Search results for: type classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8679

Search results for: type classification

7329 Sixth-Order Two-Point Efficient Family of Super-Halley Type Methods

Authors: Ramandeep Behl, S. S. Motsa

Abstract:

The main focus of this manuscript is to provide a highly efficient two-point sixth-order family of super-Halley type methods that do not require any second-order derivative evaluation for obtaining simple roots of nonlinear equations, numerically. Each member of the proposed family requires two evaluations of the given function and two evaluations of the first-order derivative per iteration. By using Mathematica-9 with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm t he t heoretical d evelopment. From their basins of attraction, it has been observed that the proposed methods have better stability and robustness as compared to the other sixth-order methods available in the literature.

Keywords: basins of attraction, nonlinear equations, simple roots, super-Halley

Procedia PDF Downloads 518
7328 Decision Support System for Fetus Status Evaluation Using Cardiotocograms

Authors: Oyebade K. Oyedotun

Abstract:

The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.

Keywords: decision support, cardiotocogram, classification, neural networks

Procedia PDF Downloads 332
7327 Synthesis of a Model Predictive Controller for Artificial Pancreas

Authors: Mohamed El Hachimi, Abdelhakim Ballouk, Ilyas Khelafa, Abdelaziz Mouhou

Abstract:

Introduction: Type 1 diabetes occurs when beta cells are destroyed by the body's own immune system. Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an Artificial Pancreas (AP). Method: In this paper, we present a new formulation of the cost function for a Model Predictive Control (MPC) utilizing a technic which accelerates the speed of control of the AP and tackles the nonlinearity of the control problem via asymmetric objective functions. Finding: The finding of this work consists in a new Model Predictive Control algorithm that leads to good performances like decreasing the time of hyperglycaemia and avoiding hypoglycaemia. Conclusion: These performances are validated under in silico trials.

Keywords: artificial pancreas, control algorithm, biomedical control, MPC, objective function, nonlinearity

Procedia PDF Downloads 307
7326 Mathematical Model of Cancer Growth under the Influence of Radiation Therapy

Authors: Beata Jackowska-Zduniak

Abstract:

We formulate and analyze a mathematical model describing dynamics of cancer growth under the influence of radiation therapy. The effect of this type of therapy is considered as an additional equation of discussed model. Numerical simulations show that delay, which is added to ordinary differential equations and represent time needed for transformation from one type of cells to the other one, affects the behavior of the system. The validation and verification of proposed model is based on medical data. Analytical results are illustrated by numerical examples of the model dynamics. The model is able to reconstruct dynamics of treatment of cancer and may be used to determine the most effective treatment regimen based on the study of the behavior of individual treatment protocols.

Keywords: mathematical modeling, numerical simulation, ordinary differential equations, radiation therapy

Procedia PDF Downloads 408
7325 The Determinants of Enterprise Risk Management: Literature Review, and Future Research

Authors: Sylvester S. Horvey, Jones Mensah

Abstract:

The growing complexities and dynamics in the business environment have led to a new approach to risk management, known as enterprise risk management (ERM). ERM is a system and an approach to managing the risks of an organization in an integrated manner to achieve the corporate goals and strategic objectives. Regardless of the diversities in the business environment, ERM has become an essential factor in managing individual and business risks because ERM is believed to enhance shareholder value and firm growth. Despite the growing number of literature on ERM, the question about what factors drives ERM remains limited. This study provides a comprehensive literature review of the main factors that contribute to ERM implementation. Google Scholar was the leading search engine used to identify empirical literature, and the review spanned between 2000 and 2020. Articles published in Scimago journal ranking and Scopus were examined. Thirteen firm characteristics and sixteen articles were considered for the empirical review. Most empirical studies agreed that firm size, institutional ownership, industry type, auditor type, industrial diversification, earnings volatility, stock price volatility, and internal auditor had a positive relationship with ERM adoption, whereas firm size, institutional ownership, auditor type, and type of industry were mostly seen be statistically significant. Other factors such as financial leverage, profitability, asset opacity, international diversification, and firm complexity revealed an inconclusive result. The growing literature on ERM is not without limitations; hence, this study suggests that further research should examine ERM determinants within a new geographical context while considering a new and robust way of measuring ERM rather than relying on a simple proxy (dummy) for ERM measurement. Other firm characteristics such as organizational culture and context, corporate scandals and losses, and governance could be considered determinants of ERM adoption.

