Search results for: simulated driving
1314 Studying the Spatial Variations of Stable Isotopes (18O and 2H) in Precipitation and Groundwater Resources in Zagros Region
Authors: Mojtaba Heydarizad
Abstract:
Zagros mountain range is a very important precipitation zone in Iran as it receives high average annual precipitation compared to other parts of this country. Although this region is important precipitation zone in semi-arid an arid country like Iran, accurate method to study water resources in this region has not been applied yet. In this study, stable isotope δ18O content of precipitation and groundwater resources showed spatial variations across Zagros region as southern parts of Zagros region showed more enriched isotope values compared to the northern parts. This is normal as southern Zagros region is much drier with higher air temperature and evaporation compared to northern parts. In addition, the spatial variations of stable isotope δ18O in precipitation in Zagros region have been simulated by the models which consider the altitude and latitude variations as input to simulate δ18O in precipitation.Keywords: groundwater, precipitation, simulation, stable isotopes, Zagros region
Procedia PDF Downloads 1381313 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature
Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon
Abstract:
Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.Keywords: deep-learning, altimetry, sea surface temperature, forecast
Procedia PDF Downloads 901312 Using Optimal Control Method to Investigate the Stability and Transparency of a Nonlinear Teleoperation System with Time Varying Delay
Authors: Abasali Amini, Alireza Mirbagheri, Amir Homayoun Jafari
Abstract:
In this paper, a new structure for teleoperation systems with time varying delay has been modeled and proposed. A random time varying the delay of up to 150 msec is simulated in teleoperation channel of both masters to slave and vice versa. The system stability and transparency have been investigated, comparing the result of a PID controller and an optimal controller on each master and slave sub-systems separately. The controllers have been designed in slave subsystem for reducing position errors between master and slave, and another controller has been designed in the master subsystem to establish stability, transparency and force tracking. Results have been compared together. The results showed PID controller is appropriate in position tracking, but force response oscillates in contact with the environment. We showed the optimal control established position tracking properly. Also, force tracking is achieved in this controller appropriately.Keywords: optimal control, time varying delay, teleoperation systems, stability and transparency
Procedia PDF Downloads 2561311 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as a ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease data set, the study successfully identified key factors, and the results were consistent with previous studies.Keywords: lyme disease, Poisson generalized linear model, ridge regression, lasso regression, elastic net regression
Procedia PDF Downloads 1371310 Assessing the Bioactivity and Cell Viability of Apatite-Wollastonite Glass Ceramics Prepared via Spray Pyrolysis
Authors: Andualem Workie
Abstract:
In this study, we examined the sinterability and bioactivity of MgO-SiO₂-P₂O₅-CaO-CaF₂ glass compositions created through spray pyrolysis. We evaluated the bioactivity of the materials by immersing them for varying periods of time in simulated bodily fluid (SBF) and found that bioactivity was related to the sintering temperature and soaking time. The material's pH value during immersion in SBF was within the range of 7.4-8.2, which is below 8.5 and improves compatibility and reduces toxicity in biological applications. We used X-ray diffraction and scanning electron microscopy to determine the phase compositions and morphologies of the samples and found that the 1100°C sintered A-W GC sample exhibited the highest bioactivity after soaking in SBF. This sample was dominated by fluorapatite, wollastonite, and whitlockite crystals scattered throughout the glass matrix. The crystallinity (%) of the A-W GC increased as its bioactivity improved, making it more suitable for use in pharmaceutical applications. We also conducted a cytotoxicity test on A-W GC samples sintered at different temperatures and found that the glass-ceramics were non-toxic to MC3T3-E1 cells at all extraction concentrations, except for those sintered at 700°C at concentrations of 250, 200, and 150 mg/ml where cell viability (%) was below the threshold of 70%.Keywords: apatite wollastonite glass ceramics, bioactivity, calcination, cell viability
Procedia PDF Downloads 1031309 Identification of Potential Large Scale Floating Solar Sites in Peninsular Malaysia
Authors: Nur Iffika Ruslan, Ahmad Rosly Abbas, Munirah Stapah@Salleh, Nurfaziera Rahim
Abstract:
Increased concerns and awareness of environmental hazards by fossil fuels burning for energy have become the major factor driving the transition toward green energy. It is expected that an additional of 2,000 MW of renewable energy is to be recorded from the renewable sources by 2025 following the implementation of Large Scale Solar projects in Peninsular Malaysia, including Large Scale Floating Solar projects. Floating Solar has better advantages over its landed counterparts such as the requirement for land acquisition is relatively insignificant. As part of the site selection process established by TNB Research Sdn. Bhd., a set of mandatory and rejection criteria has been developed in order to identify only sites that are feasible for the future development of Large Scale Floating Solar power plant. There are a total of 85 lakes and reservoirs identified within Peninsular Malaysia. Only lakes and reservoirs with a minimum surface area of 120 acres will be considered as potential sites for the development of Large Scale Floating Solar power plant. The result indicates a total of 10 potential Large Scale Floating Solar sites identified which are located in Selangor, Johor, Perak, Pulau Pinang, Perlis and Pahang. This paper will elaborate on the various mandatory and rejection criteria, as well as on the various site selection process required to identify potential (suitable) Large Scale Floating Solar sites in Peninsular Malaysia.Keywords: Large Scale Floating Solar, Peninsular Malaysia, Potential Sites, Renewable Energy
Procedia PDF Downloads 1811308 Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh
Authors: S. M. Anowarul Haque, Md. Asiful Islam
Abstract:
Electrical load forecasting is considered to be one of the most indispensable parts of a modern-day electrical power system. To ensure a reliable and efficient supply of electric energy, special emphasis should have been put on the predictive feature of electricity supply. Artificial Neural Network-based approaches have emerged to be a significant area of interest for electric load forecasting research. This paper proposed an Artificial Neural Network model based on the particle swarm optimization algorithm for improved electric load forecasting for Mymensingh, Bangladesh. The forecasting model is developed and simulated on the MATLAB environment with a large number of training datasets. The model is trained based on eight input parameters including historical load and weather data. The predicted load data are then compared with an available dataset for validation. The proposed neural network model is proved to be more reliable in terms of day-wise load forecasting for Mymensingh, Bangladesh.Keywords: load forecasting, artificial neural network, particle swarm optimization
Procedia PDF Downloads 1711307 Review of Research on Effectiveness Evaluation of Technology Innovation Policy
Authors: Xue Wang, Li-Wei Fan
Abstract:
The technology innovation has become the driving force of social and economic development and transformation. The guidance and support of public policies is an important condition to promote the realization of technology innovation goals. Policy effectiveness evaluation is instructive in policy learning and adjustment. This paper reviews existing studies and systematically evaluates the effectiveness of policy-driven technological innovation. We used 167 articles from WOS and CNKI databases as samples to clarify the measurement of technological innovation indicators and analyze the classification and application of policy evaluation methods. In general, technology innovation input and technological output are the two main aspects of technological innovation index design, among which technological patents are the focus of research, the number of patents reflects the scale of technological innovation, and the quality of patents reflects the value of innovation from multiple aspects. As for policy evaluation methods, statistical analysis methods are applied to the formulation, selection and evaluation of the after-effect of policies to analyze the effect of policy implementation qualitatively and quantitatively. The bibliometric methods are mainly based on the public policy texts, discriminating the inter-government relationship and the multi-dimensional value of the policy. Decision analysis focuses on the establishment and measurement of the comprehensive evaluation index system of public policy. The economic analysis methods focus on the performance and output of technological innovation to test the policy effect. Finally, this paper puts forward the prospect of the future research direction.Keywords: technology innovation, index, policy effectiveness, evaluation of policy, bibliometric analysis
Procedia PDF Downloads 701306 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot
Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin
Abstract:
This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control
Procedia PDF Downloads 4651305 The Study on Life of Valves Evaluation Based on Tests Data
Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu
Abstract:
Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.Keywords: censored data, temperature tests, valves, vibration tests
Procedia PDF Downloads 3451304 Photocatalytic Degradation of Gaseous Toluene: Effects of Operational Variables on Efficiency Rate of TiO2 Coated on Nickel Foam
Authors: Jafar Akbari, Masoud Rismanchian, Samira Ramezani
Abstract:
Purpose: The photocatalytic degradation of pollutants is a novel technology with various advantages such as high efficiency and energy saving. In this research, the effects of operational variables on the photocatalytic efficiency of TiO₂ coated on nickel foam in the removal of toluene from the simulated indoor air have been investigated. Methods: TiO₂ film were prepared via the sol-gel method and coated on nickel foam. The characteristics and morphology were found using XRD, SEM, and BET technique. Then, the effects of relative humidity, UV-A intensity, the initial toluene concentration, TiO₂ loading, and the air circulation velocity on the photocatalytic degradation rate have been evaluated. Results: The optimal degradation of toluene has been achieved with loading 4.35 g TiO2 on the foam, 30% RH, 5.4 µW.cm−2 UV-A intensity, and 20 ppm initial concentration in the air circulation velocity of 0.15 fpm. Conclusion: The changes of toluene photocatalytic degradation rate have been studied at various times. Also, the kinetic behavior of toluene photocatalytic degradation has been investigated using Langmuir-Hinshelwood (L-H) model.Keywords: photocatalytic degradation, operational variables, tio₂, nickel foam, gaseous toluene, nanotechnology
Procedia PDF Downloads 851303 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 531302 Low-Voltage Multiphase Brushless DC Motor for Electric Vehicle Application
Authors: Mengesha Mamo Wogari
Abstract:
In this paper, low voltage multiphase brushless DC motor with square wave air-gap flux distribution for electric vehicle application is proposed. Ten-phase, 5 kW motor, has been designed and simulated by finite element methods demonstrating the desired high torque capability at low speed and flux weakening operation for high-speed operations. The motor torque is proportional to number of phases for a constant phase current and air-gap flux. The concept of vector control and simple space vector modulation technique is used on MATLAB to control the motor demonstrating simple switching pattern for selected number of phases. The low voltage DC and inverter output AC are desired characteristics to avoid any electric shock in the vehicle, accidentally and during abnormal conditions. The switching devices for inverter are of low-voltage rating and cost effective though their number is equal to twice the number of phases.Keywords: brushless DC motors, electric Vehicle, finite element methods, Low-voltage inverter, multiphase
Procedia PDF Downloads 1531301 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning
Authors: Yanwen Li, Shuguo Xie
Abstract:
In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning
Procedia PDF Downloads 2661300 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry
Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas
Abstract:
This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors.” The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups. The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared. REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies.Keywords: complex fuel geometry, PARET, RELAP5, WWR-SM reactor
Procedia PDF Downloads 3331299 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1821298 Comparative Isotherms Studies on Adsorptive Removal of Methyl Orange from Wastewater by Watermelon Rinds and Neem-Tree Leaves
Authors: Sadiq Sani, Muhammad B. Ibrahim
Abstract:
Watermelon rinds powder (WRP) and neem-tree leaves powder (NLP) were used as adsorbents for equilibrium adsorption isotherms studies for detoxification of methyl orange dye (MO) from simulated wastewater. The applicability of the process to various isotherm models was tested. All isotherms from the experimental data showed excellent linear reliability (R2: 0.9487-0.9992) but adsorptions onto WRP were more reliable (R2: 0.9724-0.9992) than onto NLP (R2: 0.9487-0.9989) except for Temkin’s Isotherm where reliability was better onto NLP (R2: 0.9937) than onto WRP (R2: 0.9935). Dubinin-Radushkevich’s monolayer adsorption capacities for both WRP and NLP (qD: 20.72 mg/g, 23.09 mg/g) were better than Langmuir’s (qm: 18.62 mg/g, 21.23 mg/g) with both capacities higher for adsorption onto NLP (qD: 23.09 mg/g; qm: 21.23 mg/g) than onto WRP (qD: 20.72 mg/g; qm: 18.62 mg/g). While values for Langmuir’s separation factor (RL) for both adsorbents suggested unfavourable adsorption processes (RL: -0.0461, -0.0250), Freundlich constant (nF) indicated favourable process onto both WRP (nF: 3.78) and NLP (nF: 5.47). Adsorption onto NLP had higher Dubinin-Radushkevich’s mean free energy of adsorption (E: 0.13 kJ/mol) than WRP (E: 0.08 kJ/mol) and Temkin’s heat of adsorption (bT) was better onto NLP (bT: -0.54 kJ/mol) than onto WRP (bT: -0.95 kJ/mol) all of which suggested physical adsorption.Keywords: adsorption isotherms, methyl orange, neem leaves, watermelon rinds
