoming earthquake intensity at the same station according to these features. Since seismometers could be triggered by non-earthquake events such as a passing of a truck or other human activities, to reduce the likelihood of false alarms, a seismometer was installed at three different locations on the same site and the performance of the EEW system for these three sensor locations were discussed. The results show that the location on the ground of the first floor of a school building maybe a good choice, since the false alarms could be reduced and the cost for installation and maintenance is the lowest.

Keywords: earthquake early warning, on-site, seismometer location, support vector machine

Procedia PDF Downloads 244
1766 Detailed Depositional Resolutions in Upper Miocene Sands of HT-3X Well, Nam Con Son Basin, Vietnam

Authors: Vo Thi Hai Quan

Abstract:

Nam Con Son sedimentary basin is one of the very important oil and gas basins in offshore Vietnam. Hai Thach field of block 05-2 contains mostly gas accumulations in fine-grained, sand/mud-rich turbidite system, which was deposited in a turbidite channel and fan environment. Major Upper Miocene reservoir of HT-3X lies above a well-developed unconformity. The main objectives of this study are to reconstruct depositional environment and to assess the reservoir quality using data from 14 meters of core samples and digital wireline data of the well HT-3X. The wireline log and core data showed that the vertical sequences of representative facies of the well mainly range from Tb to Te divisions of Bouma sequences with predominance of Tb and Tc compared to Td and Te divisions. Sediments in this well were deposited in a submarine fan association with very fine to fine-grained, homogeneous sandstones that have high porosity and permeability, high- density turbidity currents with longer transport route from the sediment source to the basin, indicating good quality of reservoir. Sediments are comprised mainly of the following sedimentary structures: massive, laminated sandstones, convoluted bedding, laminated ripples, cross-laminated ripples, deformed sandstones, contorted bedding.

Keywords: Hai Thach field, Miocene sand, turbidite, wireline data

Procedia PDF Downloads 292
1765 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 264
1764 Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma

Authors: Maxime Moreau, Silvère Baron, Jean-Marc Lobaccaro, Karine Charlet, Sébastien Menecier, Frédéric Perisse

Abstract:

Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma.

Keywords: cold atmospheric plasma, hydrogen peroxide, prostate cancer, selectivity

Procedia PDF Downloads 148
1763 3D Non-Linear Analyses by Using Finite Element Method about the Prediction of the Cracking in Post-Tensioned Dapped-End Beams

Authors: Jatziri Y. Moreno-Martínez, Arturo Galván, Israel Enrique Herrera Díaz, José Ramón Gasca Tirado

Abstract:

In recent years, for the elevated viaducts in Mexico City, a construction system based on precast/pre-stressed concrete elements has been used, in which the bridge girders are divided in two parts by imposing a hinged support in sections where the bending moments that are originated by the gravity loads in a continuous beam are minimal. Precast concrete girders with dapped ends are a representative sample of a behavior that has complex configurations of stresses that make them more vulnerable to cracking due to flexure–shear interaction. The design procedures for ends of the dapped girders are well established and are based primarily on experimental tests performed for different configurations of reinforcement. The critical failure modes that can govern the design have been identified, and for each of them, the methods for computing the reinforcing steel that is needed to achieve adequate safety against failure have been proposed. Nevertheless, the design recommendations do not include procedures for controlling diagonal cracking at the entrant corner under service loading. These cracks could cause water penetration and degradation because of the corrosion of the steel reinforcement. The lack of visual access to the area makes it difficult to detect this damage and take timely corrective actions. Three-dimensional non-linear numerical models based on Finite Element Method to study the cracking at the entrant corner of dapped-end beams were performed using the software package ANSYS v. 11.0. The cracking was numerically simulated by using the smeared crack approach. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The longitudinal post-tension was modeled using LINK8 elements with multilinear isotropic hardening behavior using von Misses plasticity. The reinforcement was introduced with smeared approach. The numerical models were calibrated using experimental tests carried out in “Instituto de Ingeniería, Universidad Nacional Autónoma de México”. In these numerical models the characteristics of the specimens were considered: typical solution based on vertical stirrups (hangers) and on vertical and horizontal hoops with a post-tensioned steel which contributed to a 74% of the flexural resistance. The post-tension is given by four steel wires with a 5/8’’ (16 mm) diameter. Each wire was tensioned to 147 kN and induced an average compressive stress of 4.90 MPa on the concrete section of the dapped end. The loading protocol consisted on applying symmetrical loading to reach the service load (180 kN). Due to the good correlation between experimental and numerical models some additional numerical models were proposed by considering different percentages of post-tension in order to find out how much it influences in the appearance of the cracking in the reentrant corner of the dapped-end beams. It was concluded that the increasing of percentage of post-tension decreases the displacements and the cracking in the reentrant corner takes longer to appear. The authors acknowledge at “Universidad de Guanajuato, Campus Celaya-Salvatierra” and the financial support of PRODEP-SEP (UGTO-PTC-460) of the Mexican government. The first author acknowledges at “Instituto de Ingeniería, Universidad Nacional Autónoma de México”.