Keywords: enterprise risk management, determinants, ERM adoption, literature review

Procedia PDF Downloads 173
7324 Establishing the Optimum Location of a Single Tower Crane Using a Smart Mathematical Model

Authors: Yasser Abo El-Magd, Wael Fawzy Mohamed

Abstract:

Due to the great development in construction and building field, there are many projects and huge works appeared which consume many construction materials. Accordingly, that causes difficulty in handling traditional transportation means (ordinary cranes) due to their limited capacity; there is an urgent need to use high capacity cranes such as tower cranes. However, with regard to their high expense, we have to take into consideration selecting what type of cranes to be utilized which has been discussed by many researchers. In this research, a proposed technique was created to select the suitable type of crane and the best place for crane erection, in addition to minimum radius for requested crane in order to minimize cost. To fulfill that target, a computer program is designed to numerate these problems, demonstrating an example explaining how to apply program and the result donated the best place.

Keywords: tower crane, jib length, operating time, location, feasible area

Procedia PDF Downloads 225
7323 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 26
7322 The Effects of Functionality Level on Gait in Subjects with Low Back Pain

Authors: Vedat Kurt, Tansel Koyunoglu, Gamze Kurt, Ozgen Aras

Abstract:

Low back pain is one of the most common health problem in public. Common symptoms that can be associated with low back pain include; pain, functional disability, gait disturbances. The aim of the study was to investigate the differences between disability scores and gait parameters in subjects with low back pain. Sixty participants are included in our study, (35 men, 25 women, mean age: 37.65±10.02 years). Demographic characteristics of participants were recorded. Pain (visual analog scale) and disability level (Oswestry Disability Index(ODI)) were evaluated. Gait parameters were measured with Zebris-FDM-2 platform. Independent samples t-test was used to analyse the differences between subjects with under 40 points (n=31, mean age:35.8±11.3) and above 40 points (n=29, mean age:39.6±8.1) of ODI scores. Significant level in statistical analysis was accepted as 0.05. There was no significant difference between the ODI scores and groups’ ages. Statistically significant differences were found in step width between subjects with under 40 points of ODI and above 40 points of ODI score(p < 0.05). But there were non-significant differences with other gait parameters (p > 0.05). The differences between gait parameters and pain scores were not statistically significant (p > 0.05). Researchers generally agree that individuals with LBP walk slower and take shorter steps and have asymmetric step lengths when compared with than their age-matched pain-free counterparts. Also perceived general disability may have moderate correlation with walking performance. In the current study, the patients classified as minimal/moderate and severe disability level by using ODI scores. As a result, a patient with LBP who have higher disability level tends to increase support surface. On the other hand, we did not find any relation between pain intensity and gait parameters. It may be caused by the classification system of pain scores. Additional research is needed to investigate the effects of functionality level and pain intensity on gait in subjects with low back pain under different classification types.

Keywords: functionality, low back pain, gait, pain

Procedia PDF Downloads 285
7321 Review of Numerical Models for Granular Beds in Solar Rotary Kilns for Thermal Applications

Authors: Edgar Willy Rimarachin Valderrama, Eduardo Rojas Parra

Abstract:

Thermal energy from solar radiation is widely present in power plants, food drying, chemical reactors, heating and cooling systems, water treatment processes, hydrogen production, and others. In the case of power plants, one of the technologies available to transform solar energy into thermal energy is by solar rotary kilns where a bed of granular matter is heated through concentrated radiation obtained from an arrangement of heliostats. Numerical modeling is a useful approach to study the behavior of granular beds in solar rotary kilns. This technique, once validated with small-scale experiments, can be used to simulate large-scale processes for industrial applications. This study gives a comprehensive classification of numerical models used to simulate the movement and heat transfer for beds of granular media within solar rotary furnaces. In general, there exist three categories of models: 1) continuum, 2) discrete, and 3) multiphysics modeling. The continuum modeling considers zero-dimensional, one-dimensional and fluid-like models. On the other hand, the discrete element models compute the movement of each particle of the bed individually. In this kind of modeling, the heat transfer acts during contacts, which can occur by solid-solid and solid-gas-solid conduction. Finally, the multiphysics approach considers discrete elements to simulate grains and a continuous modeling to simulate the fluid around particles. This classification allows to compare the advantages and disadvantages for each kind of model in terms of accuracy, computational cost and implementation.

