Search results for: modal parameters
7707 Aerodynamic Modeling Using Flight Data at High Angle of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling
Procedia PDF Downloads 4497706 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1757705 Self-Tuning Power System Stabilizer Based on Recursive Least Square Identification and Linear Quadratic Regulator
Authors: J. Ritonja
Abstract:
Available commercial applications of power system stabilizers assure optimal damping of synchronous generator’s oscillations only in a small part of operating range. Parameters of the power system stabilizer are usually tuned for the selected operating point. Extensive variations of the synchronous generator’s operation result in changed dynamic characteristics. This is the reason that the power system stabilizer tuned for the nominal operating point does not satisfy preferred damping in the overall operation area. The small-signal stability and the transient stability of the synchronous generators have represented an attractive problem for testing different concepts of the modern control theory. Of all the methods, the adaptive control has proved to be the most suitable for the design of the power system stabilizers. The adaptive control has been used in order to assure the optimal damping through the entire synchronous generator’s operating range. The use of the adaptive control is possible because the loading variations and consequently the variations of the synchronous generator’s dynamic characteristics are, in most cases, essentially slower than the adaptation mechanism. The paper shows the development and the application of the self-tuning power system stabilizer based on recursive least square identification method and linear quadratic regulator. Identification method is used to calculate the parameters of the Heffron-Phillips model of the synchronous generator. On the basis of the calculated parameters of the synchronous generator’s mathematical model, the synthesis of the linear quadratic regulator is carried-out. The identification and the synthesis are implemented on-line. In this way, the self-tuning power system stabilizer adapts to the different operating conditions. A purpose of this paper is to contribute to development of the more effective power system stabilizers, which would replace currently used linear stabilizers. The presented self-tuning power system stabilizer makes the tuning of the controller parameters easier and assures damping improvement in the complete operating range. The results of simulations and experiments show essential improvement of the synchronous generator’s damping and power system stability.Keywords: adaptive control, linear quadratic regulator, power system stabilizer, recursive least square identification
Procedia PDF Downloads 2497704 Analysis of Supply Chain Complexity Sub-Dimensions for Garment Industry
Authors: Niyanta Mehra, Aakriti Khurania, Kshitij Rastogi, S. K. Garg
Abstract:
There is plenty of literature available that accounts for complexity management in a supply chain. A major fraction of this literature considers a large number of parameters in order to devise management techniques. However, multiple such parameters do not directly affect the result, and incorporating these can make the analyses overly complicated. Most of the causes of supply chain inefficiencies are due to the interconnectedness and interdependencies in the structure, processes, and environment of the supply chains. The level of complexity varies across industries in terms of intensity and ease of management. After a review of the literature related to complexities in supply chains, the paper attempts to build a framework to study the relative significance of these complexities. This paper aims to identify critical complexities for the garment industry. Understanding and controlling these complexities open avenues for better supply chain management and also assist decision-makers in the garment industry in formulating risk mitigation strategies.Keywords: complexity dimensions, garment industry, supply chain complexity, supply chain management
Procedia PDF Downloads 1517703 Health Risk Assessment According to Exposure with Heavy Metals and Physicochemical Parameters; Water Quality Index and Contamination Degree Evaluation in Bottled Water
Authors: Samaneh Abolli, Mahmood Alimohammadi
Abstract:
The survey analyzed 71 bottled water brands in Tehran, Iran, examining 10 physicochemical parameters and 16 heavy metals. The water quality index (WQI) approach was used to assess water quality, and methods such as carcinogen risk (CR) and hazard index (HI) were employed to evaluate health risks. The results indicated that the bottled water had good quality overall, but some brands were of poor or very poor quality. The study also revealed significant human health risks, especially for children, due to the presence of minerals and heavy metals in bottled water. Correlation analyses and risk assessments for various substances were conducted, providing valuable insights into the potential health impacts of the analyzed bottled water.Keywords: bottled wate, rwater quality index, health risk assessment, contamination degree, heavy metal evaluation index
Procedia PDF Downloads 547702 Fluctuations of Transfer Factor of the Mixer Based on Schottky Diode
Authors: Alexey V. Klyuev, Arkady V. Yakimov, Mikhail I. Ryzhkin, Andrey V. Klyuev
Abstract:
Fluctuations of Schottky diode parameters in a structure of the mixer are investigated. These fluctuations are manifested in two ways. At the first, they lead to fluctuations in the transfer factor that is lead to the amplitude fluctuations in the signal of intermediate frequency. On the basis of the measurement data of 1/f noise of the diode at forward current, the estimation of a spectrum of relative fluctuations in transfer factor of the mixer is executed. Current dependence of the spectrum of relative fluctuations in transfer factor of the mixer and dependence of the spectrum of relative fluctuations in transfer factor of the mixer on the amplitude of the heterodyne signal are investigated. At the second, fluctuations in parameters of the diode lead to the occurrence of 1/f noise in the output signal of the mixer. This noise limits the sensitivity of the mixer to the value of received signal.Keywords: current-voltage characteristic, fluctuations, mixer, Schottky diode, 1/f noise
Procedia PDF Downloads 5887701 Effect of 3-Dimensional Knitted Spacer Fabrics Characteristics on Its Thermal and Compression Properties
Authors: Veerakumar Arumugam, Rajesh Mishra, Jiri Militky, Jana Salacova
Abstract:
The thermo-physiological comfort and compression properties of knitted spacer fabrics have been evaluated by varying the different spacer fabric parameters. Air permeability and water vapor transmission of the fabrics were measured using the Textest FX-3300 air permeability tester and PERMETEST. Then thermal behavior of fabrics was obtained by Thermal conductivity analyzer and overall moisture management capacity was evaluated by moisture management tester. Spacer Fabrics compression properties were also tested using Kawabata Evaluation System (KES-FB3). In the KES testing, the compression resilience, work of compression, linearity of compression and other parameters were calculated from the pressure-thickness curves. Analysis of Variance (ANOVA) was performed using new statistical software named QC expert trilobite and Darwin in order to compare the influence of different fabric parameters on thermo-physiological and compression behavior of samples. This study established that the raw materials, type of spacer yarn, density, thickness and tightness of surface layer have significant influence on both thermal conductivity and work of compression in spacer fabrics. The parameter which mainly influence on the water vapor permeability of these fabrics is the properties of raw material i.e. the wetting and wicking properties of fibers. The Pearson correlation between moisture capacity of the fabrics and water vapour permeability was found using statistical software named QC expert trilobite and Darwin. These findings are important requirements for the further designing of clothing for extreme environmental conditions.Keywords: 3D spacer fabrics, thermal conductivity, moisture management, work of compression (WC), resilience of compression (RC)
Procedia PDF Downloads 5467700 Characterizing Nanoparticles Generated from the Different Working Type and the Stack Flue during 3D Printing Process
Authors: Kai-Jui Kou, Tzu-Ling Shen, Ying-Fang Wang
Abstract:
The objectives of the present study are to characterize nanoparticles generated from the different working type in 3D printing room and the stack flue during 3D printing process. The studied laboratory (10.5 m× 7.2 m × 3.2 m) with a ventilation rate of 500 m³/H is installed a 3D metal printing machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L/min, respectively. The concentrations of background, printing process, clearing operation, and screening operation were performed in the laboratory. On the other hand, we also conducted nanoparticle measurement on the 3D printing machine's stack flue to understand its emission characteristics. Results show that the nanoparticles emitted from the different operation process were the same distribution in the form of the uni-modal with number median diameter (NMD) as approximately 28.3 nm to 29.6 nm. The number concentrations of nanoparticles were 2.55×10³ count/cm³ in laboratory background, 2.19×10³ count/cm³ during printing process, 2.29×10³ count/cm³ during clearing process, 3.05×10³ count/cm³ during screening process, 2.69×10³ count/cm³ in laboratory background after printing process, and 6.75×10³ outside laboratory, respectively. We found that there are no emission nanoparticles during the printing process. However, the number concentration of stack flue nanoparticles in the ongoing print is 1.13×10⁶ count/cm³, and that of the non-printing is 1.63×10⁴ count/cm³, with a NMD of 458 nm and 29.4 nm, respectively. It can be confirmed that the measured particle size belongs to easily penetrate the filter in theory during the printing process, even though the 3D printer has a high-efficiency filtration device. Therefore, it is recommended that the stack flue of the 3D printer would be equipped with an appropriate dust collection device to prevent the operators from exposing these hazardous particles.Keywords: nanoparticle, particle emission, 3D printing, number concentration
Procedia PDF Downloads 1847699 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 2927698 Optimal Temperature and Time for Lactic Coagulation of Milk Containing Antibiotic: Evaluation of Yogurt Fermentation Parameters
Authors: Arezoo Ghadi, Adonis Pishdadian, Ehsan Zahedi, Vahideh Rashedi, Mozhgan Mohammadi
Abstract:
The presence of antibiotics in milk is one of the problems of dairy production units, especially yogurt and cheese, which leads to a decrease in lactic coagulation. Here, to assess the incubation conditions for the fermentation of milk containing antibiotics, concentrations of 50, 75, 100, and 200 ppb of tetracycline were added to each liter of milk. Inoculation process with starter culture performed at three temperatures of 35°C, 45°C, and 50°C. Afterward, pH, acidity, oxidation-reduction potential, and lactic coagulation of yogurt were evaluated. The results showed the existence of antibiotics in milk affects the quality and physicochemical properties of yogurt. However, antibiotic concentration and change in incubation temperature play a crucial role in the lactic coagulation of yogurt, such that the best lactic coagulation was observed at 50°C and a concentration of 50ppb. Hence, for tetracycline concentrations less than 75ppb, a process temperature of 50°C and incubation time of ~10 h recommend for fermentation of milk containing antibiotics.Keywords: antibiotics residues, yogurt, fermentation parameters, incubation temperature
Procedia PDF Downloads 1027697 Evaluation of the Use of U-Wrap Anchorage Systems for Strengthening Concrete Members Reinforced by Fiber Reinforced-Polymer Laminate
Authors: Mai A. Aljaberi
Abstract:
The anchorage of fibre-reinforced polymer (FRP) sheets is the most effective solution to prevent or delay debonding failure; this system has proven to get better levels of FRP utilization. Unfortunately, the related design information is still unclear. This shortcoming limits the widespread use of the anchorage system. In order to minimize the knowledge gap about the design of U-wrap anchors, this paper reports the results of tested beams which were strengthened with carbon fiber-reinforced polymer (CFRP) sheets at their tension sides and secured with U-wrap anchors at each end of the longitudinal CFRP. The beams were tested under four-point loading until failure. The parameters examined include the compressive strength of the concrete and the number of longitudinal CFRP. It is concluded that these parameters have a considerable effect on the debonding of the strain. The greatest improvement in the strain was 55.8% over the control beam.Keywords: CFRP, concrete strengthening, debonding failure, debonding strain, U-wrap anchor
Procedia PDF Downloads 857696 Increase of Quinoa Tolerance to High Salinity Involves Agrophysiological Parameters Improvement by Soil Amendments
Authors: Bourhim Mohammad Redouane, Cheto Said, Qaddoury Ahmed, Hirich Abdelaziz, Ghoulam Cherki
Abstract:
Several abiotic stresses cause disruptions in the properties of agricultural soils and hence their loss worldwide. Among these abiotic stresses, Salinity to which most crops were exposed caused an important reduction in their productivity. Therefore, in order to deal with this challenging problem, we rely on cultivating alternative plants that can tolerate the adverse salinity stress, such as quinoa (Chenopodium quinoa). Although even it was qualified as tolerant to Salinity, the quinoa’s performance could be negatively affected under high salinity levels. Thus, our study aims to assess the effects of the application of soil amendments to improve quinoa tolerance levels under high Salinity. Thus, three quinoa varieties (Puno, ICBA-Q5, and Titicaca) were grown on agricultural soil under a greenhouse with five amendments; Biochar “Bc,” compost “Cp,” black soldier insect frass “If,” cow manure “Fb” and phosphogypsum “Pg.” Two controls without amendment were adopted consisting of the salinized negative one “T(-)” and the non-salinized positive one “T(+).” After 20 days from sowing, the plants were irrigated with a saline solution of 16 dS/m prepared with NaCl for a period of 60 days. Then plant tolerance was assessed based on agrophysiological parameters. The results showed that salinity stress negatively affected the quinoa plants for all the analyzed agrophysiological parameters in the three varieties compared to their corresponding controls “T(+).” However, most of these parameters were significantly enhanced by the application of soil amendments compared to their negative controls “T(-).” For instance, the biomass was improved by 91.8% and 69.4%, respectively, for Puno and Titicaca varieties amended with “Bc.” The total nitrogen amount was increased by 220% for Titicaca and ICBA-Q5 plants cultivated in the soil amended with “If.” One of the most important improvements was noted for potassium content in Titicaca amended with “Pg,” which was six times higher compared to the negative control. Besides, the plants of Puno amended with “Cp” showed an improvement of 75.9% for the stomatal conductance and 58.5% for nitrate reductase activity. Nevertheless, the pronounced varietal difference was registered between Puno and Titicaca, presenting the highest performances mainly for the soil amended with “If,” “Bc,” and “Pg.”Keywords: chenopodium quinoa, salinity, soil amendments, growth, nutrients, nitrate reductase
Procedia PDF Downloads 757695 Body Mass Components in Young Soccer Players
Authors: Elizabeta Sivevska, Sunchica Petrovska, Vaska Antevska, Lidija Todorovska, Sanja Manchevska, Beti Dejanova, Ivanka Karagjozova, Jasmina Pluncevic Gligoroska
Abstract:
Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players.Keywords: body composition, young soccer players, body fat, fat-free mass
Procedia PDF Downloads 4597694 Estimation of Source Parameters and Moment Tensor Solution through Waveform Modeling of 2013 Kishtwar Earthquake
Authors: Shveta Puri, Shiv Jyoti Pandey, G. M. Bhat, Neha Raina
Abstract:
TheJammu and Kashmir region of the Northwest Himalaya had witnessed many devastating earthquakes in the recent past and has remained unexplored for any kind of seismic investigations except scanty records of the earthquakes that occurred in this region in the past. In this study, we have used local seismic data of year 2013 that was recorded by the network of Broadband Seismographs in J&K. During this period, our seismic stations recorded about 207 earthquakes including two moderate events of Mw 5.7 on 1st May, 2013 and Mw 5.1 of 2nd August, 2013.We analyzed the events of Mw 3-4.6 and the main events only (for minimizing the error) for source parameters, b value and sense of movement through waveform modeling for understanding seismotectonic and seismic hazard of the region. It has been observed that most of the events are bounded between 32.9° N – 33.3° N latitude and 75.4° E – 76.1° E longitudes, Moment Magnitude (Mw) ranges from Mw 3 to 5.7, Source radius (r), from 0.21 to 3.5 km, stress drop, from 1.90 bars to 71.1 bars and Corner frequency, from 0.39 – 6.06 Hz. The b-value for this region was found to be 0.83±0 from these events which are lower than the normal value (b=1), indicating the area is under high stress. The travel time inversion and waveform inversion method suggest focal depth up to 10 km probably above the detachment depth of the Himalayan region. Moment tensor solution of the (Mw 5.1, 02:32:47 UTC) main event of 2ndAugust suggested that the source fault is striking at 295° with dip of 33° and rake value of 85°. It was found that these events form intense clustering of small to moderate events within a narrow zone between Panjal Thrust and Kishtwar Window. Moment tensor solution of the main events and their aftershocks indicating thrust type of movement is occurring in this region.Keywords: b-value, moment tensor, seismotectonics, source parameters
Procedia PDF Downloads 3177693 Kinetic Study of Physical Quality Changes on Jumbo Squid (Dosidicus gigas) Slices during Application High-Pressure Impregnation
Authors: Mario Perez-Won, Roberto Lemus-Mondaca, Fernanda Marin, Constanza Olivares
Abstract:
This study presents the simultaneous application of high hydrostatic pressure (HHP) and osmotic dehydration of jumbo squid (Dosidicus gigas) slice. Diffusion coefficients for both components water and solids were improved by the process pressure, being influenced by pressure level. The working conditions were different pressures such as 100, 250, 400 MPa and pressure atmospheric (0.1 MPa) for time intervals from 30 to 300 seconds and a 15% NaCl concentration. The mathematical expressions used for mass transfer simulations both water and salt were those corresponding to Newton, Henderson and Pabis, Page and Weibull models, where the Weibull and Henderson-Pabis models presented the best fitted to the water and salt experimental data, respectively. The values for water diffusivity coefficients varied from 1.62 to 8.10x10⁻⁹ m²/s whereas that for salt varied among 14.18 to 36.07x10⁻⁹ m²/s for selected conditions. Finally, as to quality parameters studied under the range of experimental conditions studied, the treatment at 250 MPa yielded on the samples a minimum hardness, whereas springiness, cohesiveness and chewiness at 100, 250 and 400 MPa treatments presented statistical differences regarding to unpressurized samples. The colour parameters L* (lightness) increased, however, but b* (yellowish) and a* (reddish) parameters decreased when increasing pressure level. This way, samples presented a brighter aspect and a mildly cooked appearance. The results presented in this study can support the enormous potential of hydrostatic pressure application as a technique important for compounds impregnation under high pressure.Keywords: colour, diffusivity, high pressure, jumbo squid, modelling, texture
Procedia PDF Downloads 3477692 Experimental Monitoring of the Parameters of the Ionosphere in the Local Area Using the Results of Multifrequency GNSS-Measurements
Authors: Andrey Kupriyanov
Abstract:
In recent years, much attention has been paid to the problems of ionospheric disturbances and their influence on the signals of global navigation satellite systems (GNSS) around the world. This is due to the increase in solar activity, the expansion of the scope of GNSS, the emergence of new satellite systems, the introduction of new frequencies and many others. The influence of the Earth's ionosphere on the propagation of radio signals is an important factor in many applied fields of science and technology. The paper considers the application of the method of transionospheric sounding using measurements from signals from Global Navigation Satellite Systems to determine the TEC distribution and scintillations of the ionospheric layers. To calculate these parameters, the International Reference Ionosphere (IRI) model of the ionosphere, refined in the local area, is used. The organization of operational monitoring of ionospheric parameters is analyzed using several NovAtel GPStation6 base stations. It allows performing primary processing of GNSS measurement data, calculating TEC and fixing scintillation moments, modeling the ionosphere using the obtained data, storing data and performing ionospheric correction in measurements. As a result of the study, it was proved that the use of the transionospheric sounding method for reconstructing the altitude distribution of electron concentration in different altitude range and would provide operational information about the ionosphere, which is necessary for solving a number of practical problems in the field of many applications. Also, the use of multi-frequency multisystem GNSS equipment and special software will allow achieving the specified accuracy and volume of measurements.Keywords: global navigation satellite systems (GNSS), GPstation6, international reference ionosphere (IRI), ionosphere, scintillations, total electron content (TEC)
