Search results for: microstructure of concrete
1272 Non-Waste Utilization of Copper Smelting Slags for Production of Demanded Products
Authors: V. D. Povolockiy, V. E. Roshchin, Y. Kapelyushin
Abstract:
Smelting of copper matte is followed by production of a large amount of slag. This slag mostly contains silicates and can be utilized in a construction industry. In addition to silicates it also contains Fe; if the Fe content is high, the density of the silicate phases increases and such a slag cannot be used as an additive for the concrete. Furthermore, slags obtained during copper matte production contain copper, sulphur, zinc and some other elements. Fe is the element with the highest price in these slags. An extraction of Fe is possible even using the conventional methods, e.g., the addition of slag to the charge materials during production of sinter for the blast furnace smelting. However, in this case, the blast furnace hot metal would accumulate sulphur and copper which is very harmful impurity for the steelmaking. An accumulation of copper by the blast furnace hot metal is unacceptable, as copper cannot be removed during further steelmaking operations having a critical effect on the properties of steel. In present work, the technological scheme for non-waste utilization of the copper smelting slags has been suggested and experimentally confirmed. This scheme includes a solid state reduction of Fe and smelting for the separation of cast iron and slag. During solid state reduction, the zinc vapor was trapped. After the reduction and smelting operations, the cast iron containing copper was used for the production of metal balls with increased mechanical properties allowing their utilization for milling of ore minerals. Such a cast iron could also be applied in the production of special types of steel with copper. The silicate slag freed from Fe might be used as a propping agent in the oil industry, or granulated for application as an additive for concrete in a construction industry. Thereby, the suggested products for a Mini Mill plant with non-waste utilization of the copper smelting slags are cast iron grinding balls for the ore minerals, special types of steel with copper, silicate slag utilized as an additive for the concrete and propping agents for the oil industry.Keywords: utilization of copper slag, cast iron, grinding balls, propping agents
Procedia PDF Downloads 1581271 Austempered Compacted Graphite Irons: Influence of Austempering Temperature on Microstructure and Microscratch Behavior
Authors: Rohollah Ghasemi, Arvin Ghorbani
Abstract:
This study investigates the effect of austempering temperature on microstructure and scratch behavior of the austempered heat-treated compacted graphite irons. The as-cast was used as base material for heat treatment practices. The samples were extracted from as-cast ferritic CGI pieces and were heat treated under austenitising temperature of 900°C for 60 minutes which followed by quenching in salt-bath at different austempering temperatures of 275°C, 325°C and 375°C. For all heat treatments, an austempering holding time of 30 minutes was selected for this study. Light optical microscope (LOM) and scanning electron microscope (SEM) and electron back scattered diffraction (EBSD) analysis confirmed the ausferritic matrix formed in all heat-treated samples. Microscratches were performed under the load of 200, 600 and 1000 mN using a sphero-conical diamond indenter with a tip radius of 50 μm and induced cone angle 90° at a speed of 10 μm/s at room temperature ~25°C. An instrumented nanoindentation machine was used for performing nanoindentation hardness measurement and microscratch testing. Hardness measurements and scratch resistance showed a significant increase in Brinell, Vickers, and nanoindentation hardness values as well as microscratch resistance of the heat-treated samples compared to the as-cast ferritic sample. The increase in hardness and improvement in microscratch resistance are associated with the formation of the ausferrite matrix consisted of carbon-saturated retained austenite and acicular ferrite in austempered matrix. The maximum hardness was observed for samples austempered at 275°C which resulted in the formation of very fine acicular ferrite. In addition, nanohardness values showed a quite significant variation in the matrix due to the presence of acicular ferrite and carbon-saturated retained austenite. It was also observed that the increase of austempering temperature resulted in increase of volume of the carbon-saturated retained austenite and decrease of hardness values.Keywords: austempered CGI, austempering, scratch testing, scratch plastic deformation, scratch hardness
Procedia PDF Downloads 1361270 Geotechnical Investigation of Soil Foundation for Ramps of Dawar El-Tawheed Bridge in Jizan City, Kingdom of Saudi Arabia
Authors: Ali H. Mahfouz, Hossam E. M. Sallam, Abdulwali Wazir, Hamod H. Kharezi
Abstract:
The soil profile at site of the bridge project includes soft fine grained soil layer located between 5.0 m to 11.0 m in depth, it has high water content, low SPT no., and low bearing capacity. The clay layer induces high settlement due to surcharge application of earth embankment at ramp T1, ramp T2, and ramp T3 especially at heights from 9m right 3m. Calculated settlement for embankment heights less than 3m may be accepted regarding Saudi Code for soil and foundation. The soil and groundwater at the project site comprise high contents of sulfates and chlorides of high aggressively on concrete and steel bars, respectively. Regarding results of the study, it has been recommended to use stone column piles or new technology named PCC piles as soil improvement to improve the bearing capacity of the weak layer. The new technology is cast in-situ thin wall concrete pipe piles (PCC piles), it has economically advantageous and high workability. The technology can save time of implementation and cost of application is almost 30% of other types of piles.Keywords: soft foundation soil, bearing capacity, bridge ramps, soil improvement, geogrid, PCC piles