Keywords: granular beds, numerical models, rotary kilns, solar thermal applications

Procedia PDF Downloads 33
7320 Clinicomycological Pattern of Superficial Fungal Infections among Primary School Children in Communities in Enugu, Nigeria

Authors: Nkeiruka Elsie Ezomike, Chinwe L. Onyekonwu, Anthony N. Ikefuna, Bede C. Ibe

Abstract:

Superficial fungal infections (SFIs) are one of the common cutaneous infections that affect children worldwide. They may lead to school absenteeism or school drop-out and hence setback in the education of the child. Community-based studies in any locality are good reflections of the health conditions within that area. There is a dearth of information in the literature about SFI among primary school children in Enugu. This study aimed to determine the clinicomycological pattern of SFIs among primary school children in rural and urban communities in Enugu. This was a comparative descriptive cross-sectional study among primary school children in Awgu (rural) and Enugu North (urban) Local Government Areas (LGAs). Subjects' selection was made over 6 months using a multi-stage sampling method. Information such as age, sex, parental education, and occupation were collected using questionnaires. Socioeconomic classes of the children were determined using the classification proposed by Oyedeji et al. The samples were collected from subjects with SFIs. Potassium hydroxide tests were done on the samples. The samples that tested positive were cultured for SFI by inoculating onto Sabouraud's dextrose chloramphenicol actidione agar. The characteristics of the isolates were identified according to their morphological features using Mycology Online, Atlas 2000, and Mycology Review 2003. Equal numbers of children were recruited from the two LGAs. A total of 1662 pupils were studied. The mean ages of the study subjects were 9.03 ± 2.10years in rural and 10.46 ± 2.33years in urban communities. The male to female ratio was 1.6:1 in rural and 1:1.1 in urban communities. The personal hygiene of the children was significantly related to the presence of SFIs. The overall prevalence of SFIs among the study participants was 45%. In the rural, the prevalence was 29.6%, and in the urban prevalence was 60.4%. The types of SFIs were tinea capitis (the commonest), tinea corporis, pityriasis Versicolor, tinea unguium, and tinea manuum with prevalence rates lower in rural than urban communities. The clinical patterns were gray patch and black dot type of non-inflammatory tinea capitis, kerion, tinea corporis with trunk and limb distributions, and pityriasis Versicolor with face, trunk and limb distributions. Gray patch was the most frequent pattern of SFI seen in rural and urban communities. Black dot type was more frequent in rural than urban communities. SFIs were frequent among children aged 5 to 8years in rural and 9 to 12 years in urban communities. SFIs were commoner in males in the rural, whereas female dominance was observed in the urban. SFIs were more in children from low social class and those with poor hygiene. Trichophyton tonsurans and Trichophyton soudanese were the common mycological isolates in rural and urban communities, respectively. In conclusion, SFIs were less prevalent in rural than in urban communities. Trichophyton species were the most common fungal isolates in the communities. Health education of mothers and their children on SFI and good personal hygiene will reduce the incidence of SFIs.

Keywords: clinicomycological pattern, communities, primary school children, superficial fungal infections

Procedia PDF Downloads 125
7319 Islamic Corporate Social Responsibility Disclosure and Financial Performance on Islamic Banking in Indonesia

Authors: Yasmin Umar Assegaf, Falikhatun, Salamah Wahyuni

Abstract:

This study aims to provide empirical evidence about the influence of Islamic Corporate Social Responsibility Disclosures of the financial performance of Islamic banking with the characteristics of the company, as a control variable in Islamic banking in Indonesia. ICSR disclosures are an independent variable, while the Financial Performance is the dependent variable (proxied by Return on Assets (ROA), Return on Equity (ROE), Income Expense Ratio (IER), and Non-net Interest Margin (NIM). The control variables used are firm size, firm age and the type of audit. The population of the study was all Islamic Banks (BUS) operate in Indonesia. The research sample is Islamic Commercial Bank which has existed in Indonesia since 2002 and publishes financial statements between the years of 2007-2011. The sample of the study were include 31 Annual Report published. The results of this study concluded that there are significant influences between the ICSR Disclosures and financial performance. The disclosure is partially effect on ROA, IER and NIM, whereas there is no influence on ROE. Further result shows that all control variables (Firm Size, Age, and Type of Audit Companies) does not have any influence on ICSR Disclosures in Indonesia. This research gives a suggestion for further research to compare these ICSR disclosures in Indonesia with ICSR disclosures in other countries that have Islamic banking, by using other measure variables of financial performance, to get more comprehensive model and real picture.

Keywords: ROA, ROE, IER, NIM, company size, age of the company, audit type, Islamic banking

Procedia PDF Downloads 348
7318 Identification of Cocoa-Based Agroforestry Systems in Northern Madagascar: Pillar of Sustainable Management

Authors: Marizia Roberta Rasoanandrasana, Hery Lisy Tiana. Ranarijaona, Herintsitohaina Razakamanarivo, Eric Delaitre, Nandrianina Ramifehiarivo

Abstract:

Madagascar is one of the producer’s countries of world's fine cocoa. Cocoa-based agroforestry systems (CBAS) plays a very important economic role for over 75% of the population in the north of Madagascar, the island's main cocoa-producing area. It is also viewed as a key factor in the deforestation of local protected areas. It is therefore urgent to establish a compromise between cocoa production and forest conservation in this region which is difficult due to a lack of accurate cocoa agro-systems data. In order to fill these gaps and to response to these socio-economic and environmental concerns, this study aims to describe CBAS by providing precise data on their characteristics and to establish a typology. To achieve this, 150 farms were surveyed and observed to characterize CBAS based on 11 agronomic and 6 socio-economic data. Also, 30 representative plots of CBAS among the 150 farms were inventoried for providing accurate ecological data (6 variables) as an additional data for the typology determination. The results showed that Madagascar’s CBAS systems are generally extensive and practiced by smallholders. Four types of cocoa-based agroforestry system were identified, with significant differences between the following variables: yield, planting age, cocoa density, density of associated trees, preceding crop, associated crops, Shannon-Wiener indices and species richness in the upper stratum. Type 1 is characterized by old systems (>45 years) with low crop density (425 cocoa trees/ha), installed after conversion of crops other than coffee (> 50%) and giving low yields (427 kg/ha/year). Type 2 consists of simple agroforestry systems (no associated crop 0%), fairly young (20 years) with low density of associated trees (77 trees/ha) and low species diversity (H'=1.17). Type 3 is characterized by high crop density (778 trees/ha and 175 trees/ha for cocoa and associated trees respectively) and a medium level of species diversity (H'=1.74, 8 species). Type 4 is particularly characterized by orchard regeneration method involving replanting and tree lopping (100%). Analysis of the potential of these four types has identified Type 4 as a promising practice for sustainable agriculture.

Keywords: conservation, practices, productivity, protect areas, smallholder, trade-off, typology

Procedia PDF Downloads 114
7317 Comparison of Catalyst Support for High Pressure Reductive Amination

Authors: Tz-Bang Du, Cheng-Han Hsieh, Li-Ping Ju, Hung-Jie Liou

Abstract:

Polyether amines synthesize by secondary hydroxyl polyether diol play an important role in epoxy hardener. The low molecular weight product is used in low viscosity and high transparent polyamine product for the logo, ground cover, especially for wind turbine blade, while the high molecular weight products are used in advanced agricultures such as a high-speed railway. High-pressure reductive amination process is required for producing these amines. In the condition of higher than 150 atm pressure and 200 degrees Celsius temperature, supercritical ammonia is used as a reactant and also a solvent. It would be a great challenge to select a catalyst support for such high-temperature alkaline circumstance. In this study, we have established a six-autoclave-type (SAT) high-pressure reactor for amination catalyst screening, which six experiment conditions with different temperature and pressure could be examined at the same time. We synthesized copper-nickel catalyst on different shaped alumina catalyst support and evaluated the catalyst activity for high-pressure reductive amination of polypropylene glycol (PPG) by SAT reactor. Ball type gamma alumina, ball type activated alumina and pellet type gamma alumina catalyst supports are evaluated in this study. Gamma alumina supports have shown better activity on PPG reductive amination than activated alumina support. In addition, the catalysts are evaluated in fixed bed reactor. The diamine product was successfully synthesized via this catalyst and the strength of the catalysts is measured. The crush strength of blank supports is about 13.5 lb for both gamma alumina and activated alumina. The strength increases to 20.3 lb after synthesized to be copper-nickel catalyst. After test in the fixed bed high-pressure reductive amination process for 100 hours, the crush strength of the used catalyst is 3.7 lb for activated alumina support, 12.0 lb for gamma alumina support. The gamma alumina is better than activated alumina to use as catalyst support in high-pressure reductive amination process.

Keywords: high pressure reductive amination, copper nickel catalyst, polyether amine, alumina

Procedia PDF Downloads 229
7316 A Performance Model for Designing Network in Reverse Logistic

Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi

Abstract:

In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.

Keywords: reverse logistics, network design, performance model, open loop configuration

Procedia PDF Downloads 435
7315 Determinants of Corporate Social Responsibility in Indonesia

Authors: Bela Sulistyaguna, Yuli Chomsatu Samrotun, Endang Masitoh Wahyuningsih

Abstract:

The purpose of this research was to analyze the influence of company size, liquidity, profitability, leverage, company age, industry type, board of director, board of commissioner, audit committee and public ownership on the corporate social responsibility disclosure. The grand theories of this research are agency theory, stakeholders theory, and legitimacy theory. Analysis of data using multiple linear regression method with SPSS 22.0 for mac. The sample consists of companies listed on the Indonesia Stock Exchange (IDX) and disclosed the Global Reporting Initiative (GRI) sustainability reports from 2013 to 2018. The final sample of this research was 19 companies that obtained by purposive sampling. The results of the research showed that, simultaneously, company size, liquidity, profitability, leverage, company age, industry type, board of director, board of commissioner, audit committee and public ownership has an influence on the corporate social responsibility disclosure. Partially, the results showed that liquidity and leverage has an influence on the corporate social responsibility disclosure. Meanwhile, company size, profitability, company age, industry type, board of director, board of commissioner, audit committee and public ownership has no influence on corporate social responsibility disclosure.