Procedia PDF Downloads 2731297 USTTB (UCRC) Financial Management, Strengths and Weaknesses
Authors: Samba Lamine Cisse, Cheick Oumar Tangara, Seynabou Sissoko, Mahamadou Diakite, Seydou Doumbia
Abstract:
Background: Financial management of a scientific research center is a crucial element in achieving ambitious scientific goals. It can be a driving force for research success, but it also has shortcomings that are important to understand. This study focuses on the crucial aspects of financial management in the context of scientific research centers, more specifically the USTTB (UCRC) in Mali in terms of strengths and weaknesses. Methodology: This study concerns the case of the UCRC, one of the USTTB's research centers. It is a qualitative study based on years of experience in project management at the USTTB, and on analyses and interpretations of everyday activities. Result: It offers practical recommendations for improving the financial stability of research institutions, thereby contributing to their mission of promoting scientific research and innovation. Scientific research centers play a crucial role in the development of knowledge, and their effective operation largely depends on the appropriate management of their financial resources. It begins with an in-depth analysis of UCRC's typical financial structure, highlighting its types and sources of funding, followed by an analysis of the strengths and weaknesses of its current financial management system. Conclusion: Financial management of a scientific research center is essential to ensure the continuity of research activities, the development of innovative projects and the achievement of scientific objectives. Adaptive financial management focused on efficiency, diversification of funding and risk control. They are essential to meeting these challenges and fostering excellence in scientific research.Keywords: financial, management, strengths, weaknesses, recommendations
Procedia PDF Downloads 141296 System Identification and Controller Design for a DC Electrical Motor
Authors: Armel Asongu Nkembi, Ahmad Fawad
Abstract:
The aim of this paper is to determine in a concise way the transfer function that characterizes a DC electrical motor with a helix. In practice it can be obtained by applying a particular input to the system and then, based on the observation of its output, determine an approximation to the transfer function of the system. In our case, we use a step input and find the transfer function parameters that give the simulated first-order time response. The simulation of the system is done using MATLAB/Simulink. In order to determine the parameters, we assume a first order system and use the Broida approximation to determine the parameters and then its Mean Square Error (MSE). Furthermore, we design a PID controller for the control process first in the continuous time domain and tune it using the Ziegler-Nichols open loop process. We then digitize the controller to obtain a digital controller since most systems are implemented using computers, which are digital in nature.Keywords: transfer function, step input, MATLAB, Simulink, DC electrical motor, PID controller, open-loop process, mean square process, digital controller, Ziegler-Nichols
Procedia PDF Downloads 551295 Motor Vehicle Accidents During Pregnancy: Analysis of Maternal and Fetal Outcome at a University Hospital
Authors: Manjunath Attibele, Alsawafi Manal, Al Dughaishi Tamima
Abstract:
Introduction: The purpose of this study was to describe the clinical characteristics and types of mechanisms of injuries caused by Motor vehicle accidents (MVA) during pregnancy. To analyze the patterns of accidents during pregnancy and its adverse consequences on both maternal and fetal outcome. Methods: This was a retrospective cohort study on pregnant patients who met with MVAs The study period was from January 1, 2010, to December 31, 2019. All relevant data were retrieved from electronic patients’ records from the hospital information system and from the antenatal ward admission register Results: Out of 168 women who had motor vehicle accidents during the study period, of which, 39 (23.2%) women during pregnancy. Twenty-one (53.8%) women were over 30 years old. Thirty-five (89.7%) women were Omanis, and 27 (69.2%) were in their third trimester. Twenty-three (59%) of accidents happened at night, and 31 (79.5%) of them happened on a weekday. Twenty-two (56.4%) of women were driving themselves, and 24 (61.5%) of them were not using any seatbelt. Accident related abdominal & back pain was seen in 23(59%) women. Regarding the outcome of pregnancy, 23 (74.2%) had a normal vaginal delivery. The mean accident to delivery interval was 7 weeks. Thirty (96.7%) of involved newborns were relatively healthy. One woman (3.2%) had a ruptured uterusleading to fetal death (3.2%). Conclusion: This study showed that the incidence of motor vehicle accidents during pregnancy is around 23.2% . Majority had trauma-associated pain. One serious injury to a woman causing a ruptured uterus which lead to fetal death. Majority of involved newborns were relatively healthy. No reported maternal death.Keywords: motor vehicle accidents, pregnancy, maternal outcome, fetal outcome