Procedia PDF Downloads 1837691 Adsorption of Lead and Zinc Ions Onto Chemical Activated Millet Husk: Equilibrium and Kinetics Studies
Authors: Hilary Rutto, Linda Sibali
Abstract:
In this study, the adsorption of lead and zinc ions from aqueous solutions by modified millet husk has been investigated. The effects of different parameters, such as pH, adsorbent dosage, concentration, temperature, and contact time, have been investigated. The results of the experiments showed that the adsorption of both metal ions increased by increasing pH values up to 11. Adsorption process was initially fast. The adsorption rate decreased then until it reached to equilibrium time of 120 min for both lead and zinc ions. The Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and thermodynamic models (Gibbs free energy) were used to determine the isotherm parameters associated with the adsorption process. The positive values of Gibbs free energy change indicated that reaction is not spontaneous. Experimental data were also evaluated in terms of kinetic characteristics of adsorption, and it was found that adsorption process for both metal ions followed pseudo-first order for zinc and pseudo-second-order for lead.Keywords: zinc, lead, adsorption, millet husks
Procedia PDF Downloads 1707690 Calculation of Pressure-Varying Langmuir and Brunauer-Emmett-Teller Isotherm Adsorption Parameters
Authors: Trevor C. Brown, David J. Miron
Abstract:
Gas-solid physical adsorption methods are central to the characterization and optimization of the effective surface area, pore size and porosity for applications such as heterogeneous catalysis, and gas separation and storage. Properties such as adsorption uptake, capacity, equilibrium constants and Gibbs free energy are dependent on the composition and structure of both the gas and the adsorbent. However, challenges remain, in accurately calculating these properties from experimental data. Gas adsorption experiments involve measuring the amounts of gas adsorbed over a range of pressures under isothermal conditions. Various constant-parameter models, such as Langmuir and Brunauer-Emmett-Teller (BET) theories are used to provide information on adsorbate and adsorbent properties from the isotherm data. These models typically do not provide accurate interpretations across the full range of pressures and temperatures. The Langmuir adsorption isotherm is a simple approximation for modelling equilibrium adsorption data and has been effective in estimating surface areas and catalytic rate laws, particularly for high surface area solids. The Langmuir isotherm assumes the systematic filling of identical adsorption sites to a monolayer coverage. The BET model is based on the Langmuir isotherm and allows for the formation of multiple layers. These additional layers do not interact with the first layer and the energetics are equal to the adsorbate as a bulk liquid. This BET method is widely used to measure the specific surface area of materials. Both Langmuir and BET models assume that the affinity of the gas for all adsorption sites are identical and so the calculated adsorbent uptake at the monolayer and equilibrium constant are independent of coverage and pressure. Accurate representations of adsorption data have been achieved by extending the Langmuir and BET models to include pressure-varying uptake capacities and equilibrium constants. These parameters are determined using a novel regression technique called flexible least squares for time-varying linear regression. For isothermal adsorption the adsorption parameters are assumed to vary slowly and smoothly with increasing pressure. The flexible least squares for pressure-varying linear regression (FLS-PVLR) approach assumes two distinct types of discrepancy terms, dynamic and measurement for all parameters in the linear equation used to simulate the data. Dynamic terms account for pressure variation in successive parameter vectors, and measurement terms account for differences between observed and theoretically predicted outcomes via linear regression. The resultant pressure-varying parameters are optimized by minimizing both dynamic and measurement residual squared errors. Validation of this methodology has been achieved by simulating adsorption data for n-butane and isobutane on activated carbon at 298 K, 323 K and 348 K and for nitrogen on mesoporous alumina at 77 K with pressure-varying Langmuir and BET adsorption parameters (equilibrium constants and uptake capacities). This modeling provides information on the adsorbent (accessible surface area and micropore volume), adsorbate (molecular areas and volumes) and thermodynamic (Gibbs free energies) variations of the adsorption sites.Keywords: Langmuir adsorption isotherm, BET adsorption isotherm, pressure-varying adsorption parameters, adsorbate and adsorbent properties and energetics
Procedia PDF Downloads 2347689 Statistical Model of Water Quality in Estero El Macho, Machala-El Oro
Authors: Rafael Zhindon Almeida
Abstract:
Surface water quality is an important concern for the evaluation and prediction of water quality conditions. The objective of this study is to develop a statistical model that can accurately predict the water quality of the El Macho estuary in the city of Machala, El Oro province. The methodology employed in this study is of a basic type that involves a thorough search for theoretical foundations to improve the understanding of statistical modeling for water quality analysis. The research design is correlational, using a multivariate statistical model involving multiple linear regression and principal component analysis. The results indicate that water quality parameters such as fecal coliforms, biochemical oxygen demand, chemical oxygen demand, iron and dissolved oxygen exceed the allowable limits. The water of the El Macho estuary is determined to be below the required water quality criteria. The multiple linear regression model, based on chemical oxygen demand and total dissolved solids, explains 99.9% of the variance of the dependent variable. In addition, principal component analysis shows that the model has an explanatory power of 86.242%. The study successfully developed a statistical model to evaluate the water quality of the El Macho estuary. The estuary did not meet the water quality criteria, with several parameters exceeding the allowable limits. The multiple linear regression model and principal component analysis provide valuable information on the relationship between the various water quality parameters. The findings of the study emphasize the need for immediate action to improve the water quality of the El Macho estuary to ensure the preservation and protection of this valuable natural resource.Keywords: statistical modeling, water quality, multiple linear regression, principal components, statistical models
Procedia PDF Downloads 1017688 Nitrogen-Fixing Rhizobacteria (Rhizobium mililoti 2011) Enhances the Tolerance and the Accumulation of Cadmium in Medicago sativa
Authors: Tahar Ghnaya, Majda Mnasri, Hanen Zaier, Rim Ghabriche, Chedly Abdelly
Abstract:
It is known that the symbiotic association between plant and microorganisms are beneficial for plant growth and resistance to metal stress. Hence, it was demonstrated that Arbuscular mycorrhizal fungi have a positive effect on host plants growing in metal polluted soils. Legume plants are those which normally associate to rhizobacteria in order to fix atmospheric nitrogen. The aim of this work was to evaluate the effect this type of symbiosis on the tolerance and the accumulation of Cd. We chose Medicago sativa, as a modal for host legume plants and Rhizobium mililoti 2011 as rhizobial strain. Inoculated and non-inoculated plants of M. sativa were submitted during three month to 0, 50, and 100 mgCd/kg dry soil. Results showed that the presence of Cd in the medium induced, in both inoculated and non-inoculated plants, a chlorosis and necrosis. However, these symptoms were more pronounced in non-inoculated plants. The beneficial effect of inoculation of M. sativa with R. meliloti, on plant growth was confirmed by the measurement of biomass production which showed that the symbiotic association between host plant and rhizobacteria alleviates significantly Cd effect on biomass production, so inoculated plants produced more dry weight as compared to non-inoculated ones in the presence of all Cd tretments. On the other hand, under symbiosis conditions, Cd was more accumulated in different plant organs. Hence, in these plants, shoot Cd concentration reached 425 and it was 280 µg/gDW in non-inoculated ones in the presence of 100 ppm Cd. This result suggests that symbiosis enhances the absorption and translocation of Cd in this plant. In nodules and roots, we detected the highest Cd concentrations, demonstrating that these organs are able to concentrate Cd in their tissues. These data confirm that M. sataiva, cultivated in symbiosis with Rhizobium mililoti could be used in phytoextraction of Cd from contaminated soils.Keywords: Cd, phytoremediation, Medicago sativa, Arbuscular mycorrhizal
Procedia PDF Downloads 2797687 Dy3+ Ions Doped Single and Mixed Alkali Fluoro Tungstunate Tellurite Glasses for Laser and White LED Applications
Authors: Allam Srinivasa Rao, Ch. Annapurna Devi, G. Vijaya Prakash
Abstract:
A new-fangled series of white light emitting 1 mol% of Dy3+ ions doped Single-Alklai and Mixed-Alkai fluoro tungstunate tellurite glasses have been prepared using melt quenching technique and their spectroscopic behaviour was investigated by studying XRD, optical absorption, photoluminescence and lifetime measurements. The bonding parameter studies reveal the ionic nature of the Dy-O bond in the present glasses. From the absorption spectra, the Judd–Ofelt (J-O) intensity parameters have been determined which are used to explore the nature of bonding and symmetry orientation of the Dy–ligand field environment. The evaluated J-O parameters (Ω_4>Ω_2>Ω_6) for all the glasses are following the same trend. The photoluminescence spectra of all the glasses exhibit two intensified peaks in blue and Yellow regions corresponding to the transitions 4F9/2→6H15/2 (483 nm) and 4F9/2→6H13/2 (575 nm) respectively. From the photoluminescence spectra, it is observed that the luminescence intensity is maximum for Dy3+ ion doped potassium combination of fluoro tungstunate tellurite glass (TeWK: 1Dy). The J-O intensity parameters have been used to determine the various radiative properties for the different emission transitions from the 4F9/2 fluorescent level. The highest emission cross-section and branching ratio values observed for the 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions suggest the possible laser action in the visible region from these glasses. By using the experimental lifetimes (τ_exp) measured from the decay spectral features and radiative lifetimes (τ_R), the quantum efficiencies (η) for all the glasses have been evaluated. Among all the glasses, the potassium combined fluoro tungstunate tellurite (TeWK:1Dy) glass has the highest quantum efficiency (94.6%). The CIE colour chromaticity coordinates (x, y), (u, v), colour correlated temperature (CCT) and Y/B ratio were also estimated from the photoluminescence spectra for different compositions of glasses. The (x, y) and (u, v) chromaticity colour coordinates fall within the white light region and the white light can be tuned by varying the composition of the glass. From all these studies, we are suggesting that the 1 mol% of Dy3+ ions doped TeWK glass is more suitable for lasing and White-LED applications.Keywords: dysprosium, Judd-Ofelt parameters, photo luminescence, tellurite glasses