Keywords: corporate social responsibility, CSR disclosure, Indonesia

Procedia PDF Downloads 152
7314 Effect of Texture of Orthorhombic Martensite on Thermal Expansion of Metastable Titanium Alloy

Authors: E. Stepanova, N. Popov, S. Demakov, S. Stepanov

Abstract:

This paper examines the so-called invar-type behavior of metastable titanium alloy subjected to cold rolling. The effect was shown to occur due to the anisotropy of thermal expansion of titanium orthorhombic martensite. By means of X-ray diffraction analysis and dilatometry analyses, the influence of crystallographic texture of orthorhombic martensite on the coefficient of thermal expansion of sheets of metastable titanium alloy VT23 was examined. Anisotropy of the coefficient of thermal expansion has been revealed. It was lower in the rolling plane and higher along the transverse direction of the cold-rolled sheet comparing to the coefficient of thermal expansion of the unprocessed alloy.

Keywords: invar-type, cold rolling, metastable titanium alloy, texture

Procedia PDF Downloads 431
7313 Development of an EEG-Based Real-Time Emotion Recognition System on Edge AI

Authors: James Rigor Camacho, Wansu Lim

Abstract:

Over the last few years, the development of new wearable and processing technologies has accelerated in order to harness physiological data such as electroencephalograms (EEGs) for EEG-based applications. EEG has been demonstrated to be a source of emotion recognition signals with the highest classification accuracy among physiological signals. However, when emotion recognition systems are used for real-time classification, the training unit is frequently left to run offline or in the cloud rather than working locally on the edge. That strategy has hampered research, and the full potential of using an edge AI device has yet to be realized. Edge AI devices are computers with high performance that can process complex algorithms. It is capable of collecting, processing, and storing data on its own. It can also analyze and apply complicated algorithms like localization, detection, and recognition on a real-time application, making it a powerful embedded device. The NVIDIA Jetson series, specifically the Jetson Nano device, was used in the implementation. The cEEGrid, which is integrated to the open-source brain computer-interface platform (OpenBCI), is used to collect EEG signals. An EEG-based real-time emotion recognition system on Edge AI is proposed in this paper. To perform graphical spectrogram categorization of EEG signals and to predict emotional states based on input data properties, machine learning-based classifiers were used. Until the emotional state was identified, the EEG signals were analyzed using the K-Nearest Neighbor (KNN) technique, which is a supervised learning system. In EEG signal processing, after each EEG signal has been received in real-time and translated from time to frequency domain, the Fast Fourier Transform (FFT) technique is utilized to observe the frequency bands in each EEG signal. To appropriately show the variance of each EEG frequency band, power density, standard deviation, and mean are calculated and employed. The next stage is to identify the features that have been chosen to predict emotion in EEG data using the K-Nearest Neighbors (KNN) technique. Arousal and valence datasets are used to train the parameters defined by the KNN technique.Because classification and recognition of specific classes, as well as emotion prediction, are conducted both online and locally on the edge, the KNN technique increased the performance of the emotion recognition system on the NVIDIA Jetson Nano. Finally, this implementation aims to bridge the research gap on cost-effective and efficient real-time emotion recognition using a resource constrained hardware device, like the NVIDIA Jetson Nano. On the cutting edge of AI, EEG-based emotion identification can be employed in applications that can rapidly expand the research and implementation industry's use.

Keywords: edge AI device, EEG, emotion recognition system, supervised learning algorithm, sensors

Procedia PDF Downloads 105
7312 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 211
7311 Artificial Neural Network-Based Bridge Weigh-In-Motion Technique Considering Environmental Conditions

Authors: Changgil Lee, Junkyeong Kim, Jihwan Park, Seunghee Park

Abstract:

In this study, bridge weigh-in-motion (BWIM) system was simulated under various environmental conditions such as temperature, humidity, wind and so on to improve the performance of the BWIM system. The environmental conditions can make difficult to analyze measured data and hence those factors should be compensated. Various conditions were considered as input parameters for ANN (Artificial Neural Network). The number of hidden layers for ANN was decided so that nonlinearity could be sufficiently reflected in the BWIM results. The weight of vehicles and axle weight were more accurately estimated by applying ANN approach. Additionally, the type of bridge which was a target structure was considered as an input parameter for the ANN.