Keywords: concrete dapped-end beams, cracking control, finite element analysis, postension

Procedia PDF Downloads 225
1762 Post-Exercise Effects of Cold Water Immersion over a 48-Hour Recovery Period on the Physical and Haematological Parameters of Male University-Level Rugby Players

Authors: Adele Broodryk, Cindy Pienaar, Martinique Sparks, Ben Coetzee

Abstract:

Background: Cold water immersion (CWI) is a popular recovery modality utilised. However, discrepancies exist regarding the results over a 48 hour recovery period. Aim: To evaluate the effects of CWI and passive recovery (PAR) on a range of haematological and physical parameters over a 48-hour using a cross-sectional, pre-post-test design. Subjects and Methods: Both the and physical parameters were evaluated at baseline, after a 15-min fitness session, and at 0, 24 and 48 hours post-recovery in 23 male university rugby players. The CWI group sat in a cold water pool (8°C) for 20 min whereas the PAR group remained seated. Results: At 0 hours post-CWI, three (blood lactate (BLa-), Sodium (Na+) and haemoglobin) returned to baseline values, however Vertical Jump Test (VJT) height results decreased whereas after PAR it improved. From 0 to 24 and/or 48 h, four (Partial Oxygen (PO2) VJT-height, plasma glucose, and Na+) significantly increased (p ≤ 0.05) in either and/or both groups. Significant intergroup differences (p ≤ 0.05) were noticed in the physical tests. Conclusions: PAR is superior as an acute modality (0 hours) due to CWI cooling the body down. However, CWI demonstrates advantageous over a 24-hour period in a wide range of haematological variables.

Keywords: cryotherapy, recuperation, haematological, rugby

Procedia PDF Downloads 264
1761 Seismic Fragility of Base-Isolated Multi-Story Piping System in Critical Facilities

Authors: Bu Seog Ju, Ho Young Son, Yong Hee Ryu

Abstract:

This study is focused on the evaluation of seismic fragility of multi-story piping system installed in critical structures, isolated with triple friction pendulum bearing. The concept of this study is to isolate the critical building structure as well as nonstructural component, especially piping system in order to mitigate the earthquake damage and achieve the reliable seismic design. Then, the building system and multi-story piping system was modeled in OpenSees. In particular, the triple friction pendulum isolator was accounted for the vertical and horizontal coupling behavior in the building system subjected to seismic ground motions. Consequently, in order to generate the seismic fragility of base-isolated multi-story piping system, 21 selected seismic ground motions were carried out, by using Monte Carlo Simulation accounted for the uncertainties in demand. Finally, the system-level fragility curves corresponding to the limit state of the piping system was conducted at each T-joint system, which was commonly failure points in piping systems during and after an earthquake. Additionally, the system-level fragilities were performed to the first floor and second floor level in critical structures.

Keywords: fragility, friction pendulum bearing, nonstructural component, seismic

Procedia PDF Downloads 150
1760 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory

Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma

Abstract:

Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.

Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding

Procedia PDF Downloads 247
1759 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique

Authors: P. Kamphikul, P. Krachodnok, R. Wongsan

Abstract:

This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.