Procedia PDF Downloads 2247686 The Optimization of the Parameters for Eco-Friendly Leaching of Precious Metals from Waste Catalyst
Authors: Silindile Gumede, Amir Hossein Mohammadi, Mbuyu Germain Ntunka
Abstract:
Goal 12 of the 17 Sustainable Development Goals (SDGs) encourages sustainable consumption and production patterns. This necessitates achieving the environmentally safe management of chemicals and all wastes throughout their life cycle and the proper disposal of pollutants and toxic waste. Fluid catalytic cracking (FCC) catalysts are widely used in the refinery to convert heavy feedstocks to lighter ones. During the refining processes, the catalysts are deactivated and discarded as hazardous toxic solid waste. Spent catalysts (SC) contain high-cost metal, and the recovery of metals from SCs is a tactical plan for supplying part of the demand for these substances and minimizing the environmental impacts. Leaching followed by solvent extraction, has been found to be the most efficient method to recover valuable metals with high purity from spent catalysts. However, the use of inorganic acids during the leaching process causes a secondary environmental issue. Therefore, it is necessary to explore other alternative efficient leaching agents that are economical and environmentally friendly. In this study, the waste catalyst was collected from a domestic refinery and was characterised using XRD, ICP, XRF, and SEM. Response surface methodology (RSM) and Box Behnken design were used to model and optimize the influence of some parameters affecting the acidic leaching process. The parameters selected in this investigation were the acid concentration, temperature, and leaching time. From the characterisation results, it was found that the spent catalyst consists of high concentrations of Vanadium (V) and Nickel (Ni); hence this study focuses on the leaching of Ni and V using a biodegradable acid to eliminate the formation of the secondary pollution.Keywords: eco-friendly leaching, optimization, metal recovery, leaching
Procedia PDF Downloads 697685 Investigating the Nail Walls Performance in Jointed Rock Medium
Authors: Ibrahim Naeimifar, Omid Naeemifar
Abstract:
Evaluation of the excavation-induced ground movements is an important design aspect of support systems in urban areas. Geological and geotechnical conditions of an excavation area have significant effects on excavation-induced ground movements and the related damage. This paper is aimed at studying the performance of excavation walls supported by nails in jointed rock medium. The performance of nailed walls is investigated based on evaluating the excavation-induced ground movements. For this purpose, a set of calibrated 2D finite element models is developed by taking into account the nail-rock-structure interactions, the anisotropic properties of jointed rock, and the staged construction process. The results of this paper highlight effects of different parameters such as joint inclinations, the anisotropy of rocks and nail inclinations on deformation parameters of excavation wall supported by nails.Keywords: finite element, jointed rock, nailing, performance
Procedia PDF Downloads 2897684 Effect of Elevated Temperatures on Trans Fat Content and Oxidative Parameters of Groundnut Oil
Authors: Akanksha Jain, Santosh J. Passi, William Selvamurthy, Archna Singh
Abstract:
Heating/frying at elevated temperatures cause numerous physiochemical reactions including oxidative deterioration and trans fatty acid (TFA) formation; however Indian data on these parameters are scanty. The present study was designed to assess the effect of constant heating/frying on formation of TFAs and oxidative stability in groundnut oil. 750 mL of the oil was heated in a large iron karahi (utensil similar to a wok) and freshly cut potato strips were fried constantly at varying temperatures (160ºC, 180ºC, 200ºC, 220ºC, 230ºC). In each case, the oil sample was drawn after one hour and stored at –20ºC until analysed. While TFA was estimated using gas chromatography with flame ionisation detector (AOCS official method Ce 1h–05), other chemical parameters were assessed by AOCS official methods. Oil samples subjected to heating/frying at varying temperatures demonstrated a significant increase in TFAs (p < 0.01) and saturated fatty acids (p < 0.01) while there was a corresponding decrease in cis-unsaturated fatty acids (p < 0.01). Frying process demonstrated greater TFA formation (mean TFA at 160ºC being 0.11±0.01g/100g; at 230ºC it being 2.33±0.05g/100g) as compared to heating alone (mean TFA at 160ºC being 0.07g±0.01/100g; at 230ºC it being 0.47±0.02g/100g), indicating that there was a significant difference in the generation of TFAs during the two thermal treatments (heating vs. frying; p=0.05). With increasing temperatures, acid value, p-anisidine value and total oxidation (TOTOX) value registered a significant increase (p < 0.01); however, peroxide value was found to be inconsistent. Thus, the formation of TFA and various oxidative parameters (except peroxide value) is directly influenced by the temperature of heating/frying. Since TFA formation and poor oxidative stability of oils can pose serious health concerns, food safety agencies/organizations need to devise appropriate policies, stringent food laws/standards and impose necessary safety regulations to curb oil abuse during the process of heating and frying. There is a dire need to raise consumer awareness regarding deleterious health effects of TFA and oxidative deterioration of oils at elevated temperatures employed during heating/frying procedures.Keywords: cis-unsaturated fatty acid, oxidative stability, saturated fatty acid, trans fatty acid