Procedia PDF Downloads 3991269 Methods for Material and Process Monitoring by Characterization of (Second and Third Order) Elastic Properties with Lamb Waves
Abstract:
In accordance with the industry 4.0 concept, manufacturing process steps as well as the materials themselves are going to be more and more digitalized within the next years. The “digital twin” representing the simulated and measured dataset of the (semi-finished) product can be used to control and optimize the individual processing steps and help to reduce costs and expenditure of time in product development, manufacturing, and recycling. In the present work, two material characterization methods based on Lamb waves were evaluated and compared. For demonstration purpose, both methods were shown at a standard industrial product - copper ribbons, often used in photovoltaic modules as well as in high-current microelectronic devices. By numerical approximation of the Rayleigh-Lamb dispersion model on measured phase velocities second order elastic constants (Young’s modulus, Poisson’s ratio) were determined. Furthermore, the effective third order elastic constants were evaluated by applying elastic, “non-destructive”, mechanical stress on the samples. In this way, small microstructural variations due to mechanical preconditioning could be detected for the first time. Both methods were compared with respect to precision and inline application capabilities. Microstructure of the samples was systematically varied by mechanical loading and annealing. Changes in the elastic ultrasound transport properties were correlated with results from microstructural analysis and mechanical testing. In summary, monitoring the elastic material properties of plate-like structures using Lamb waves is valuable for inline and non-destructive material characterization and manufacturing process control. Second order elastic constants analysis is robust over wide environmental and sample conditions, whereas the effective third order elastic constants highly increase the sensitivity with respect to small microstructural changes. Both Lamb wave based characterization methods are fitting perfectly into the industry 4.0 concept.Keywords: lamb waves, industry 4.0, process control, elasticity, acoustoelasticity, microstructure
Procedia PDF Downloads 2271268 Animations for Teaching Food Chemistry: A Design Approach for Linking Chemistry Theory to Everyday Food
Authors: Paulomi (Polly) Burey, Zoe Lynch
Abstract:
In STEM education, students often have difficulty linking static images and words from textbooks or online resources, to the underlying mechanisms of the topic of study. This can often dissuade some students from pursuing study in the physical and chemical sciences. A growing movement in current day students demonstrates that the YouTube generation feel they learn best from video or dynamic, interactive learning tools, and will seek these out as alternatives to their textbooks and the classroom learning environment. Chemistry, and in particular visualization of molecular structures in everyday materials, can prove difficult to comprehend without significant interaction with the teacher of the content and concepts, beyond the timeframe of a typical class. This can cause a learning hurdle for distance education students, and so it is necessary to provide strong electronic tools and resources to aid their learning. As one of the electronic resources, an animation design approach to link everyday materials to their underlying chemistry would be beneficial for student learning, with the focus here being on food. These animations were designed and storyboarded with a scaling approach and commence with a focus on the food material itself and its component parts. This is followed by animated transitions to its underlying microstructure and identifying features, and finally showing the molecules responsible for these microstructural features. The animation ends with a reverse transition back through the molecular structure, microstructure, all the way back to the original food material, and also animates some reactions that may occur during food processing to demonstrate the purpose of the underlying chemistry and how it affects the food we eat. Using this cyclical approach of linking students’ existing knowledge of food to help guide them to understanding more complex knowledge, and then reinforcing their learning by linking back to their prior knowledge again, enhances student understanding. Food is also an ideal material system for students to interact with, in a hands-on manner to further reinforce their learning. These animations were launched this year in a 2nd year University Food Chemistry course with improved learning outcomes for the cohort.Keywords: chemistry, food science, future pedagogy, STEM Education
Procedia PDF Downloads 1591267 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing
Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar
Abstract:
This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load
Procedia PDF Downloads 1431266 Processing and Characterization of Oxide Dispersion Strengthened (ODS) Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) Ferritic Steel
Authors: Farha Mizana Shamsudin, Shahidan Radiman, Yusof Abdullah, Nasri Abdul Hamid
Abstract:
Oxide dispersion strengthened (ODS) ferritic steels are amongst the most promising candidates for large scale structural materials to be applied in next generation fission and fusion nuclear power reactors. This kind of material is relatively stable at high temperature, possess remarkable mechanical properties and comparatively good resistance from neutron radiation damage. The superior performance of ODS ferritic steels over their conventional properties is attributed to the high number density of nano-sized dispersoids that act as nucleation sites and stable sinks for many small helium bubbles resulting from irradiation, and also as pinning points to dislocation movement and grain growth. ODS ferritic steels are usually produced by powder metallurgical routes involving mechanical alloying (MA) process of Y2O3 and pre-alloyed or elemental metallic powders, and then consolidated by hot isostatic pressing (HIP) or hot extrusion (HE) techniques. In this study, Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (designated as 14YWT) was produced by mechanical alloying process and followed by hot isostatic pressing (HIP) technique. Crystal structure and morphology of this sample were identified and characterized by using X-ray Diffraction (XRD) and field emission scanning electron microscope (FESEM) respectively. The magnetic measurement of this sample at room temperature was carried out by using a vibrating sample magnetometer (VSM). FESEM micrograph revealed a homogeneous microstructure constituted by fine grains of less than 650 nm in size. The ultra-fine dispersoids of size between 5 nm to 19 nm were observed homogeneously distributed within the BCC matrix. The EDS mapping reveals that the dispersoids contain Y-Ti-O nanoclusters and from the magnetization curve plotted by VSM, this sample approaches the behavior of soft ferromagnetic materials. In conclusion, ODS Fe-14Cr-3W-0.5Ti-0.3Y₂O₃ (14YWT) ferritic steel was successfully produced by HIP technique in this present study.Keywords: hot isostatic pressing, magnetization, microstructure, ODS ferritic steel
Procedia PDF Downloads 3201265 A Review of Current Knowledge on Assessment of Precast Structures Using Fragility Curves
Authors: E. Akpinar, A. Erol, M.F. Cakir
Abstract:
Precast reinforced concrete (RC) structures are excellent alternatives for construction world all over the globe, thanks to their rapid erection phase, ease mounting process, better quality and reasonable prices. Such structures are rather popular for industrial buildings. For the sake of economic importance of such industrial buildings as well as significance of safety, like every other type of structures, performance assessment and structural risk analysis are important. Fragility curves are powerful tools for damage projection and assessment for any sort of building as well as precast structures. In this study, a comparative review of current knowledge on fragility analysis of industrial precast RC structures were presented and findings in previous studies were compiled. Effects of different structural variables, parameters and building geometries as well as soil conditions on fragility analysis of precast structures are reviewed. It was aimed to briefly present the information in the literature about the procedure of damage probability prediction including fragility curves for such industrial facilities. It is found that determination of the aforementioned structural parameters as well as selecting analysis procedure are critically important for damage prediction of industrial precast RC structures using fragility curves.Keywords: damage prediction, fragility curve, industrial buildings, precast reinforced concrete structures
Procedia PDF Downloads 1891264 Study of the Influence of Refractory Nitride Additives on Hydrogen Storage Properties of Ti6Al4V-Based Materials Produced by Spark Plasma Sintering
Authors: John Olorunfemi Abe, Olawale Muhammed Popoola, Abimbola Patricia Idowu Popoola
Abstract:
Hydrogen is an appealing alternative to fossil fuels because of its abundance, low weight, high energy density, and relative lack of contaminants. However, its low density presents a number of storage challenges. Therefore, this work studies the influence of refractory nitride additives consisting of 5 wt. % each of hexagonal boron nitride (h-BN), titanium nitride (TiN), and aluminum nitride (AlN) on hydrogen storage and electrochemical characteristics of Ti6Al4V-based materials produced by spark plasma sintering. The microstructure and phase constituents of the sintered materials were characterized using scanning electron microscopy (in conjunction with energy-dispersive spectroscopy) and X-ray diffraction, respectively. Pressure-composition-temperature (PCT) measurements were used to assess the hydrogen absorption/desorption behavior, kinetics, and storage capacities of the sintered materials, respectively. The pure Ti6Al4V alloy displayed a two-phase (α+β) microstructure, while the modified composites exhibited apparent microstructural modifications with the appearance of nitride-rich secondary phases. It is found that the diffusion process controls the kinetics of the hydrogen absorption. Thus, a faster rate of hydrogen absorption at elevated temperatures ensued. The additives acted as catalysts, lowered the activation energy and accelerated the rate of hydrogen sorption in the composites relative to the monolithic alloy. Ti6Al4V-5 wt. % h-BN appears to be the most promising candidate for hydrogen storage (2.28 wt. %), followed by Ti6Al4V-5 wt. % TiN (2.09 wt. %), whereas Ti6Al4V-5 wt. % AlN shows the least hydrogen storage performance (1.35 wt. %). Accordingly, the developed hydride system (Ti6Al4V-5h-BN) may be competitive for use in applications involving short-range continuous vehicles (~50-100km) as well as stationary applications such as electrochemical devices, large-scale storage cylinders in hydrogen production locations, and hydrogen filling stations.Keywords: hydrogen storage, Ti6Al4V hydride system, pressure-composition-temperature measurements, refractory nitride additives, spark plasma sintering, Ti6Al4V-based materials