Keywords: bridge weigh-in-motion (BWIM) system, environmental conditions, artificial neural network, type of bridges

Procedia PDF Downloads 442
7310 Use RP-HPLC To Investigate Factors Influencing Sorghum Protein Extraction

Authors: Khaled Khaladi, Rafika Bibi, Hind Mokrane, Boubekeur Nadjemi

Abstract:

Sorghum (Sorghum bicolor (L.) Moench) is an important cereal crop grown in the semi-arid tropics of Africa and Asia due to its drought tolerance. Sorghum grain has protein content varying from 6 to 18%, with an average of 11%, Sorghum proteins can be broadly classified into prolamin and non-prolamin proteins. Kafirins, the major storage proteins, are classified as prolamins, and as such, they contain high levels of proline and glutamine and are soluble in non-polar solvents such as aqueous alcohols. Kafirins account for 77 to 82% of the protein in the endosperm, whereas non-prolamin proteins (namely, albumins, globulins, and glutelins) make up about 30% of the proteins. To optimize the extraction of sorghum proteins, several variables were examined: detergent type and concentration, reducing agent type and concentration, and buffer pH and concentration. Samples were quantified and characterized by RP-HPLC.

Keywords: sorghum, protein extraction, detergent, food science

Procedia PDF Downloads 319
7309 Classification on Statistical Distributions of a Complex N-Body System

Authors: David C. Ni

Abstract:

Contemporary models for N-body systems are based on temporal, two-body, and mass point representation of Newtonian mechanics. Other mainstream models include 2D and 3D Ising models based on local neighborhood the lattice structures. In Quantum mechanics, the theories of collective modes are for superconductivity and for the long-range quantum entanglement. However, these models are still mainly for the specific phenomena with a set of designated parameters. We are therefore motivated to develop a new construction directly from the complex-variable N-body systems based on the extended Blaschke functions (EBF), which represent a non-temporal and nonlinear extension of Lorentz transformation on the complex plane – the normalized momentum spaces. A point on the complex plane represents a normalized state of particle momentums observed from a reference frame in the theory of special relativity. There are only two key parameters, normalized momentum and nonlinearity for modelling. An algorithm similar to Jenkins-Traub method is adopted for solving EBF iteratively. Through iteration, the solution sets show a form of σ + i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various distributions, such as 1-peak, 2-peak, and 3-peak etc. distributions and some of them are analog to the canonical distributions. The results of the numerical analysis demonstrate continuum-to-discreteness transitions, evolutional invariance of distributions, phase transitions with conjugate symmetry, etc., which manifest the construction as a potential candidate for the unification of statistics. We hereby classify the observed distributions on the finite convergent domains. Continuous and discrete distributions both exist and are predictable for given partitions in different regions of parameter-pair. We further compare these distributions with canonical distributions and address the impacts on the existing applications.

Keywords: blaschke, lorentz transformation, complex variables, continuous, discrete, canonical, classification

Procedia PDF Downloads 309
7308 Effect of Geometry on the Aerodynamic Performance of Darrieus H Yype Vertical Axis Wind Turbine

Authors: Belkheir Noura, Rabah Kerfah, Boumehani Abdellah

Abstract:

The influence of solidity variations on the aerodynamic performance of H type vertical axis wind turbine is studied in this paper. The wind turbine model used in this paper is the three-blade wind turbine with the symmetrical airfoil, NACA0021. The length of the chord is 0.265m. Numerical investigations were implemented for the different solidity by changing the radius and blade number. A two-dimensional model of the wind turbine is employed. The approach a Reynolds-Averaged Navier–Stokes equations, completed by the K- ώ SST turbulence model, is used. Motion mesh model capability of a computational fluid dynamics (CFD) solver is used. For each value of the solidity, the aerodynamics performances and the characteristics of the flow field are studied at several values of the tip speed ratio, λ = 0.5 to λ = 3, with an incoming wind speed of 8 m/s. The results show that increasing the number of blades will reduce the maximum value of the power coefficient of the wind turbine. Also, for the VAWT with a lower solidity can obtain the maximum Cp at a high tip speed ratio. The effects of changing the radius and blade number on aerodynamic performance are almost the same. Finally, for the validation, experimental data from the literature and computational results were compared. In conclusion, to study the influence of the solidity in the performances of the wind turbine is to provide the reference for the design of H type vertical axis wind turbines.

