Search results for: military decision making process (MDMP)
19401 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach
Authors: Apu Kumar Saha, Mrinmoy Majumder
Abstract:
The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering
Procedia PDF Downloads 55019400 Mining Diagnostic Investigation Process
Authors: Sohail Imran, Tariq Mahmood
Abstract:
In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes.Keywords: process mining, healthcare, diagnostic investigation process, process flow
Procedia PDF Downloads 52419399 Amharic Text News Classification Using Supervised Learning
Authors: Misrak Assefa
Abstract:
The Amharic language is the second most widely spoken Semitic language in the world. There are several new overloaded on the web. Searching some useful documents from the web on a specific topic, which is written in the Amharic language, is a challenging task. Hence, document categorization is required for managing and filtering important information. In the classification of Amharic text news, there is still a gap in the domain of information that needs to be launch. This study attempts to design an automatic Amharic news classification using a supervised learning mechanism on four un-touch classes. To achieve this research, 4,182 news articles were used. Naive Bayes (NB) and Decision tree (j48) algorithms were used to classify the given Amharic dataset. In this paper, k-fold cross-validation is used to estimate the accuracy of the classifier. As a result, it shows those algorithms can be applicable in Amharic news categorization. The best average accuracy result is achieved by j48 decision tree and naïve Bayes is 95.2345 %, and 94.6245 % respectively using three categories. This research indicated that a typical decision tree algorithm is more applicable to Amharic news categorization.Keywords: text categorization, supervised machine learning, naive Bayes, decision tree
Procedia PDF Downloads 21119398 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 61519397 Aircraft Components, Manufacturing and Design: Opportunities, Bottlenecks, and Challenges
Authors: Ionel Botef
Abstract:
Aerospace products operate in very aggressive environments characterized by high temperature, high pressure, large stresses on individual components, the presence of oxidizing and corroding atmosphere, as well as internally created or externally ingested particulate materials that induce erosion and impact damage. Consequently, during operation, the materials of individual components degrade. In addition, the impact of maintenance costs for both civil and military aircraft was estimated at least two to three times greater than initial purchase values, and this trend is expected to increase. As a result, for viable product realisation and maintenance, a spectrum of issues regarding novel processing technologies, innovation of new materials, performance, costs, and environmental impact must constantly be addressed. One of these technologies, namely the cold-gas dynamic-spray process has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore how the cold-gas dynamic-spray process could be integrated within a framework that finally could lead to more efficient aircraft maintenance. Based on the paper's qualitative findings supported by authorities, evidence, and logic essentially it is argued that the cold-gas dynamic-spray manufacturing process should not be viewed in isolation, but should be viewed as a component of a broad framework that finally leads to more efficient aerospace operations.Keywords: aerospace, aging aircraft, cold spray, materials
Procedia PDF Downloads 12219396 Geospatial Multi-Criteria Evaluation to Predict Landslide Hazard Potential in the Catchment of Lake Naivasha, Kenya
Authors: Abdel Rahman Khider Hassan
Abstract:
This paper describes a multi-criteria geospatial model for prediction of landslide hazard zonation (LHZ) for Lake Naivasha catchment (Kenya), based on spatial analysis of integrated datasets of location intrinsic parameters (slope stability factors) and external landslides triggering factors (natural and man-made factors). The intrinsic dataset included: lithology, geometry of slope (slope inclination, aspect, elevation, and curvature) and land use/land cover. The landslides triggering factors included: rainfall as the climatic factor, in addition to the destructive effects reflected by proximity of roads and drainage network to areas that are susceptible to landslides. No published study on landslides has been obtained for this area. Thus, digital datasets of the above spatial parameters were conveniently acquired, stored, manipulated and analyzed in a Geographical Information System (GIS) using a multi-criteria grid overlay technique (in ArcGIS 10.2.2 environment). Deduction of landslide hazard zonation is done by applying weights based on relative contribution of each parameter to the slope instability, and finally, the weighted parameters grids were overlaid together to generate a map of the potential landslide hazard zonation (LHZ) for the lake catchment. From the total surface of 3200 km² of the lake catchment, most of the region (78.7 %; 2518.4 km²) is susceptible to moderate landslide hazards, whilst about 13% (416 km²) is occurring under high hazards. Only 1.0% (32 km²) of the catchment is displaying very high landslide hazards, and the remaining area (7.3 %; 233.6 km²) displays low probability of landslide hazards. This result confirms the importance of steep slope angles, lithology, vegetation land cover and slope orientation (aspect) as the major determining factors of slope failures. The information provided by the produced map of landslide hazard zonation (LHZ) could lay the basis for decision making as well as mitigation and applications in avoiding potential losses caused by landslides in the Lake Naivasha catchment in the Kenya Highlands.Keywords: decision making, geospatial, landslide, multi-criteria, Naivasha