Procedia PDF Downloads 731263 Use of PET Fibers for Enhancing the Ductility of Exterior RC Beam-Column Connections Subjected to Reversed Cyclic Loading
Authors: Comingstarful Marthong, Shembiang Marthong
Abstract:
Application of Polyethylene terephthalate (PET) fiber for enhancing the seismic performance of exterior RC beam-column connections in substitution of steel fibers is experimentally investigated. The study involves the addition of Polyethylene terephthalate (PET) fiber-reinforced concrete, i.e., PFRC at the joint region of the connection. The PET fiber of 0.5% volume fraction used in the PFRC mix is obtained by hand cutting of post-consumer PET bottles. Specimens design as per relevant codes was casted and tested to reverse cyclic loading. PFRC specimen was also casted and subjected to similar loading sequence. Test results established that addition of PET fibers in the joint region is effective in enhancing the displacement ductility and energy dissipation capacity. The improvement of damage indices and principal tensile stresses of PFRC specimens gave experimental evidence of the suitability of PET fibers as a discrete reinforcement in the substitution of steel fiber for structural use.Keywords: beam-column connections, polyethylene terephthalate fibers reinforced concrete, joint region, ductility, seismic capacity
Procedia PDF Downloads 2791262 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites
Authors: Lee Siong Wee, Tan Kang Hai, Yang En-Hua
Abstract:
This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.Keywords: bond stress, high performance fiber reinforced cement composites, slip, strain
Procedia PDF Downloads 4951261 Characterization Microstructural Dual Phase Steel for Application In Civil Engineering
Authors: S. Habibi, T. E. Guarcia, A. Megueni, A. Ziadi, L. Aminallah, A. S. Bouchikhi
Abstract:
The characterization of the microstructure of Dual Phase steel in various low-carbon, with a yield stress between 400 and 900 MPa were conducted .In order to assess the mechanical properties of steel, we examined the influence of their chemical compositions interictal and heat treatments (austenite + ferrite area) on their micro structures. In this work, we have taken a number of commercial DP steels, micro structurally characterized and used the conventional tensile testing of these steels for mechanical characterization.Keywords: characterization, construction in civil engineering, micro structure, tensile DP steel
Procedia PDF Downloads 4641260 Seismic Retrofit of Reinforced Concrete Structures by Highly Dissipative Technologies
Authors: Stefano Sorace, Gloria Terenzi, Giulia Mazzieri, Iacopo Costoli
Abstract:
The prolonged earthquake sequence that struck several urban agglomerations and villages in Central Italy, starting from 24 August 2016 through January 2017, highlighted once again the seismic vulnerability of pre-normative reinforced concrete (R/C) structures. At the same time, considerable damages were surveyed in recently retrofitted R/C buildings too, one of which also by means of a dissipative bracing system. The solution adopted for the latter did not expressly take into account the performance of non-structural elements, and namely of infills and partitions, confirming the importance of their dynamic interaction with the structural skeleton. Based on this consideration, an alternative supplemental damping-based retrofit solution for this representative building, i.e., a school with an R/C structure situated in the municipality of Norcia, is examined in this paper. It consists of the incorporation of dissipative braces equipped with pressurized silicone fluid viscous (FV) dampers, instead of the BRAD system installed in the building, the delayed activation of which -caused by the high stiffness of the constituting metallic dampers- determined the observed non-structural damages. Indeed, the alternative solution proposed herein, characterized by dissipaters with mainly damping mechanical properties, guarantees an earlier activation of the protective system. A careful assessment analysis, preliminarily carried out to simulate and check the case study building performance in originally BRAD-retrofitted conditions, confirms that the interstorey drift demand related to the Norcia earthquake's mainshock and aftershocks is beyond the response capacity of infills. The verification analyses developed on the R/C structure, including the FV-damped braces, highlight their higher performance, giving rise to a completely undamaged response both of structural and non-structural elements up to the basic design earthquake normative level of seismic action.Keywords: dissipative technologies, performance assessment analysis, concrete structures, seismic retrofit
Procedia PDF Downloads 1341259 Effect of Sodium Aluminate on Compressive Strength of Geopolymer at Elevated Temperatures
Authors: Ji Hoi Heo, Jun Seong Park, Hyo Kim
Abstract:
Geopolymer is an inorganic material synthesized by alkali activation of source materials rich in soluble SiO2 and Al2O3. Many researches have studied the effect of aluminum species on the synthesis of geopolymer. However, it is still unclear about the influence of Al additives on the properties of geopolymer. The current study identified the role of the Al additive on the thermal performance of fly ash based geopolymer and observing the microstructure development of the composite. NaOH pellets were dissolved in water for 14 M (14 moles/L) sodium hydroxide solution which was used as an alkali activator. The weight ratio of alkali activator to fly ash was 0.40. Sodium aluminate powder was employed as an Al additive and added in amounts of 0.5 wt.% to 2 wt.% by the weight of fly ash. The mixture of alkali activator and fly ash was cured in a 75°C dry oven for 24 hours. Then, the hardened geopolymer samples were exposed to 300°C, 600°C and 900°C for 2 hours, respectively. The initial compressive strength after oven curing increased with increasing sodium aluminate content. It was also observed in SEM results that more amounts of geopolymer composite were synthesized as sodium aluminate was added. The compressive strength increased with increasing heating temperature from 300°C to 600°C regardless of sodium aluminate addition. It was consistent with the ATR-FTIR results that the peak position related to asymmetric stretching vibrations of Si-O-T (T: Si or Al) shifted to higher wavenumber as the heating temperature increased, indicating the further geopolymer reaction. In addition, geopolymer sample with higher content of sodium aluminate showed better compressive strength. It was also reflected on the IR results by more shift of the peak position assigned to Si-O-T toward the higher wavenumber. However, the compressive strength decreased after being exposed to 900°C in all samples. The degree of reduction in compressive strength was decreased with increasing sodium aluminate content. The deterioration in compressive strength was most severe in the geopolymer sample without sodium aluminate additive, while the samples with sodium aluminate addition showed better thermal durability at 900°C. This is related to the phase transformation with the occurrence of nepheline phase at 900°C, which was most predominant in the sample without sodium aluminate. In this work, it was concluded that sodium aluminate could be a good additive in the geopolymer synthesis by showing the improved compressive strength at elevated temperatures.Keywords: compressive strength, fly ash based geopolymer, microstructure development, Na-aluminate
Procedia PDF Downloads 1221258 Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer
Authors: I. Djefour, M. Saidi, I. Tlemsani, S. Toubal
Abstract:
Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes).Keywords: biopolymer (lignin), industrial waste, mechanical resistances, self compacting mortars (SCM)
Procedia PDF Downloads 1661257 The Optimal Location of Brickforce in Brickwork
Authors: Sandile Daniel Ngidi
Abstract:
A brickforce is a product consisting of two main parallel wires joined by in-line welded cross wires. Embedded in the normal thickness of the brickwork joint, the wires are manufactured to a flattened profile to simplify location into the mortar joint without steel build-up problems at lap positions corners/junctions or when used in conjunction with wall ties. A brickforce has been in continuous use since 1918. It is placed in the cement between courses of bricks. Brickforce is used in every course of the foundations and every course above lintel height. Otherwise, brickforce is used every fourth course in between the foundations and lintel height or a concrete slab and lintel height. The brickforce strengthens and stabilizes the wall, especially if you are building on unstable ground. It provides brickwork increased resistance to tensional stresses. Brickforce uses high tensile steel wires, which can withstand high forces but with a very little stretch. This helps to keep crack widths to a minimum. Recently a debate has opened about the purpose of using brickforce in single-story buildings. The debate has been compounded by the fact that there is no consensus about the spacing of brickforce in brickwork or masonry. In addition, very little information had been published on the relative merits of using the same size of brickforce for the different atmospheric conditions in South Africa. This paper aims to compare different types of brickforce systems used in different countries. Conclusions are made to identify the point and location of brickforce that optimize the system.Keywords: brickforce, masonry concrete, reinforcement, strengthening, wall panels
Procedia PDF Downloads 2301256 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates
Authors: R. Deju, M. Mincu, D. Gurau
Abstract:
During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management
Procedia PDF Downloads 2481255 Ballistic Performance of Magnesia Panels and Modular Wall Systems
Authors: Khin Thandar Soe, Mark Stephen Pulham
Abstract:
Ballistic building materials play a crucial role in ensuring the safety of the occupants within protective structures. Traditional options like Ordinary Portland Cement (OPC)-based walls, including reinforced concrete walls, precast concrete walls, masonry walls, and concrete blocks, are frequently employed for ballistic protection, but they have several drawbacks such as being thick, heavy, costly, and challenging to construct. On the other hand, glass and composite materials offer lightweight and easier construction alternatives, but they come with a high price tag. There has been no reported test data on magnesium-based ballistic wall panels or modular wall systems so far. This paper presents groundbreaking small arms test data related to the development of the world’s first magnesia cement ballistic wall panels and modular wall system. Non-hydraulic magnesia cement exhibits several superior properties, such as lighter weight, flexibility, acoustics, and fire performance, compared to the traditional Portland Cement. However, magnesia cement is hydrophilic and may degrade in prolonged contact with water. In this research, modified magnesia cement for water resistant