Procedia PDF Downloads 921294 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications
Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan
Abstract:
Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification
Procedia PDF Downloads 5101293 A Decision Support System for the Detection of Illicit Substance Production Sites
Authors: Krystian Chachula, Robert Nowak
Abstract:
Manufacturing home-made explosives and synthetic drugs is an increasing problem in Europe. To combat that, a data fusion system is proposed for the detection and localization of production sites in urban environments. The data consists of measurements of properties of wastewater performed by various sensors installed in a sewage network. A four-stage fusion strategy allows detecting sources of waste products from known chemical reactions. First, suspicious measurements are used to compute the amount and position of discharged compounds. Then, this information is propagated through the sewage network to account for missing sensors. The next step is clustering and the formation of tracks. Eventually, tracks are used to reconstruct discharge events. Sensor measurements are simulated by a subsystem based on real-world data. In this paper, different discharge scenarios are considered to show how the parameters of used algorithms affect the effectiveness of the proposed system. This research is a part of the SYSTEM project (SYnergy of integrated Sensors and Technologies for urban sEcured environMent).Keywords: continuous monitoring, information fusion and sensors, internet of things, multisensor fusion
Procedia PDF Downloads 1151292 Implementation of CNV-CH Algorithm Using Map-Reduce Approach
Authors: Aishik Deb, Rituparna Sinha
Abstract:
We have developed an algorithm to detect the abnormal segment/"structural variation in the genome across a number of samples. We have worked on simulated as well as real data from the BAM Files and have designed a segmentation algorithm where abnormal segments are detected. This algorithm aims to improve the accuracy and performance of the existing CNV-CH algorithm. The next-generation sequencing (NGS) approach is very fast and can generate large sequences in a reasonable time. So the huge volume of sequence information gives rise to the need for Big Data and parallel approaches of segmentation. Therefore, we have designed a map-reduce approach for the existing CNV-CH algorithm where a large amount of sequence data can be segmented and structural variations in the human genome can be detected. We have compared the efficiency of the traditional and map-reduce algorithms with respect to precision, sensitivity, and F-Score. The advantages of using our algorithm are that it is fast and has better accuracy. This algorithm can be applied to detect structural variations within a genome, which in turn can be used to detect various genetic disorders such as cancer, etc. The defects may be caused by new mutations or changes to the DNA and generally result in abnormally high or low base coverage and quantification values.Keywords: cancer detection, convex hull segmentation, map reduce, next generation sequencing
Procedia PDF Downloads 1361291 Equivalent Electrical Model of a Shielded Pulse Planar Transformer in Isolated Gate Drivers for SiC MOSFETs
Authors: Loreine Makki, Marc Anthony Mannah, Christophe Batard, Nicolas Ginot, Julien Weckbrodt
Abstract:
Planar transformers are extensively utilized in high-frequency, high power density power electronic converters. The breakthrough of wide-bandgap technology compelled power electronic system miniaturization while inducing pivotal effects on system modeling and manufacturing within the power electronics industry. A significant consideration to simulate and model the unanticipated parasitic parameters emerges with the requirement to mitigate electromagnetic disturbances. This paper will present an equivalent circuit model of a shielded pulse planar transformer quantifying leakage inductance and resistance in addition to the interwinding capacitance of the primary and secondary windings. ANSYS Q3D Extractor was utilized to model and simulate the transformer, intending to study the immunity of the simulated equivalent model to high dv/dt occurrences. A convenient correlation between simulation and experimental results is presented.Keywords: Planar transformers, wide-band gap, equivalent circuit model, shielded, ANSYS Q3D Extractor, dv/dt