Keywords: gain improvement, microstrip antenna array, electromagnetic band gap, base station

Procedia PDF Downloads 311
1758 Marine Litter Dispersion in the Southern Shores of the Caspian Sea (Case Study: Mazandaran Province)

Authors: Siamak Jamshidi

Abstract:

One of the major environmental problems in the southern coasts of the Caspian Sea is that the marine and coastal debris is being deposited and accumulated due to industrial, urban and tourism activities. Study, sampling and analysis on the type, size, amount and origin of human-made (anthropogenic) waste in the coastal areas of this sea can be very effective in implementing management, cultural and informative programs to reduce marine environmental pollutants. Investigation on marine litter distribution under impact of seawater dynamics was performed for the first time in this research. The rate of entry and distribution of marine and coastal pollutants and wastes, which are mainly of urban, tourist and hospital origin, has multiplied on the southern shore of the Caspian Sea in the last decade. According to the results, the two most important sources of hospital waste in the coastal areas are Tonekabon and Mahmoudabad. In this case, the effect of dynamic parameters of seawater such as flow (with speeds of up to about 1 m/s) and waves, as well as the flow of rivers leading to the shoreline are also influential factors in the distribution of marine litter in the region. Marine litters in the southern coastal region were transported from west to east by the shallow waters of the southern Caspian Sea. In other words, the marine debris density has been observed more in the eastern part.

Keywords: southern shelf, coastal oceanography, seawater flow, vertical structure, marine environment

Procedia PDF Downloads 71
1757 A Generalization of Planar Pascal’s Triangle to Polynomial Expansion and Connection with Sierpinski Patterns

Authors: Wajdi Mohamed Ratemi

Abstract:

The very well-known stacked sets of numbers referred to as Pascal’s triangle present the coefficients of the binomial expansion of the form (x+y)n. This paper presents an approach (the Staircase Horizontal Vertical, SHV-method) to the generalization of planar Pascal’s triangle for polynomial expansion of the form (x+y+z+w+r+⋯)n. The presented generalization of Pascal’s triangle is different from other generalizations of Pascal’s triangles given in the literature. The coefficients of the generalized Pascal’s triangles, presented in this work, are generated by inspection, using embedded Pascal’s triangles. The coefficients of I-variables expansion are generated by horizontally laying out the Pascal’s elements of (I-1) variables expansion, in a staircase manner, and multiplying them with the relevant columns of vertically laid out classical Pascal’s elements, hence avoiding factorial calculations for generating the coefficients of the polynomial expansion. Furthermore, the classical Pascal’s triangle has some pattern built into it regarding its odd and even numbers. Such pattern is known as the Sierpinski’s triangle. In this study, a presentation of Sierpinski-like patterns of the generalized Pascal’s triangles is given. Applications related to those coefficients of the binomial expansion (Pascal’s triangle), or polynomial expansion (generalized Pascal’s triangles) can be in areas of combinatorics, and probabilities.

Keywords: pascal’s triangle, generalized pascal’s triangle, polynomial expansion, sierpinski’s triangle, combinatorics, probabilities

Procedia PDF Downloads 367
1756 Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis

Authors: Kyeong Hoon Park, Taiji Mazuda

Abstract:

High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined.

Keywords: base-isolation, bilinear model, high damping rubber, loading test

Procedia PDF Downloads 123
1755 Large-Eddy Simulations for Flow Control

Authors: Reda Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is imbedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating and cooling, Etc. In this work will present an overview of the development of this field. Some examples will include: Airfoil Noise Suppression: LES is used to simulate the effect of the synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In a vertical takeoff of Aircraft or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protect the structure and pay load from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aerodynamics, simulations, aeroacoustics, active flow control (AFC), Large-Eddy Simulations (LES)

Procedia PDF Downloads 282
1754 Development of Wide Bandgap Semiconductor Based Particle Detector

Authors: Rupa Jeena, Pankaj Chetry, Pradeep Sarin

Abstract:

The study of fundamental particles and the forces governing them has always remained an attractive field of theoretical study to pursue. With the advancement and development of new technologies and instruments, it is possible now to perform particle physics experiments on a large scale for the validation of theoretical predictions. These experiments are generally carried out in a highly intense beam environment. This, in turn, requires the development of a detector prototype possessing properties like radiation tolerance, thermal stability, and fast timing response. Semiconductors like Silicon, Germanium, Diamond, and Gallium Nitride (GaN) have been widely used for particle detection applications. Silicon and germanium being narrow bandgap semiconductors, require pre-cooling to suppress the effect of noise by thermally generated intrinsic charge carriers. The application of diamond in large-scale experiments is rare owing to its high cost of fabrication, while GaN is one of the most extensively explored potential candidates. But we are aiming to introduce another wide bandgap semiconductor in this active area of research by considering all the requirements. We have made an attempt by utilizing the wide bandgap of rutile Titanium dioxide (TiO2) and other properties to use it for particle detection purposes. The thermal evaporation-oxidation (in PID furnace) technique is used for the deposition of the film, and the Metal Semiconductor Metal (MSM) electrical contacts are made using Titanium+Gold (Ti+Au) (20/80nm). The characterization comprising X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Ultraviolet (UV)-Visible spectroscopy, and Laser Raman Spectroscopy (LRS) has been performed on the film to get detailed information about surface morphology. On the other hand, electrical characterizations like Current Voltage (IV) measurement in dark and light and test with laser are performed to have a better understanding of the working of the detector prototype. All these preliminary tests of the detector will be presented.

Keywords: particle detector, rutile titanium dioxide, thermal evaporation, wide bandgap semiconductors

Procedia PDF Downloads 79
1753 Geodynamics Behaviour of Greater Cairo as Deduced from 4D Gravity and Seismic Activities

Authors: Elsayed A. Issawy, Anwar H. Radwan

Abstract:

Recent crustal deformations studies in Egypt are applied on the most active areas with relation to seismic activity. Temporal gravity variations in parallel with the geodetic technique (GPS) were used to monitor recent crustal movements in Egypt since 1997. The non-tidal gravity changes were constrained by the vertical component of surface movements derived from the GPS observations. The gravity changes were used to understand the surface tectonics and geodynamic modelling of the Greater Cairo region after the occurrence of an earthquake of 1992. It was found that there is a certain relation showed by increasing of gravity values before the main seismic activity. As example, relative considerable increase of gravity values was noticed for the network between the epochs of 2000 and 2004. Otherwise, the temporal gravity variations were reported a considerable decrease in gravity values between the two campaigns of 2004 and 2007 for the same stations. This behaviour could explain by compressive deformation and strain build-up stage before the South western Cairo earthquake (July 31, 2005 with magnitude of 4.3) and the stress release stage occurred after the main event. The geodetic measurements showed that, the estimated horizontal velocities for almost of points are 5.5 mm/year in approximately NW direction.

Keywords: temporal gravity variations, geodynamics, greater Cairo, recent crustal movements, earthquakes

Procedia PDF Downloads 368
1752 Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs

Authors: L. O. A. Oyinkanola, J.A. Fajemiroye

Abstract:

Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity.

Keywords: Corrosion, resistivity, clay, hydraulic conductivity

Procedia PDF Downloads 562
1751 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 407
1750 An Overview of Onshore and Offshore Wind Turbines

Authors: Mohammad Borhani, Afshin Danehkar

Abstract:

With the increase in population and the upward trend of energy demand, mankind has thought of using suppliers that guarantee a stable supply of energy, unlike fossil fuels, which, in addition to the widespread emission of greenhouse gases that one of the main factors in the destruction of the ozone layer and it will be finished in a short time in the not-so-distant future. In this regard, one of the sustainable ways of energy supply is the use of wind converters. That convert wind energy into electricity. For this reason, this research focused on wind turbines and their installation conditions. The main classification of wind turbines is based on the axis of rotation, which is divided into two groups: horizontal axis and vertical axis; each of these two types, with the advancement of technology in man-made environments such as cities, villages, airports, and other human environments can be installed and operated. The main difference between offshore and onshore wind turbines is their installation and foundation. Which are usually divided into five types; including of Monopile Wind Turbines, Jacket Wind Turbines, Tripile Wind Turbines, Gravity-Based Wind Turbines, and Floating Offshore Wind Turbines. For installation in a wind power plant requires an arrangement that produces electric power, the distance between the turbines is usually between 5 or 7 times the diameter of the rotor and if perpendicular to the wind direction be If they are 3 to 5 times the diameter of the rotor, they will be more efficient.