and durability from UBIQ Technology is applied. The specimens are made of a modified magnesia cement formula and prepared in the Laboratory of UBIQ Technology Pty Ltd. The specimens vary in thickness, and the tests cover various small arms threats in compliance with standards AS/NZS2343 and UL752 and are performed up to the maximum threat level of Classification R2 (NATO) and UL-Level 8(NATO) by the Accredited Test Centre, BMT (Ballistic and Mechanical Testing, VIC, Australia). In addition, the results of the test conducted on the specimens subjected to the small 12mm diameter steel ball projectile impact generated by a gas gun are also presented and discussed in this paper. Gas gun tests were performed in UNSW@ADFA, Canberra, Australia. The tested results of the magnesia panels and wall systems are compared with one of concrete and other wall panels documented in the literature. The conclusion drawn is that magnesia panels and wall systems exhibit several advantages over traditional OPC-based wall systems, and they include being lighter, thinner, and easier to construct, all while providing equivalent protection against threats. This makes magnesia cement-based materials a compelling choice of application where efficiency and performance are critical to create a protective environment.Keywords: ballistics, small arms, gas gun, projectile, impact, wall panels, modular, magnesia cement
Procedia PDF Downloads 771254 Research on the Calculation Method of Smartization Rate of Concrete Structure Building Construction
Authors: Hongyu Ye, Hong Zhang, Minjie Sun, Hongfang Xu
Abstract:
In the context of China's promotion of smart construction and building industrialization, there is a need for evaluation standards for the development of building industrialization based on assembly-type construction. However, the evaluation of smart construction remains a challenge in the industry's development process. This paper addresses this issue by proposing a calculation and evaluation method for the smartization rate of concrete structure building construction. The study focuses on examining the factors of smart equipment application and their impact on costs throughout the process of smart construction design, production, transfer, and construction. Based on this analysis, the paper presents an evaluation method for the smartization rate based on components. Furthermore, it introduces calculation methods for assessing the smartization rate of buildings. The paper also suggests a rapid calculation method for determining the smartization rate using Building Information Modeling (BIM) and information expression technology. The proposed research provides a foundation for the swift calculation of the smartization rate based on BIM and information technology. Ultimately, it aims to promote the development of smart construction and the construction of high-quality buildings in China.Keywords: building industrialization, high quality building, smart construction, smartization rate, component
Procedia PDF Downloads 711253 Microstructures of Si Surfaces Fabricated by Electrochemical Anodic Oxidation with Agarose Stamps
Abstract:
This paper investigates the fabrication of microstructures on Si surfaces by using electrochemical anodic oxidation with agarose stamps. The fabricating process is based on a selective anodic oxidation reaction that occurs in the contact area between a stamp and a Si substrate. The stamp which is soaked in electrolyte previously acts as a current flow channel. After forming the oxide patterns as an etching mask, a KOH aqueous is used for the wet etching of Si. A complicated microstructure array of 1 cm2 was fabricated by the method with high accuracy.Keywords: microstructures, anodic oxidation, silicon, agarose stamps
Procedia PDF Downloads 3051252 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite
Authors: Ganesh V., Asit Kumar Khanra
Abstract:
An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy
Procedia PDF Downloads 201251 The Impact of Alumina Cement on Properties of Portland Cement Slurries and Mortars
Authors: Krzysztof Zieliński, Dariusz Kierzek
Abstract:
The addition of a small amount of alumina cement to Portland cement results in immediate setting, a rapid increase in the compressive strength and a clear increase of the adhesion to concrete substrate. This phenomenon is used, among others, for the production of liquid floor self-levelling compounds. Alumina cement is several times more expensive than Portland cement and is a component having a significant impact on prices of products manufactured with its use. For the production of liquid floor self-levelling compounds, low-alumina cement containing approximately 40% Al2O3 is normally used. The aim of the study was to determine the impact of Portland cement with the addition of alumina cement on the basic physical and mechanical properties of cement slurries and mortars. CEM I 42.5R and three types of alumina cement containing 40%, 50% and 70% of Al2O3 were used for the tests. Mixes containing 4%, 6%, 8%, 10% and 12% of different varieties of alumina cement were prepared; for which, the time of initial and final setting, compressive and flexural strength and adhesion to concrete substrate were determined. The analysis of the obtained test results showed that a similar immediate setting effect and clearly better adhesion strength can be obtained using the addition of 6% of high-alumina cement than 12% of low-alumina cement. As the prices of these cements are similar, this can give significant financial savings in the production of liquid floor self-levelling compounds.Keywords: alumina cement, immediate setting, compression strength, adhesion to substrate