Keywords: wind energy, darrieus h type vertical axis wind turbine, computational fluid dynamic, solidity

Procedia PDF Downloads 93
7307 Multivariate Data Analysis for Automatic Atrial Fibrillation Detection

Authors: Zouhair Haddi, Stephane Delliaux, Jean-Francois Pons, Ismail Kechaf, Jean-Claude De Haro, Mustapha Ouladsine

Abstract:

Atrial fibrillation (AF) has been considered as the most common cardiac arrhythmia, and a major public health burden associated with significant morbidity and mortality. Nowadays, telemedical approaches targeting cardiac outpatients situate AF among the most challenged medical issues. The automatic, early, and fast AF detection is still a major concern for the healthcare professional. Several algorithms based on univariate analysis have been developed to detect atrial fibrillation. However, the published results do not show satisfactory classification accuracy. This work was aimed at resolving this shortcoming by proposing multivariate data analysis methods for automatic AF detection. Four publicly-accessible sets of clinical data (AF Termination Challenge Database, MIT-BIH AF, Normal Sinus Rhythm RR Interval Database, and MIT-BIH Normal Sinus Rhythm Databases) were used for assessment. All time series were segmented in 1 min RR intervals window and then four specific features were calculated. Two pattern recognition methods, i.e., Principal Component Analysis (PCA) and Learning Vector Quantization (LVQ) neural network were used to develop classification models. PCA, as a feature reduction method, was employed to find important features to discriminate between AF and Normal Sinus Rhythm. Despite its very simple structure, the results show that the LVQ model performs better on the analyzed databases than do existing algorithms, with high sensitivity and specificity (99.19% and 99.39%, respectively). The proposed AF detection holds several interesting properties, and can be implemented with just a few arithmetical operations which make it a suitable choice for telecare applications.

Keywords: atrial fibrillation, multivariate data analysis, automatic detection, telemedicine

Procedia PDF Downloads 267
7306 In silico Statistical Prediction Models for Identifying the Microbial Diversity and Interactions Due to Fixed Periodontal Appliances

Authors: Suganya Chandrababu, Dhundy Bastola

Abstract:

Like in the gut, the subgingival microbiota plays a crucial role in oral hygiene, health, and cariogenic diseases. Human activities like diet, antibiotics, and periodontal treatments alter the bacterial communities, metabolism, and functions in the oral cavity, leading to a dysbiotic state and changes in the plaques of orthodontic patients. Fixed periodontal appliances hinder oral hygiene and cause changes in the dental plaques influencing the subgingival microbiota. However, the microbial species’ diversity and complexity pose a great challenge in understanding the taxa’s community distribution patterns and their role in oral health. In this research, we analyze the subgingival microbial samples from individuals with fixed dental appliances (metal/clear) using an in silico approach. We employ exploratory hypothesis-driven multivariate and regression analysis to shed light on the microbial community and its functional fluctuations due to dental appliances used and identify risks associated with complex disease phenotypes. Our findings confirm the changes in oral microbiota composition due to the presence and type of fixed orthodontal devices. We identified seven main periodontic pathogens, including Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria, and Firmicutes, whose abundances were significantly altered due to the presence and type of fixed appliances used. In the case of metal braces, the abundances of Bacteroidetes, Proteobacteria, Fusobacteria, Candidatus saccharibacteria, and Spirochaetes significantly increased, while the abundance of Firmicutes and Actinobacteria decreased. However, in individuals With clear braces, the abundance of Bacteroidetes and Candidatus saccharibacteria increased. The highest abundance value (P-value=0.004 < 0.05) was observed with Bacteroidetes in individuals with the metal appliance, which is associated with gingivitis, periodontitis, endodontic infections, and odontogenic abscesses. Overall, the bacterial abundances decrease with clear type and increase with metal type of braces. Regression analysis further validated the multivariate analysis of variance (MANOVA) results, supporting the hypothesis that the presence and type of the fixed oral appliances significantly alter the bacterial abundance and composition.

Keywords: oral microbiota, statistical analysis, fixed or-thodontal appliances, bacterial abundance, multivariate analysis, regression analysis

Procedia PDF Downloads 194
7305 Efficient Moment Frame Structure

Authors: Mircea I. Pastrav, Cornelia Baera, Florea Dinu

Abstract:

A different concept for designing and detailing of reinforced concrete precast frame structures is analyzed in this paper. The new detailing of the joints derives from the special hybrid moment frame joints. The special reinforcements of this alternative detailing, named modified special hybrid joint, are bondless with respect to both column and beams. Full scale tests were performed on a plan model, which represents a part of 5 story structure, cropped in the middle of the beams and columns spans. Theoretical approach was developed, based on testing results on twice repaired model, subjected to lateral seismic type loading. Discussion regarding the modified special hybrid joint behavior and further on widening research needed concludes the presentation.