Procedia PDF Downloads 1857683 Green Function and Eshelby Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Spherical Inclusion Case
Authors: A. Selmi, A. Bisharat
Abstract:
Using Fourier transform and based on the Mindlin's 2nd gradient model that involves two length scale parameters, the Green's function, the Eshelby tensor, and the Eshelby-like tensor for a spherical inclusion are derived. It is proved that the Eshelby tensor consists of two parts; the classical Eshelby tensor and a gradient part including the length scale parameters which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green's function and Eshelby tensor reduce to its analogue based on the classical elasticity. The Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.Keywords: Eshelby tensor, Eshelby-like tensor, Green’s function, Mindlin’s 2nd gradient model, spherical inclusion
Procedia PDF Downloads 2717682 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier
Authors: Hassan Jassim Motlak
Abstract:
A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA
Procedia PDF Downloads 3177681 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming
Authors: A. Anbu Raj, V. Mugendiren
Abstract:
Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness
Procedia PDF Downloads 3397680 Optimal Design for SARMA(P,Q)L Process of EWMA Control Chart
Authors: Yupaporn Areepong
Abstract:
The main goal of this paper is to study Statistical Process Control (SPC) with Exponentially Weighted Moving Average (EWMA) control chart when observations are serially-correlated. The characteristic of control chart is Average Run Length (ARL) which is the average number of samples taken before an action signal is given. Ideally, an acceptable ARL of in-control process should be enough large, so-called (ARL0). Otherwise it should be small when the process is out-of-control, so-called Average of Delay Time (ARL1) or a mean of true alarm. We find explicit formulas of ARL for EWMA control chart for Seasonal Autoregressive and Moving Average processes (SARMA) with Exponential white noise. The results of ARL obtained from explicit formula and Integral equation are in good agreement. In particular, this formulas for evaluating (ARL0) and (ARL1) be able to get a set of optimal parameters which depend on smoothing parameter (λ) and width of control limit (H) for designing EWMA chart with minimum of (ARL1).Keywords: average run length, optimal parameters, exponentially weighted moving average (EWMA), control chart
Procedia PDF Downloads 5617679 Optimal Analysis of Structures by Large Wing Panel Using FEM
Authors: Byeong-Sam Kim, Kyeongwoo Park
Abstract:
In this study, induced structural optimization is performed to compare the trade-off between wing weight and induced drag for wing panel extensions, construction of wing panel and winglets. The aerostructural optimization problem consists of parameters with strength condition, and two maneuver conditions using residual stresses in panel production. The results of kinematic motion analysis presented a homogenization based theory for 3D beams and 3D shells for wing panel. This theory uses a kinematic description of the beam based on normalized displacement moments. The displacement of the wing is a significant design consideration as large deflections lead to large stresses and increased fatigue of components cause residual stresses. The stresses in the wing panel are small compared to the yield stress of aluminum alloy. This study describes the implementation of a large wing panel, aerostructural analysis and structural parameters optimization framework that couples a three-dimensional panel method.Keywords: wing panel, aerostructural optimization, FEM, structural analysis
Procedia PDF Downloads 5937678 Aging and Mechanical Behavior of Be-treated 7075 Aluminum Alloys
Authors: Mahmoud M. Tash, S. Alkahtani
Abstract:
The present study was undertaken to investigate the effect of pre-aging and aging parameters (time and temperature) on the mechanical properties of Al-Mg-Zn (7075) alloys. Ultimate tensile strength, 0.5% offset yield strength and % elongation measurements were carried out on specimens prepared from cast and heat treated 7075 alloys. Aging treatments were carried out for the as solution treated (SHT) specimens (after quenching in warm water). The specimens were aged at different conditions; Natural aging was carried out at room temperature for different periods of time. Double aging was performed for SHT conditions (pre-aged at different time and temperature followed by high temperature aging). Ultimate tensile strength, yield strength and % elongation as a function of different pre-aging and aging parameters are analysed to acquire an understanding of the effects of these variables and their interactions on the mechanical properties of Be-treated 7075 alloys.Keywords: duplex aging treatment, mechanical properties, Al-Mg-Zn (7075) alloys, manufacturing
Procedia PDF Downloads 242