Procedia PDF Downloads 20719395 Central Energy Management for Optimizing Utility Grid Power Exchange with a Network of Smart Homes
Authors: Sima Aznavi, Poria Fajri, Hanif Livani
Abstract:
Smart homes are small energy systems which may be equipped with renewable energy sources, storage devices, and loads. Energy management strategy plays a main role in the efficient operation of smart homes. Effective energy scheduling of the renewable energy sources and storage devices guarantees efficient energy management in households while reducing the energy imports from the grid. Nevertheless, despite such strategies, independently day ahead energy schedules for multiple households can cause undesired effects such as high power exchange with the grid at certain times of the day. Therefore, the interactions between multiple smart home day ahead energy projections is a challenging issue in a smart grid system and if not managed appropriately, the imported energy from the power network can impose additional burden on the distribution grid. In this paper, a central energy management strategy for a network consisting of multiple households each equipped with renewable energy sources, storage devices, and Plug-in Electric Vehicles (PEV) is proposed. The decision-making strategy alongside the smart home energy management system, minimizes the energy purchase cost of the end users, while at the same time reducing the stress on the utility grid. In this approach, the smart home energy management system determines different operating scenarios based on the forecasted household daily load and the components connected to the household with the objective of minimizing the end user overall cost. Then, selected projections for each household that are within the same cost range are sent to the central decision-making system. The central controller then organizes the schedules to reduce the overall peak to average ratio of the total imported energy from the grid. To validate this approach simulations are carried out for a network of five smart homes with different load requirements and the results confirm that by applying the proposed central energy management strategy, the overall power demand from the grid can be significantly flattened. This is an effective approach to alleviate the stress on the network by distributing its energy to a network of multiple households over a 24- hour period.Keywords: energy management, renewable energy sources, smart grid, smart home
Procedia PDF Downloads 24819394 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 28419393 Impacts of School-Wide Positive Behavioral Interventions and Supports on Student Academics, Behavior and Mental Health
Authors: Catherine Bradshaw
Abstract:
Educators often report difficulty managing behavior problems and other mental health concerns that students display at school. These concerns also interfere with the learning process and can create distraction for teachers and other students. As such, schools play an important role in both preventing and intervening with students who experience these types of challenges. A number of models have been proposed to serve as a framework for delivering prevention and early intervention services in schools. One such model is called Positive Behavioral Interventions and Supports (PBIS), which has been scaled-up to over 26,000 schools in the U.S. and many other countries worldwide. PBIS aims to improve a range of student outcomes through early detection of and intervention related to behavioral and mental health symptoms. PBIS blends and applies social learning, behavioral, and organizational theories to prevent disruptive behavior and enhance the school’s organizational health. PBIS focuses on creating and sustaining tier 1 (universal), tier 2 (selective), and tier 3 (individual) systems of support. Most schools using PBIS have focused on the core elements of the tier 1 supports, which includes the following critical features. The formation of a PBIS team within the school to lead implementation. Identification and training of a behavioral support ‘coach’, who serves as a on-site technical assistance provider. Many of the individuals identified to serve as a PBIS coach are also trained as a school psychologist or guidance counselor; coaches typically have prior PBIS experience and are trained to conduct functional behavioral assessments. The PBIS team also identifies a set of three to five positive behavioral expectations that are implemented for all students and by all staff school-wide (e.g., ‘be respectful, responsible, and ready to learn’); these expectations are posted in all settings across the school, including in the classroom, cafeteria, playground etc. All school staff define and teach the school-wide behavioral expectations to all students and review them regularly. Finally, PBIS schools develop or adopt a school-wide system to reward or reinforce students who demonstrate those 3-5 positive behavioral expectations. Staff and administrators create an agreed upon system for responding to behavioral violations that include definitions about what constitutes a classroom-managed vs. an office-managed discipline problem. Finally, a formal system is developed to collect, analyze, and use disciplinary data (e.g., office discipline referrals) to inform decision-making. This presentation provides a brief overview of PBIS and reports findings from a series of four U.S. based longitudinal randomized controlled trials (RCTs) documenting the impacts of PBIS on school climate, discipline problems, bullying, and academic achievement. The four RCTs include 80 elementary, 40 middle, and 58 high schools and results indicate a broad range of impacts on multiple student and school-wide outcomes. The session will highlight lessons learned regarding PBIS implementation and scale-up. We also review the ways in which PBIS can help educators and school leaders engage in data-based decision-making and share data with other decision-makers and stakeholders (e.g., students, parents, community members), with the overarching goal of increasing use of evidence-based programs in schools.Keywords: positive behavioral interventions and supports, mental health, randomized trials, school-based prevention