Keywords: modified hybrid joint, repair, seismic loading type, acceptance criteria

Procedia PDF Downloads 523
7304 The Impact of Task Type and Group Size on Dialogue Argumentation between Students

Authors: Nadia Soledad Peralta

Abstract:

Within the framework of socio-cognitive interaction, argumentation is understood as a psychological process that supports and induces reasoning and learning. Most authors emphasize the great potential of argumentation to negotiate with contradictions and complex decisions. So argumentation is a target for researchers who highlight the importance of social and cognitive processes in learning. In the context of social interaction among university students, different types of arguments are analyzed according to group size (dyads and triads) and the type of task (reading of frequency tables, causal explanation of physical phenomena, the decision regarding moral dilemma situations, and causal explanation of social phenomena). Eighty-nine first-year social sciences students of the National University of Rosario participated. Two groups were formed from the results of a pre-test that ensured the heterogeneity of points of view between participants. Group 1 consisted of 56 participants (performance in dyads, total: 28), and group 2 was formed of 33 participants (performance in triads, total: 11). A quasi-experimental design was performed in which effects of the two variables (group size and type of task) on the argumentation were analyzed. Three types of argumentation are described: authentic dialogical argumentative resolutions, individualistic argumentative resolutions, and non-argumentative resolutions. The results indicate that individualistic arguments prevail in dyads. That is, although people express their own arguments, there is no authentic argumentative interaction. Given that, there are few reciprocal evaluations and counter-arguments in dyads. By contrast, the authentically dialogical argument prevails in triads, showing constant feedback between participants’ points of view. It was observed that, in general, the type of task generates specific types of argumentative interactions. However, it is possible to emphasize that the authentically dialogic arguments predominate in the logical tasks, whereas the individualists or pseudo-dialogical are more frequent in opinion tasks. Nerveless, these relationships between task type and argumentative mode are best clarified in an interactive analysis based on group size. Finally, it is important to stress the value of dialogical argumentation in educational domains. Argumentative function not only allows a metacognitive reflection about their own point of view but also allows people to benefit from exchanging points of view in interactive contexts.

Keywords: sociocognitive interaction, argumentation, university students, size of the grup

Procedia PDF Downloads 83
7303 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks

Authors: Bahareh Golchin, Nooshin Riahi

Abstract:

One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.

Keywords: emotion classification, sentiment analysis, social networks, deep neural networks

Procedia PDF Downloads 137
7302 Investigation of Minor Actinide-Contained Thorium Fuel Impacts on CANDU-Type Reactor Neutronics Using Computational Method

Authors: S. A. H. Feghhi, Z. Gholamzadeh, Z. Alipoor, C. Tenreiro

Abstract:

Currently, thorium fuel has been especially noticed because of its proliferation resistance than long half-life alpha emitter minor actinides, breeding capability in fast and thermal neutron flux and mono-isotopic naturally abundant. In recent years, efficiency of minor actinide burning up in PWRs has been investigated. Hence, a minor actinide-contained thorium based fuel matrix can confront both proliferation resistance and nuclear waste depletion aims. In the present work, minor actinide depletion rate in a CANDU-type nuclear core modeled using MCNP code has been investigated. The obtained effects of minor actinide load as mixture of thorium fuel matrix on the core neutronics has been studiedwith comparingpresence and non-presence of minor actinide component in the fuel matrix.Depletion rate of minor actinides in the MA-contained fuel has been calculated using different power loads.According to the obtained computational data, minor actinide loading in the modeled core results in more negative reactivity coefficients. The MA-contained fuel achieves less radial peaking factor in the modeled core. The obtained computational results showed 140 kg of 464 kg initial load of minor actinide has been depleted in during a 6-year burn up in 10 MW power.

Keywords: minor actinide burning, CANDU-type reactor, MCNPX code, neutronic parameters

Procedia PDF Downloads 457
7301 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 211
7300 The Classical Conditioning Effect of Animated Spokes-Characters

Authors: Chia-Ching Tsai, Ting-Hsiu Chen

Abstract:

This paper adopted 2X2 factorial design. One factor was experimental versus control condition. The other factor was types of animated spokescharacter, and one of the two levels was expert type, and the other level is attractive type. In the study, we use control versus experimental conditioning and types of animated spokescharacter as independent variables, and brand attitude as dependent variable to examine the conditioning effect of types of animated spokescharacter on brand attitude. There are 123 subjects participating in the experiment. The results showed conditioning group presents that animated spokescharacter has significantly superior effect of product endorsement in contrast to non-conditioning one, while there is no significant impact of types of animated spokescharacter on brand attitude.

Keywords: classical conditioning, animated spokes-character, brand attitude, factorial design

Procedia PDF Downloads 273