Procedia PDF Downloads 2061290 The Use of Hec Ras One-Dimensional Model and Geophysics for the Determination of Flood Zones
Authors: Ayoub El Bourtali, Abdessamed Najine, Amrou Moussa Benmoussa
Abstract:
It is becoming more and more necessary to manage flood risk, and it must include all stakeholders and all possible means available. The goal of this work is to map the vulnerability of the Oued Derna-region Tagzirt flood zone in the semi-arid region. This is about implementing predictive models and flood control. This allows for the development of flood risk prevention plans. In this study, A resistivity survey was conducted over the area to locate and evaluate soil characteristics in order to calculate discharges and prevent flooding for the study area. The development of a one-dimensional (1D) hydrodynamic model of the Derna River was carried out in HEC-RAS 5.0.4 using a combination of survey data and spatially extracted cross-sections and recorded river flows. The study area was hit by several extreme floods, causing a lot of property loss and loss of life. This research focuses on the most recent flood events, based on the collected data, the water level, river flow and river cross-section were analyzed. A set of flood levels were obtained as the outputs of the hydraulic model and the accuracy of the simulated flood levels and velocity.Keywords: derna river, 1D hydrodynamic model, flood modelling, HEC-RAS 5.0.4
Procedia PDF Downloads 3121289 Developing an Out-of-Distribution Generalization Model Selection Framework through Impurity and Randomness Measurements and a Bias Index
Authors: Todd Zhou, Mikhail Yurochkin
Abstract:
Out-of-distribution (OOD) detection is receiving increasing amounts of attention in the machine learning research community, boosted by recent technologies, such as autonomous driving and image processing. This newly-burgeoning field has called for the need for more effective and efficient methods for out-of-distribution generalization methods. Without accessing the label information, deploying machine learning models to out-of-distribution domains becomes extremely challenging since it is impossible to evaluate model performance on unseen domains. To tackle this out-of-distribution detection difficulty, we designed a model selection pipeline algorithm and developed a model selection framework with different impurity and randomness measurements to evaluate and choose the best-performing models for out-of-distribution data. By exploring different randomness scores based on predicted probabilities, we adopted the out-of-distribution entropy and developed a custom-designed score, ”CombinedScore,” as the evaluation criterion. This proposed score was created by adding labeled source information into the judging space of the uncertainty entropy score using harmonic mean. Furthermore, the prediction bias was explored through the equality of opportunity violation measurement. We also improved machine learning model performance through model calibration. The effectiveness of the framework with the proposed evaluation criteria was validated on the Folktables American Community Survey (ACS) datasets.Keywords: model selection, domain generalization, model fairness, randomness measurements, bias index
Procedia PDF Downloads 1241288 Estimation of Elastic Modulus of Soil Surrounding Buried Pipeline Using Multi-Response Surface Methodology
Authors: Won Mog Choi, Seong Kyeong Hong, Seok Young Jeong
Abstract:
The stress on the buried pipeline under pavement is significantly affected by vehicle loads and elastic modulus of the soil surrounding the pipeline. The correct elastic modulus of soil has to be applied to the finite element model to investigate the effect of the vehicle loads on the buried pipeline using finite element analysis. The purpose of this study is to establish the approach to calculating the correct elastic modulus of soil using the optimization process. The optimal elastic modulus of soil, which minimizes the difference between the strain measured from vehicle driving test at the velocity of 35km/h and the strain calculated from finite element analyses, was calculated through the optimization process using multi-response surface methodology. Three elastic moduli of soil (road layer, original soil, dense sand) surrounding the pipeline were defined as the variables for the optimization. Further analyses with the optimal elastic modulus at the velocities of 4.27km/h, 15.47km/h, 24.18km/h were performed and compared to the test results to verify the applicability of multi-response surface methodology. The results indicated that the strain of the buried pipeline was mostly affected by the elastic modulus of original soil, followed by the dense sand and the load layer, as well as the results of further analyses with optimal elastic modulus of soil show good agreement with the test.Keywords: pipeline, optimization, elastic modulus of soil, response surface methodology