Keywords: wind farms, Savonius, Darrieus, offshore wind turbine, renewable energy

Procedia PDF Downloads 117
1749 Immediate Effect of Augmented Feedback on Jumping Performance of the Athletes with Dynamic Knee Valgus

Authors: Mohamadreza Hatefi, Malihe Hadadnezhad

Abstract:

It is well established that jump-landing-related biomechanical deficiencies, such as dynamic knee valgus (DKV), can be improved by using various forms of feedback; However, the effectiveness of these interventions synchronously on athletes' jumping performance remains unknown. Twenty-one recreational athletes with DKV performed countermovement jump (CMJ) and drop vertical jump (DVJ) tasks before and after feedback intervention while the kinematic, force plate and electromyography data of the lower extremity were synchronously captured. The athletes’ jumping performance was calculated by using the reactive strength index-modified (RSIₘₒ𝒹). The athletes at the post-intervention exhibited significantly less hip adduction and more tibial internal rotation during both CMJ and DVJ tasks and maximum knee flexion just during DVJ task. Moreover, athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 during DVJ task, but no difference was observed in CMJ task. Feedback immediately improved DKV without disturbing the athletes’ jumping height during both tasks, But athletes exhibited increased time to take-off and consequently decreased RSIₘₒ𝒹 only during DVJ task, which suggests that the results may differ according to the nature of jumping task. Nevertheless, the effectiveness of landing-related biomechanical deficiencies improvement on athletes' jumping performance must be investigated in the long-term as a new movement pattern.

Keywords: reactive strength index, feedback, biomechanics, dynamic knee valgus

Procedia PDF Downloads 102
1748 Analysis and Design of Offshore Triceratops under Ultra-Deep Waters

Authors: Srinivasan Chandrasekaran, R. Nagavinothini

Abstract:

Offshore platforms for ultra-deep waters are form-dominant by design; hybrid systems with large flexibility in horizontal plane and high rigidity in vertical plane are preferred due to functional complexities. Offshore triceratops is relatively a new-generation offshore platform, whose deck is partially isolated from the supporting buoyant legs by ball joints. They allow transfer of partial displacements of buoyant legs to the deck but restrain transfer of rotational response. Buoyant legs are in turn taut-moored to the sea bed using pre-tension tethers. Present study will discuss detailed dynamic analysis and preliminary design of the chosen geometric, which is necessary as a proof of validation for such design applications. A detailed numeric analysis of triceratops at 2400 m water depth under random waves is presented. Preliminary design confirms member-level design requirements under various modes of failure. Tether configuration, proposed in the study confirms no pull-out of tethers as stress variation is comparatively lesser than the yield value. Presented study shall aid offshore engineers and contractors to understand suitability of triceratops, in terms of design and dynamic response behaviour.

Keywords: offshore structures, triceratops, random waves, buoyant legs, preliminary design, dynamic analysis

Procedia PDF Downloads 206
1747 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method

Authors: S. A. Tabatabaei, S. Aarabi

Abstract:

Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element package

Keywords: viscoelasticity, finite element method, repeated loading, HMA

Procedia PDF Downloads 398
1746 Teaching the Temperature Dependence of Electrical Resistance of Materials through Arduino Investigation

Authors: Vinit Srivastava, Abhay Singh Thakur, Shivam Dubey, Rahul Vaish, Bharat Singh Rajpurohit

Abstract:

This study examines the problem of students' poor comprehension of the thermal dependence of resistance by investigating this idea using an evidence-based inquiry approach. It suggests a practical exercise to improve secondary school students' comprehension of how materials' resistance to temperature changes. The suggested exercise uses an Arduino and Peltier device to test the resistance of aluminum and graphite at various temperatures. The study attempts to close the knowledge gap between the theoretical and practical facets of the subject, which students frequently find difficult to grasp. With the help of a variety of resistors made of various materials and pencils of varying grades, the Arduino experiment investigates the resistance of a metallic conductor (aluminum) and a semiconductor (graphite) at various temperatures. The purpose of the research is to clarify for students the relationship between temperature and resistance and to emphasize the importance of resistor material choice and measurement methods in obtaining precise and stable resistance values over dynamic temperature variations. The findings show that while the resistance of graphite decreases with temperature, the resistance of metallic conductors rises with temperature. The results also show that as softer lead pencils or pencils of a lower quality are used, the resistance values of the resistors drop. In addition, resistors showed greater stability at lower temperatures when their temperature coefficients of resistance (TCR) were smaller. Overall, the results of this article show that the suggested experiment is a useful and practical method for teaching students about resistance's relationship to temperature. It emphasizes how crucial it is to take into account the resistor material selection and the resistance measurement technique when designing and picking out resistors for various uses. The results of the study are anticipated to guide the creation of more efficient teaching methods to close the gap between science education's theoretical and practical components.

Keywords: electrical resistance, temperature dependence, science education, inquiry-based activity, resistor stability

Procedia PDF Downloads 76
1745 Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions

Authors: Wiwat Chumai, Perawit Boonsomchua, Kanjana Ongkasin

Abstract:

The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation.

Keywords: droplet, damping oscillation, nonlinear damping oscillation, bouncing ball problem, elastic surface

Procedia PDF Downloads 99
1744 Effect of the Soil-Foundation Interface Condition in the Determination of the Resistance Domain of Rigid Shallow Foundations

Authors: Nivine Abbas, Sergio Lagomarsino, Serena Cattari

Abstract:

The resistance domain of a generally loaded rigid shallow foundation is normally represented as an interaction diagram limited by a failure surface in the three dimensional (3D) load space (N, V, M), where N is the vertical centric load component, V is the horizontal load component and M is the bending moment component. Usually, this resistance domain is constructed neglecting the foundation sliding mechanism that take place at the level of soil-foundation interface once the applied horizontal load exceeds the interface frictional resistance of the foundation. This issue is translated in the literature by the fact that the failure limit in the (2D) load space (N, V) is constructed as a parabola having an initial slope, at the center of the coordinate system, that depends, in some works, only of the soil friction angle, and in other works, has an empirical value. However, considering a given geometry of the foundation lying on a given soil type, the initial slope of the failure limit must change, for instance, when varying the roughness of the foundation surface at its interface with the soil. The present study discusses the effect of the soil-foundation interface condition on the construction of the resistance domain, and proposes a correction to be applied to the failure limit in order to overcome this effect.

Keywords: soil-foundation interface, sliding mechanism, soil shearing, resistance domain, rigid shallow foundation

Procedia PDF Downloads 460
1743 Large-Eddy Simulations for Aeronautical Systems

Authors: R. R. Mankbadi

Abstract:

There are several technologically-important flow situations in which there is a need to control the outcome of the fluid flow. This could include flow separation, drag, noise, as well as particulate separations, to list only a few. One possible approach is the passive control, in which the design geometry is changed. An alternative approach is the Active Flow Control (AFC) technology in which an actuator is embedded in the flow field to change the outcome. Examples of AFC are pulsed jets, synthetic jets, plasma actuators, heating, and cooling, etc. In this work will present an overview of the development of this field. Some examples will include Airfoil Noise Suppression: Large-Eddy Simulations (LES) is used to simulate the effect of synthetic jet actuator on controlling the far field sound of a transitional airfoil. The results show considerable suppression of the noise if the synthetic jet is operated at frequencies. Mixing Enhancement and suppression: Results will be presented to show that imposing acoustic excitations at the nozzle exit can lead to enhancement or reduction of the jet plume mixing. In vertical takeoff of Aircrafts or in Space Launch, we will present results on the effects of water injection on reducing noise, and on protecting the structure and payload from fatigue damage. Other applications will include airfoil-gust interaction and propulsion systems optimizations.

Keywords: aeroacoustics, flow control, aerodynamics, large eddy simulations

Procedia PDF Downloads 287