Procedia PDF Downloads 23119392 Quality Function Deployment Application in Sewer Pipeline Assessment
Authors: Khalid Kaddoura, Tarek Zayed
Abstract:
Infrastructure assets are essential in urban cities; their purpose is to facilitate the public needs. As a result, their conditions and states shall always be monitored to avoid any sudden malfunction. Sewer systems, one of the assets, are an essential part of the underground infrastructure as they transfer sewer medium to designated areas. However, their conditions are subject to deterioration due to ageing. Therefore, it is of great significance to assess the conditions of pipelines to avoid sudden collapses. Current practices of sewer pipeline assessment rely on industrial protocols that consider distinct defects and grades to conclude the limited average or peak score of the assessed assets. This research aims to enhance the evaluation by integrating the Quality Function Deployment (QFD) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methods in assessing the condition of sewer pipelines. The methodology shall study the cause and effect relationship of the systems’ defects to deduce the relative influence weights of each defect. Subsequently, the overall grade is calculated by aggregating the WHAT’s and HOW’s of the House of Quality (HOQ) using the computed relative weights. Thus, this study shall enhance the evaluation of the assets to conclude informative rehabilitation and maintenance plans for decision makers.Keywords: condition assessment, DEMATEL, QFD, sewer pipelines
Procedia PDF Downloads 43619391 Energy Efficiency Measures in Canada’s Iron and Steel Industry
Authors: A. Talaei, M. Ahiduzzaman, A. Kumar
Abstract:
In Canada, an increase in the production of iron and steel is anticipated for satisfying the increasing demand of iron and steel in the oil sands and automobile industries. It is predicted that GHG emissions from iron and steel sector will show a continuous increase till 2030 and, with emissions of 20 million tonnes of carbon dioxide equivalent, the sector will account for more than 2% of total national GHG emissions, or 12% of industrial emissions (i.e. 25% increase from 2010 levels). Therefore, there is an urgent need to improve the energy intensity and to implement energy efficiency measures in the industry to reduce the GHG footprint. This paper analyzes the current energy consumption in the Canadian iron and steel industries and identifies energy efficiency opportunities to improve the energy intensity and mitigate greenhouse gas emissions from this industry. In order to do this, a demand tree is developed representing different iron and steel production routs and the technologies within each rout. The main energy consumer within the industry is found to be flared heaters accounting for 81% of overall energy consumption followed by motor system and steam generation each accounting for 7% of total energy consumption. Eighteen different energy efficiency measures are identified which will help the efficiency improvement in various subsector of the industry. In the sintering process, heat recovery from coolers provides a high potential for energy saving and can be integrated in both new and existing plants. Coke dry quenching (CDQ) has the same advantages. Within the blast furnace iron-making process, injection of large amounts of coal in the furnace appears to be more effective than any other option in this category. In addition, because coal-powered electricity is being phased out in Ontario (where the majority of iron and steel plants are located) there will be surplus coal that could be used in iron and steel plants. In the steel-making processes, the recovery of Basic Oxygen Furnace (BOF) gas and scrap preheating provides considerable potential for energy savings in BOF and Electric Arc Furnace (EAF) steel-making processes, respectively. However, despite the energy savings potential, the BOF gas recovery is not applicable in existing plants using steam recovery processes. Given that the share of EAF in steel production is expected to increase the application potential of the technology will be limited. On the other hand, the long lifetime of the technology and the expected capacity increase of EAF makes scrap preheating a justified energy saving option. This paper would present the results of the assessment of the above mentioned options in terms of the costs and GHG mitigation potential.Keywords: Iron and Steel Sectors, Energy Efficiency Improvement, Blast Furnace Iron-making Process, GHG Mitigation
Procedia PDF Downloads 39819390 Soft Power: Concept and Role in Country Policy
Authors: Talip Turkmen
Abstract:
From the moment the first beats, the first step into the world mankind finds him in a struggle to survive. Most important case to win this fight is power. Power is one of the most common concepts which we encounter in our life. Mainly power is ability to reach desired results on someone else or ability to penetrate into the behavior of others. Throughout history merging technology and changing political trade-offs caused the change of concept of power. Receiving a state of multipolar new world order in the 21st century and increasing impacts of media have narrowed the limits of military power. With increasing globalization and peaceful diplomacy this gap, left by military power, has filled by soft power which has ability to persuade and attract. As concepts of power soft power also has not compromised yet. For that reason it is important to specify, sources of soft power, soft power strategies and limits of soft power. The purpose of this study was to analyze concept of soft power and importance of soft power in foreign relations. This project focuses on power, hard power and soft power relations, sources of soft power and strategies to gain soft power. Datas in this project was acquired from other studies on soft power and foreign relations. This paper was prepared in terms of concept and research techniques. As a result of data gained in this study the one of important topics in international relations is balance between soft power.Keywords: soft power, foreign policy, national power, hard power