Procedia PDF Downloads 1521250 Research on the Dynamic Characteristics of Multi-Condition Penetration of Concrete by Warhead-Fuze Systems
Authors: Shaoxiang Wang, Xiangjin Zhang
Abstract:
This study focuses on the overload environment and dynamic response of the core components (i.e., sensors) within the fuze of a warhead-fuze system during penetration of typical targets. Considering the connection structure between the warhead and the fuze, as well as the internal structure of the fuze, a finite element model of the warhead-fuze system penetrating a semi-infinite thick concrete target was constructed using the finite element analysis software LS-DYNA for numerical simulation. The results reveal that the response signal of the sensors inside the warhead-fuze system is larger in magnitude and exhibits greater vibration disturbances compared to the acceleration signal of the warhead. Moreover, the study uncovers the dynamic response characteristics of the sensors within the warhead-fuze system under multi-condition scenarios involving different target strengths and penetration angles. The research findings provide a sound basis for the rapid and effective prediction of the dynamic response and overload characteristics of critical modules within the fuze under different working conditions, offering technical references for the integrated design of warhead-fuze systems.Keywords: penetration, warhead-fuze system, multi-condition, acceleration overload signal, numerical simulation
Procedia PDF Downloads 291249 Cantilever Shoring Piles with Prestressing Strands: An Experimental Approach
Authors: Hani Mekdash, Lina Jaber, Yehia Temsah
Abstract:
Underground space is becoming a necessity nowadays, especially in highly congested urban areas. Retaining underground excavations using shoring systems is essential in order to protect adjoining structures from potential damage or collapse. Reinforced Concrete Piles (RCP) supported by multiple rows of tie-back anchors are commonly used type of shoring systems in deep excavations. However, executing anchors can sometimes be challenging because they might illegally trespass neighboring properties or get obstructed by infrastructure and other underground facilities. A technique is proposed in this paper, and it involves the addition of eccentric high-strength steel strands to the RCP section through ducts without providing the pile with lateral supports. The strands are then vertically stressed externally on the pile cap using a hydraulic jack, creating a compressive strengthening force in the concrete section. An experimental study about the behavior of the shoring wall by pre-stressed piles is presented during the execution of an open excavation in an urban area (Beirut city) followed by numerical analysis using finite element software. Based on the experimental results, this technique is proven to be cost-effective and provides flexible and sustainable construction of shoring works.Keywords: deep excavation, prestressing, pre-stressed piles, shoring system
Procedia PDF Downloads 1171248 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates
Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung
Abstract:
This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump
Procedia PDF Downloads 541247 Effect of Varying Zener-Hollomon Parameter (Temperature and Flow Stress) and Stress Relaxation on Creep Response of Hot Deformed AA3104 Can Body Stock
Authors: Oyindamola Kayode, Sarah George, Roberto Borrageiro, Mike Shirran
Abstract:
A phenomenon identified by our industrial partner has experienced sag on AA3104 can body stock (CBS) transfer bar during transportation of the slab from the breakdown mill to the finishing mill. Excessive sag results in bottom scuffing of the slab onto the roller table, resulting in surface defects on the final product. It has been found that increasing the strain rate on the breakdown mill final pass results in a slab resistant to sag. The creep response for materials hot deformed at different Zener–Holloman parameter values needs to be evaluated experimentally to gain better understanding of the operating mechanism. This study investigates this identified phenomenon through laboratory simulation of the breakdown mill conditions for various strain rates by utilizing the Gleeble at UCT Centre for Materials Engineering. The experiment will determine the creep response for a range of conditions as well as quantifying the associated material microstructure (sub-grain size, grain structure etc). The experimental matrices were determined based on experimental conditions approximate to industrial hot breakdown rolling and carried out on the Gleeble 3800 at the Centre for Materials Engineering, University of Cape Town. Plane strain compression samples were used for this series of tests at an applied load that allow for better contact and exaggerated creep displacement. A tantalum barrier layer was used for increased conductivity and decreased risk of anvil welding. One set of tests with no in-situ hold time was performed, where the samples were quenched after deformation. The samples were retained for microstructure analysis of the micrographs from the light microscopy (LM), quantitative data and images from scanning electron microscopy (SEM) and energy dispersive X-ray (EDX), sub-grain size and grain structure from electron back scattered diffraction (EBSD).Keywords: aluminium alloy, can-body stock, hot rolling, creep response, Zener-Hollomon parameter
Procedia PDF Downloads 861246 Retro-Reflectivity and Diffuse Reflectivity Degradation of Thermoplastic Pavement Marking: A Case Study on Asphaltic Road in Thailand
Authors: Kittichai Thanasupsin, Satis Sukniam
Abstract:
Pavement marking is an essential task of road construction and maintenance. One of several benefits of pavement markings has been used to provide information about road alignment and road conditions ahead. In some cases, retro-reflectivity of road marking at night may not meet the standard. This degradation may be caused by internal factors such as the size of glass beads and the number of glass beads or external factors such as traffic volume, lane width, vehicle weight, and so on. This research aims to investigate the reflective efficiency of thermoplastic road marking with the glass beads. Ratios of glass beads, ranging from 359 to 553 grams per square meter on an asphaltic concrete, have been tested. The reflective efficiency data was collected at the beginning and at a specific time interval for a total of 8 months. It was found that the difference in glass beads quantity affects the rate of retro-reflectivity but does not affect the diffuse reflectivity. It was also found that other factors affect retro-reflectivity, such as duration, the position of road marking, traffic density, the quantity of glass beads, and dirt coating on top. The dirt coating on top is the most crucial factor that deteriorating retro-reflectivity.Keywords: thermoplastic pavement marking, retro-reflectivity, diffuse reflectivity, asphalt concrete
Procedia PDF Downloads 1331245 Effect of CSL Tube Type on the Drilled Shaft Axial Load Carrying Capacity
Authors: Ali Motevalli, Shahin Nayyeri Amiri
Abstract:
Cross-Hole Sonic Logging (CSL) is a common type of Non-Destructive Testing (NDT) method, which is currently used to check the integrity of placed drilled shafts. CSL evaluates the integrity of the concrete inside the cage and between the access tubes based on propagation of ultrasonic waves between two or more access tubes. A number of access tubes are installed inside the reinforcing cage prior to concrete placement as guides for sensors. The access tubes can be PVC or steel galvanized based on ASTM6760. The type of the CSL tubes can affect the axial strength of the drilled shaft. The objective of this study is to compare the amount of axial load capacity of drilled shafts due to using a different type of CSL tubes inside the caging. To achieve this, three (3) large-scale drilled shaft samples were built and tested using a hydraulic actuator at the Florida International University’s (FIU) Titan America Structures and Construction Testing (TASCT) laboratory. During the static load test, load-displacement curves were recorded by the data acquisition system (MegaDAC). Three drilled shaft samples were built to evaluate the effect of the type of the CSL tube on the axial load capacity in drilled shaft foundations.Keywords: drilled shaft foundations, axial load capacity, cage, PVC, galvanized tube, CSL tube
Procedia PDF Downloads 4031244 Experimental Modal Analysis of Kursuncular Minaret
Authors: Yunus Dere
Abstract:
Minarets are tower like structures where the call to prayer of Muslims is performed. They have a symbolic meaning and sacred place among Muslims. Being tall and slender, they are prone to damage under earthquakes and strong winds. Kursuncular stone minaret was built around thirty years ago in Konya/TURKEY. Its core and helical stairs are made of reinforced concrete. Its stone spire was damaged during a light earthquake. Its spire is later replaced with a light material covered with lead sheets. In this study, the natural frequencies and mode shapes of Kursuncular minaret is obtained experimentally and analytically. First an ambient vibration test is carried out using a data acquisition system with accelerometers located at four locations along the height of the minaret. The collected vibration data is evaluated by operational modal analysis techniques. For the analytical part of the study, the dimensions of the minaret are accurately measured and a detailed 3D solid finite element model of the minaret is generated. The moduli of elasticity of the stone and concrete are approximated using the compressive strengths obtained by Windsor Pin tests. Finite element modal analysis of the minaret is carried out to get the modal parameters. Experimental and analytical results are then compared and found in good agreement.Keywords: experimental modal analysis, stone minaret, finite element modal analysis, minarets
Procedia PDF Downloads 3271243 Experimental Verification of Different Types of Shear Connectors on Composite Slab
Authors: A. Siva, R. Senthil, R. Banupriya, R. Saravanakumar
Abstract:
Cold-formed steel sheets are widely used as primary tension reinforcement in composite slabs. It also performs as formwork for concreting and better ceiling surface. The major type of failure occurring in composite slab is shear failure. When the composite slab is flexurally loaded, the longitudinal shear is generated and transferred to the steel sheet concrete interface. When the load increases, the interface slip occurs. The slip failure can be resisted by mechanical interface interlock by shear studs. In this paper, the slip failure has been resisted by shear connectors and geometry of the steel sheet alone. The geometry of the sheet is kept constant for all the specimens and the type of shear connectors has been varied. Totally, three types of shear connectors (viz., straight headed, U and J) are bolted to the trapezoidal profile sheet and the concrete is casted over it. After curing, the composite slab is subjected to flexure load and the test results are compared with the numerical results analysed by ABAQUS software. The test result shows that the U-shaped bolted stud has higher flexure strength than the other two types of shear connectors.Keywords: cold formed steel sheet, headed studs, mechanical interlock, shear connectors, shear failure, slip failure
Procedia PDF Downloads 555