Procedia PDF Downloads 3861287 Visual Inspection of Road Conditions Using Deep Convolutional Neural Networks
Authors: Christos Theoharatos, Dimitris Tsourounis, Spiros Oikonomou, Andreas Makedonas
Abstract:
This paper focuses on the problem of visually inspecting and recognizing the road conditions in front of moving vehicles, targeting automotive scenarios. The goal of road inspection is to identify whether the road is slippery or not, as well as to detect possible anomalies on the road surface like potholes or body bumps/humps. Our work is based on an artificial intelligence methodology for real-time monitoring of road conditions in autonomous driving scenarios, using state-of-the-art deep convolutional neural network (CNN) techniques. Initially, the road and ego lane are segmented within the field of view of the camera that is integrated into the front part of the vehicle. A novel classification CNN is utilized to identify among plain and slippery road textures (e.g., wet, snow, etc.). Simultaneously, a robust detection CNN identifies severe surface anomalies within the ego lane, such as potholes and speed bumps/humps, within a distance of 5 to 25 meters. The overall methodology is illustrated under the scope of an integrated application (or system), which can be integrated into complete Advanced Driver-Assistance Systems (ADAS) systems that provide a full range of functionalities. The outcome of the proposed techniques present state-of-the-art detection and classification results and real-time performance running on AI accelerator devices like Intel’s Myriad 2/X Vision Processing Unit (VPU).Keywords: deep learning, convolutional neural networks, road condition classification, embedded systems
Procedia PDF Downloads 1341286 Adaptive Kaman Filter for Fault Diagnosis of Linear Parameter-Varying Systems
Authors: Rajamani Doraiswami, Lahouari Cheded
Abstract:
Fault diagnosis of Linear Parameter-Varying (LPV) system using an adaptive Kalman filter is proposed. The LPV model is comprised of scheduling parameters, and the emulator parameters. The scheduling parameters are chosen such that they are capable of tracking variations in the system model as a result of changes in the operating regimes. The emulator parameters, on the other hand, simulate variations in the subsystems during the identification phase and have negligible effect during the operational phase. The nominal model and the influence vectors, which are the gradient of the feature vector respect to the emulator parameters, are identified off-line from a number of emulator parameter perturbed experiments. A Kalman filter is designed using the identified nominal model. As the system varies, the Kalman filter model is adapted using the scheduling variables. The residual is employed for fault diagnosis. The proposed scheme is successfully evaluated on simulated system as well as on a physical process control system.Keywords: identification, linear parameter-varying systems, least-squares estimation, fault diagnosis, Kalman filter, emulators
Procedia PDF Downloads 4991285 Research on “Three Ports in One” Comprehensive Transportation System of Sea, Land and Airport in Nantong City under the Background of a New Round of Territorial Space Planning
Authors: Ying Sun, Yuxuan Lei
Abstract:
Based on the analysis of the current situation of Nantong's comprehensive transportation system, the interactive relationship between the transportation system and the economy and society is clarified, and then the development strategy for the planning and implementation of the "three ports in one" comprehensive transportation system of ocean, land, and airport is proposed for this round of territorial spatial planning. The research findings are as follows: (1) The comprehensive transportation network system of Nantong City is beginning to take shape, but the lack of a unified and complete system planning makes it difficult to establish a "multi-port integration" pattern with transportation hubs. (2) At the Yangtze River Delta level and Nantong City level, a connected transport node integrating ocean, land, and airport should be built in the transportation construction planning to effectively meet the guidance of the overall territorial space planning of Nantong City. (3) Nantong's comprehensive transportation system and economic society have experienced three interactive development relations in different stages: mutual promotion, geographical separation, and high-level driving. Therefore, the current planning of Nantong's comprehensive transportation system needs to be optimized. The four levels of Nantong city, Shanghai metropolitan area, Yangtze River Delta, and each district, county, and city should be comprehensively considered, and the four development strategies of accelerating construction, dislocation development, active docking, and innovative implementation should be adopted.Keywords: master plan for territorial space, Integrated transportation system, Nantong, sea, land and air, "Three ports in one"
Procedia PDF Downloads 146