Procedia PDF Downloads 46119389 Stochastic Multicast Routing Protocol for Flying Ad-Hoc Networks
Authors: Hyunsun Lee, Yi Zhu
Abstract:
Wireless ad-hoc network is a decentralized type of temporary machine-to-machine connection that is spontaneous or impromptu so that it does not rely on any fixed infrastructure and centralized administration. As unmanned aerial vehicles (UAVs), also called drones, have recently become more accessible and widely utilized in military and civilian domains such as surveillance, search and detection missions, traffic monitoring, remote filming, product delivery, to name a few. The communication between these UAVs become possible and materialized through Flying Ad-hoc Networks (FANETs). However, due to the high mobility of UAVs that may cause different types of transmission interference, it is vital to design robust routing protocols for FANETs. In this talk, the multicast routing method based on a modified stochastic branching process is proposed. The stochastic branching process is often used to describe an early stage of an infectious disease outbreak, and the reproductive number in the process is used to classify the outbreak into a major or minor outbreak. The reproductive number to regulate the local transmission rate is adapted and modified for flying ad-hoc network communication. The performance of the proposed routing method is compared with other well-known methods such as flooding method and gossip method based on three measures; average reachability, average node usage and average branching factor. The proposed routing method achieves average reachability very closer to flooding method, average node usage closer to gossip method, and outstanding average branching factor among methods. It can be concluded that the proposed multicast routing scheme is more efficient than well-known routing schemes such as flooding and gossip while it maintains high performance.Keywords: Flying Ad-hoc Networks, Multicast Routing, Stochastic Branching Process, Unmanned Aerial Vehicles
Procedia PDF Downloads 12619388 Cognitive Dissonance in Robots: A Computational Architecture for Emotional Influence on the Belief System
Authors: Nicolas M. Beleski, Gustavo A. G. Lugo
Abstract:
Robotic agents are taking more and increasingly important roles in society. In order to make these robots and agents more autonomous and efficient, their systems have grown to be considerably complex and convoluted. This growth in complexity has led recent researchers to investigate forms to explain the AI behavior behind these systems in search for more trustworthy interactions. A current problem in explainable AI is the inner workings with the logic inference process and how to conduct a sensibility analysis of the process of valuation and alteration of beliefs. In a social HRI (human-robot interaction) setup, theory of mind is crucial to ease the intentionality gap and to achieve that we should be able to infer over observed human behaviors, such as cases of cognitive dissonance. One specific case inspired in human cognition is the role emotions play on our belief system and the effects caused when observed behavior does not match the expected outcome. In such scenarios emotions can make a person wrongly assume the antecedent P for an observed consequent Q, and as a result, incorrectly assert that P is true. This form of cognitive dissonance where an unproven cause is taken as truth induces changes in the belief base which can directly affect future decisions and actions. If we aim to be inspired by human thoughts in order to apply levels of theory of mind to these artificial agents, we must find the conditions to replicate these observable cognitive mechanisms. To achieve this, a computational architecture is proposed to model the modulation effect emotions have on the belief system and how it affects logic inference process and consequently the decision making of an agent. To validate the model, an experiment based on the prisoner's dilemma is currently under development. The hypothesis to be tested involves two main points: how emotions, modeled as internal argument strength modulators, can alter inference outcomes, and how can explainable outcomes be produced under specific forms of cognitive dissonance.Keywords: cognitive architecture, cognitive dissonance, explainable ai, sensitivity analysis, theory of mind
Procedia PDF Downloads 13219387 Gender Mainstreaming at the Institute of Technology Tribhuvan University Nepal: A Collaborative Approach to Architecture and Design Education
Authors: Martina Maria Keitsch, Sangeeta Singh
Abstract:
There has been a growing recognition that sustainable development needs to consider economic, social and environmental aspects including gender. In Nepal, the majority of the population lives in rural areas, and many households do not have access to electricity. In rural areas, the difficulty of accessing energy is becoming one of the greatest constraints for improving living conditions. This is particularly true for women and children, who spent much time for collecting firewood and cooking and thus are often deprived of time for education, political- and business activities. The poster introduces an education and research project financed by the Norwegian Government. The project runs from 2015-2020 and is a collaboration between the Norwegian University of Science (NTNU) and Technology Institute of Engineering (IOE), Tribhuvan University. It has the title Master program and Research in Energy for Sustainable Social Development Energy for Sustainable Social Development (MSESSD). The project addresses engineering and architecture students and comprises several integral activities towards gender mainstreaming. The following activities are conducted; 1. Creating academic opportunities, 2. Updating administrative personnel on strategies to effectively include gender issues, 3. Integrating female and male stakeholders in the design process, 4. Sensitizing female and male students for gender issues in energy systems. The project aims to enable students to design end-user-friendly solutions which can, for example, save time that can be used to generate and enhance income. Relating to gender mainstreaming, design concepts focus on smaller-scale technologies, which female stakeholders can take control of and manage themselves. Creating academic opportunities, we have a 30% female students’ rate in each master student batch in the program with the goal to educate qualified female personnel for academia and policy-making/government. This is a very ambitious target in a Nepalese context. The rate of female students, who completed the MSc program at IOE between 1998 and January 2015 is 10% out of 180 students in total. For recruiting, female students were contacted personally and encouraged to apply for the program. Further, we have established a Master course in gender mainstreaming and energy. On an administrative level, NTNU has hosted a training program for IOE on gender-mainstreaming information and -strategies for academic education. Integrating female and male stakeholders, local women groups such as, e.g., mothers group are actively included in research and education for example in planning, decision-making, and management to establish clean energy solutions. The project meets women’s needs not just practically by providing better technology, but also strategically by providing solutions that enhance their social and economic decision-making authority. Sensitizing the students for gender issues in energy systems, the project makes it mandatory to discuss gender mainstreaming based on the case studies in the Master thesis. All activities will be discussed in detail comprising an overview of MSESSD, the gender mainstreaming master course contents’, and case studies where energy solutions were co-designed with men and women as lead-users and/or entrepreneurs. The goal is to motivate educators to develop similar forms of transnational gender collaboration.Keywords: knowledge generation on gender mainstreaming, sensitizing students, stakeholder inclusion, education strategies for design and architecture in gender mainstreaming, facilitation for cooperation
Procedia PDF Downloads 12419386 AI and the Future of Misinformation: Opportunities and Challenges
Authors: Noor Azwa Azreen Binti Abd. Aziz, Muhamad Zaim Bin Mohd Rozi
Abstract:
Moving towards the 4th Industrial Revolution, artificial intelligence (AI) is now more popular than ever. This subject is gaining significance every day and is continually expanding, often merging with other fields. Instead of merely being passive observers, there are benefits to understanding modern technology by delving into its inner workings. However, in a world teeming with digital information, the impact of AI on the spread of disinformation has garnered significant attention. The dissemination of inaccurate or misleading information is referred to as misinformation, posing a serious threat to democratic society, public debate, and individual decision-making. This article delves deep into the connection between AI and the dissemination of false information, exploring its potential, risks, and ethical issues as AI technology advances. The rise of AI has ushered in a new era in the dissemination of misinformation as AI-driven technologies are increasingly responsible for curating, recommending, and amplifying information on online platforms. While AI holds the potential to enhance the detection and mitigation of misinformation through natural language processing and machine learning, it also raises concerns about the amplification and propagation of false information. AI-powered deepfake technology, for instance, can generate hyper-realistic videos and audio recordings, making it increasingly challenging to discern fact from fiction.Keywords: artificial intelligence, digital information, disinformation, ethical issues, misinformation
Procedia PDF Downloads 9519385 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 25619384 Characteristics of Patients Undergoing Subclavian Artery Revascularization in Latvia: A Retrospective Analysis
Authors: Majid Shahbazi
Abstract:
Subclavian artery stenosis (SAS) is a common vascular disease that can cause a range of symptoms, from arm fatigue and weakness to ischemic stroke. Revascularization procedures, such as percutaneous transluminal angioplasty and stenting, are widely used to treat SAS and improve blood flow to the affected arm. However, the optimal management of patients with SAS is still unclear, and further research is needed to evaluate the safety and efficacy of different treatment options. This study aims to investigate the characteristics of patients with SAS who underwent revascularization procedures in Latvia (Specifically RAKUS). The research part of this paper aims to describe and analyze the demographics, comorbidities, diagnostic methods, types of revascularization procedures, and antiaggregant therapy used. The goal of this study is to provide insights into the current clinical practice in Latvia and help future treatment decision-makers. To achieve this aim, a retrospective study of 76 patients with SAS who underwent revascularization procedures was performed. After statistical analysis of the data, the study provided insights into the characteristics and management of patients with SAS in Latvia, highlighting the most observed comorbidities in these patients, the preferred diagnostic methods, and the most performed procedures. These findings can inform clinical decision-making and may have implications for the management of patients with subclavian artery stenosis in Latvia.Keywords: subclavian artery stenosis, revascularization, characteristics of patients, comorbidities, retrospective analysis
Procedia PDF Downloads 9519383 E-Consumers’ Attribute Non-Attendance Switching Behavior: Effect of Providing Information on Attributes
Authors: Leonard Maaya, Michel Meulders, Martina Vandebroek
Abstract:
Discrete Choice Experiments (DCE) are used to investigate how product attributes affect decision-makers’ choices. In DCEs, choice situations consisting of several alternatives are presented from which choice-makers select the preferred alternative. Standard multinomial logit models based on random utility theory can be used to estimate the utilities for the attributes. The overarching principle in these models is that respondents understand and use all the attributes when making choices. However, studies suggest that respondents sometimes ignore some attributes (commonly referred to as Attribute Non-Attendance/ANA). The choice modeling literature presents ANA as a static process, i.e., respondents’ ANA behavior does not change throughout the experiment. However, respondents may ignore attributes due to changing factors like availability of information on attributes, learning/fatigue in experiments, etc. We develop a dynamic mixture latent Markov model to model changes in ANA when information on attributes is provided. The model is illustrated on e-consumers’ webshop choices. The results indicate that the dynamic ANA model describes the behavioral changes better than modeling the impact of information using changes in parameters. Further, we find that providing information on attributes leads to an increase in the attendance probabilities for the investigated attributes.Keywords: choice models, discrete choice experiments, dynamic models, e-commerce, statistical modeling
Procedia PDF Downloads 14219382 Recent Developments in Artificial Intelligence and Information Communications Technology
Authors: Dolapo Adeyemo
Abstract:
Technology can be designed specifically for geriatrics and persons with disabilities or ICT accessibility solutions. Both solutions stand to benefit from advances in Artificial intelligence, which are computer systems that perform tasks that require human intelligence. Tasks such as decision making, visual perception, speech recognition, and even language translation are useful in both situation and will provide significant benefits to people with temporarily or permanent disabilities. This research’s goal is to review innovations focused on the use of artificial intelligence that bridges the accessibility gap in technology from a user-centered perspective. A mixed method approach that utilized a comprehensive review of academic literature on the subject combined with semi structure interviews of users, developers, and technology product owners. The internet of things and artificial intelligence technology is creating new opportunities in the assistive technology space and proving accessibility to existing technology. Device now more adaptable to the needs of the user by learning the behavior of users as they interact with the internet. Accessibility to devices have witnessed significant enhancements that continue to benefit people with disabilities. Examples of other advances identified are prosthetic limbs like robotic arms supported by artificial intelligence, route planning software for the visually impaired, and decision support tools for people with disabilities and even clinicians that provide care.Keywords: ICT, IOT, accessibility solutions, universal design
Procedia PDF Downloads 8719381 Biomechanical Analysis and Interpretation of Pitching Sequences for Enhanced Performance Programming
Authors: Corey F. Fitzgerald
Abstract:
This study provides a comprehensive examination of the biomechanical sequencing inherent in pitching motions, coupled with an advanced methodology for interpreting gathered data to inform programming strategies. The analysis is conducted utilizing state-of-the-art biomechanical laboratory equipment capable of detecting subtle changes and deviations, facilitating highly informed decision-making processes. Through this presentation, the intricate dynamics of pitching sequences are meticulously discussed to highlight the complex movement patterns accessible and actionable for performance enhancement purposes in the weight room.Keywords: sport science, applied biomechanics, strength and conditioning, applied research
Procedia PDF Downloads 6719380 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 18419379 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations
Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau
Abstract:
The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device
Procedia PDF Downloads 34819378 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes
Authors: J. J. Vargas, N. Prieto, L. A. Toro
Abstract:
Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method
Procedia PDF Downloads 37719377 Uses of Fibrinogen Concentrate in the Management of Trauma-Induced Coagulopathy in the Prehospital Environment: A Scoping Review
Authors: Nura Khattab, Fayad Al-Haimus, Teruko Kishibe, Netanel Krugliak, Melissa McGowan, Brodie Nolan
Abstract:
Trauma-induced coagulopathy remains a significant contributor to mortality in severely injured patients. Fibrinogen is essential for early hemostasis and is recognized as the first coagulation factor to fall below critical levels, compromising the coagulation cascade. Early administration of fibrinogen concentrate may be feasible and effective to prevent coagulopathy. We conducted this scoping review to characterize the existing quantity of literature, and to explore the usage of prehospital fibrinogen concentrate products in improving clinical outcomes in trauma patients. Methods: A search strategy was developed in consultation with an information specialist. We searched MEDLINE, Embase, Cochrane, and Scopus from inception to May 6th 2024. English studies evaluating prehospital/military usage of fibrinogen concentrate in trauma patients were included. Studies were assessed by three independent reviewers for meeting inclusion and exclusion criteria. Reference lists of included articles were reviewed to identify additional studies meeting inclusion criteria. Clinical endpoints regarding fibrinogen concentrate were extracted and synthesized. Results: The literature search returned 1301 articles with seven studies meeting the inclusion criteria. Five studies (71%) were conducted in civilian settings and two studies (29%) were conducted in military settings. Of the included studies, three (43%) utilized a randomized control trial. We identified seven outcomes that compared varying concentrations of fibrinogen or fibrinogen concentrate to a placebo group. The outcomes included overall mortality, death from hemorrhage, thromboembolic events, clotting time, maximum clot firmness, clot stability at ER admission, and fibrinogen concentration at ER admission. Apart from thromboembolic events, all other reported outcomes showed statistically significant differences in group comparisons, determined using p values. The four (57%) non-clinical studies underscored the robustness, practicality, and degree of fibrinogen concentrate utilization in military environments and retrieval services. Conclusion: Preliminary research suggests that prehospital fibrinogen concentrate administration in traumatic bleeding patients is both feasible and effective, improving mortality and clotting parameters. While implementing a time-saving and proactive approach with fibrinogen holds potential for enhancing trauma care, the current evidence is limited. Further studies in this novel field are warranted.Keywords: fibrinogen concentrate, prehospital, military, trauma, trauma-induced coagulopathy
Procedia PDF Downloads 2619376 Assessing the Informed Consent Practices during Normal Vaginal Delivery Process and Immediate Postpartum Care in Tertiary Level Hospitals of Bangladesh
Authors: Md. Abdul Karim, Syed Imran Ahmed, Pandora T. Hardtman
Abstract:
Informed consent is one of the basic human and ethical rights for childbearing women. It plays a central role in promoting informed decision making between patients and service providers during the labor process. It gives mothers rights to accept or reject any examination and/or procedure, increases the respect and dignity of the mother during pregnancy, delivery and postpartum care. To assess the practices of this right during normal vaginal delivery and immediate postpartum care in tertiary level hospital setting in Bangladesh, a quantitative study with cross-sectional design was conducted in Dhaka Medical College & Hospital (DMCH) and Sir Salimullah Medical College & Mitford Hospital (SSMCH) in Dhaka in November 2015. A prevalence-based sample size of 190 was calculated where prevalence, confidence interval and level of significance were at 9.7%, 98% and 5% respectively. The respondents were the mothers who gave normal vaginal childbirth within past 24 hours and received postpartum care there. They were selected through systematic random sampling technique and their face-to-face interview of 190 mothers was done using a structured questionnaire. Data were entered into the spreadsheet (MS Excel 2013 version) and descriptive analysis of findings was done. The result shows the complete absence of informed consent practices and mostly absence of consented care such as right to information, respect for choices of preferences for examination and/or procedure of childbearing women. Although 95% of the mothers were informed that they were being proceeded with normal vaginal delivery, their choice of preference was absent during the process. Only consent (not informed consent) was taken from 50%-72% mothers for examination (except breast examination ‘0%’) and 8%-83% for any procedures during postpartum care. Only one-ninth (11%) of the mothers could ask service providers regarding the services they received. No consent was taken from 3% of the mothers- neither in the labor process nor in postpartum care. This current practice doesn’t comply with the Respectful Maternity Care (RMC) Charter 2011. The issue is not even clarified in the current Standard Clinical Management Protocols of the country. So, improvement of the existing protocol and increased awareness are essential to address this right of child-bearing women and to practice it during normal vaginal delivery and postpartum care.Keywords: informed consent, normal vaginal delivery, respectful maternity care, tertiary level hospital
Procedia PDF Downloads 15919375 Governance and Public Policy: The Perception of Civil Society Participation in Brazil and South Africa
Authors: Paulino V. Tavares, Ana L. Romao
Abstract:
Public governance, in general, is essential to qualify and educate, pedagogically, the decision-making process of the government in relation to the management of resources and the provision of public services, with transparency and active participation of individuals and citizens for the development of a more democratic environment, besides stimulating control and social empowerment, aiming at the development of the collectivity. In this context, the participation of society in the elaboration, execution, and control of public policies is prominent to strengthen public governance itself. With this, using a multidimensional approach with the application of two questionnaires to a universe of twenty Counselors of the Courts of Auditors (Brazil), twenty professionals of public administration (Brazil), twenty Government/Provincial Counselors (South Africa), and twenty South African professionals of public administration, the preliminary results indicate that the participation of civil society, for both countries, is very low in the elaboration, execution, and control of public policies. At the same time, about 70% of the answers obtained indicate, on average, three possible paths to increase the participation of civil society. With this, it is delineated that developing new horizons to strengthen both public policies how social participation is necessary, but, for both, it is important that governments and civil society, in their respective countries, have an awareness of the effective importance of this interaction.Keywords: Brazil, civil society, participation, South Africa
Procedia PDF Downloads 14519374 Methodologies for Management of Sustainable Tourism: A Case Study in Jalapão/to/Brazil
Authors: Mary L. G. S. Senna, Veruska C. Dutra, Afonso R. Aquino
Abstract:
The study is in application and analysis of two tourism management tools that can contribute to making public managers decision: the Barometer of Tourism Sustainability (BTS) and the Ecological Footprint (EF). The results have shown that BTS allows you to have an integrated view of the tourism system, awakening to the need for planning of appropriate actions so that it can achieve the positive scale proposed (potentially sustainable). Already the methodology of ecological tourism footprint is an important tool to measure potential impacts generated by tourism to tourist reality.Keywords: barometer of tourism sustainability, ecological footprint of tourism, Jalapão/Brazil, sustainable tourism
Procedia PDF Downloads 50719373 Feminist Revolution and the Quest for Women Emancipation in Public Life in Nigeria: The African Dimension
Authors: Adekunle Saheed Ajisebiyawo, Christie Omoduwa Achime
Abstract:
In Nigerian society, women have very little or no involvement in the decision-making process and this is large because women are objectified as effective means of reproduction and provision of emotional support to the society. Despite the movements and awareness by international, national and local bodies to promote and encourage women's empowerment, there are still many factors daunting to the efforts of women in society. This paper examined the critical role of feminism in the quest for women's emancipation in public life. Guided by African feminism theory, this paper utilizes both historical and descriptive methods to examine these factors. The paper argues that gender bias in Nigeria's public life is often traced to the onset of colonialism in Nigeria. Thus the Western cultural notion of colonialism woven around male superiority is reflected in their relations with Nigerians. The study outlines how women have strategized pathways through patriarchal structures by deploying their femininity. The paper concludes that women are strong, courageous, natural leaders and indeed have a major strategic role to play in public life; thus, women's movements and groups remain an important and necessary means of social cohesion and strength, especially in a country such as Nigeria.Keywords: African feminism, democratic governance, feminism, patriarchy, women emancipation.
Procedia PDF Downloads 10819372 Optimization of Water Pipeline Routes Using a GIS-Based Multi-Criteria Decision Analysis and a Geometric Search Algorithm
Authors: Leon Mortari
Abstract:
The Metropolitan East region of Rio de Janeiro state, Brazil, faces a historic water scarcity. Among the alternatives studied to solve this situation, the possibility of adduction of the available water in the reservoir Lagoa de Juturnaíba to supply the region's municipalities stands out. The allocation of a linear engineering project must occur through an evaluation of different aspects, such as altitude, slope, proximity to roads, distance from watercourses, land use and occupation, and physical and chemical features of the soil. This work aims to apply a multi-criteria model that combines geoprocessing techniques, decision-making, and geometric search algorithm to optimize a hypothetical adductor system in the scenario of expanding the water supply system that serves this region, known as Imunana-Laranjal, using the Lagoa de Juturnaíba as the source. It is proposed in this study, the construction of a spatial database related to the presented evaluation criteria, treatment and rasterization of these data, and standardization and reclassification of this information in a Geographic Information System (GIS) platform. The methodology involves the integrated analysis of these criteria, using their relative importance defined by weighting them based on expert consultations and the Analytic Hierarchy Process (AHP) method. Three approaches are defined for weighting the criteria by AHP: the first treats all criteria as equally important, the second considers weighting based on a pairwise comparison matrix, and the third establishes a hierarchy based on the priority of the criteria. For each approach, a distinct group of weightings is defined. In the next step, map algebra tools are used to overlay the layers and generate cost surfaces, that indicates the resistance to the passage of the adductor route, using the three groups of weightings. The Dijkstra algorithm, a geometric search algorithm, is then applied to these cost surfaces to find an optimized path within the geographical space, aiming to minimize resources, time, investment, maintenance, and environmental and social impacts.Keywords: geometric search algorithm, GIS, pipeline, route optimization, spatial multi-criteria analysis model
Procedia PDF Downloads 35