Search results for: liquid crystalline elastomers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2386

Search results for: liquid crystalline elastomers

1036 A Highly Sensitive Dip Strip for Detection of Phosphate in Water

Authors: Hojat Heidari-Bafroui, Amer Charbaji, Constantine Anagnostopoulos, Mohammad Faghri

Abstract:

Phosphorus is an essential nutrient for plant life which is most frequently found as phosphate in water. Once phosphate is found in abundance in surface water, a series of adverse effects on an ecosystem can be initiated. Therefore, a portable and reliable method is needed to monitor the phosphate concentrations in the field. In this paper, an inexpensive dip strip device with the ascorbic acid/antimony reagent dried on blotting paper along with wet chemistry is developed for the detection of low concentrations of phosphate in water. Ammonium molybdate and sulfuric acid are separately stored in liquid form so as to improve significantly the lifetime of the device and enhance the reproducibility of the device’s performance. The limit of detection and quantification for the optimized device are 0.134 ppm and 0.472 ppm for phosphate in water, respectively. The device’s shelf life, storage conditions, and limit of detection are superior to what has been previously reported for the paper-based phosphate detection devices.

Keywords: phosphate detection, paper-based device, molybdenum blue method, colorimetric assay

Procedia PDF Downloads 168
1035 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: hydrogen separation, perovskite, proton conducting membrane.

Procedia PDF Downloads 336
1034 Mechanical Properties of Class F Fly Ash Blended Concrete Incorporation with Natural Admixture

Authors: T. S. Ramesh Babu, D. Neeraja

Abstract:

This research work revealed that effect of Natural admixture (NAD) on Conventional Concrete (CC) and Class F Fly Ash(FA) blended concrete. Broiler hen egg white albumen and yellow yolk were used as Natural Admixture. Cement was replaced by Class F fly ash at various levels of 0%, 25%, 35%, 45% and 55% by its mass and NAD was added to concrete at different replacement dosages of 0%, 0.25%, 0.5%, 0.75% and 1.00% by its volume to water content and liquid to binder ratio was maintained at 0.5. For all replacement levels of FA and NAD, the mechanical properties viz unit weight, compressive strength, splitting tensile strength and modulus of elasticity of CC and Class F fly ash (FA) were studied at 7, 28, 56 and 112 days. From the results, it was concluded that 0.25% of NAD dosage was considered as optimum dosage for both CC and class F fly ash blended concrete. The studies revealed that 35% Class F fly ash blended concrete mix is concluded as optimum mix and 55% Class F fly ash blended concrete mix is concluded as economical mix with 0.25% NAD dosage.

Keywords: Class F fly ash, compressive strength, modulus of elasticity, natural admixture, splitting tensile strength, unit weight

Procedia PDF Downloads 287
1033 Wicking and Evaporation of Liquids in Knitted Fabrics: Analytic Solution of Capillary Rise Restrained by Gravity and Evaporation

Authors: N. S. Achour, M. Hamdaoui, S. Ben Nasrallah

Abstract:

Wicking and evaporation of water in porous knitted fabrics is investigated by combining experimental and analytical approaches: The standard wicking model from Lucas and Washburn is enhanced to account for evaporation and gravity effects. The goal is to model the effect of gravity and evaporation on wicking using simple analytical expressions and investigate the influence of fabrics geometrical parameters, such as porosity and thickness on evaporation impact on maximum reachable height values. The results show that fabric properties have a significant influence on evaporation effect. In this paper, an experimental study of determining water kinetics from different knitted fabrics were gravimetrically investigated permitting the measure of the mass and the height of liquid rising in fabrics in various atmospheric conditions. From these measurements, characteristic pore parameters (capillary radius and permeability) can be determined.

Keywords: evaporation, experimental study, geometrical parameters, model, porous knitted fabrics, wicking

Procedia PDF Downloads 581
1032 Evaluation of the Fire Propagation Characteristics of Thermoplastics

Authors: Ji-Hun Choi, Kyoung-Suk Cho, Seung-Un Chae

Abstract:

Consisting of organic compounds, plastic ignites easily and burns fast. In addition, a large amount of toxic gas is produced while it is burning. When plastic is heated, its volume decreases because its surface is melted. The decomposition of its molecular bond generates combustible liquid of low viscosity, which accelerates plastic combustion and spreads the flames. Radiant heat produced in the process propagates the fire to increase the risk of human and property damages. Accordingly, the purpose of this study was to identify chemical, thermal and combustion characteristics of thermoplastic plastics using the fire propagation apparatus based on experimental criteria of ISO 12136 and ASTM E 2058. By the experiment result, as the ignition time increased, the thermal response parameter (TRP) decreased and as the TRP increased, the slope decreased. In other words, the large the TRP was, the longer the time taken for heating and ignition of the material was. It was identified that the fire propagation speed dropped accordingly.

Keywords: fire propagation apparatus (FPA), ISO 12136, thermal response parameter (TRP), fire propagation index (FPI)

Procedia PDF Downloads 200
1031 Fatty Acid and Amino Acid Composition in Mene maculata in The Sea of Maluku

Authors: Semuel Unwakoly, Reinner Puppela, Maresthy Rumalean, Healthy Kainama

Abstract:

Fish is a kind of food that contains many nutritions, one of those is the long chain of unsaturated fatty acids as omega-3 and omega-6 fatty acids and essential amino acid in enough amount for the necessity of our body. Like pelagic fish that found in the sea of Maluku. This research was done to identify fatty acids and amino acids composition in Moonfish (M. maculata) using transesterification reaction steps and Gas Chromatograph-Mass Spectrophotometer (GC-MS) and High-Performance Liquid Chromatography (HPLC). The result showed that fatty acids composition in Moonfish (M. maculata) contained tridecanoic acid (2.84%); palmitoleic acid (2.65%); palmitic acid (35.24%); oleic acid (6.2%); stearic acid (14.20%); and 5,8,11,14-eicosatetraenoic acid (1.29%) and 12 amino acids composition that consist of 7 essential amino acids, were leucine, isoleucine, valine, phenylalanine, methionine, lysine, and histidine, and also 5 non-essential amino acid, were tyrosine, glycine, alanine, glutamic acid, and arginine.Thus, these fishes can be used by the people to complete the necessity of essential fatty acid and amino acid.

Keywords: Moonfish (M. maculata), fatty acid, amino acid, GC-MS, HPLC

Procedia PDF Downloads 247
1030 Contribution to the Analytical Study of Barrier Surface Waves: Decomposition of the Solution

Authors: T. Zitoun, M. Bouhadef

Abstract:

When a partially or completely immersed solid moves in a liquid such as water, it undergoes a force called hydrodynamic drag. Reducing this force has always been the objective of hydrodynamic engineers to make water slide better on submerged bodies. This paper deals with the examination of the different terms composing the analytical solution of the flow over an obstacle embedded at the bottom of a hydraulic channel. We have chosen to use a linear method to study a two-dimensional flow over an obstacle, in order to understand the evolution of the drag. We set the following assumptions: incompressible inviscid fluid, irrotational flow, low obstacle height compared to the water height. Those assumptions allow overcoming the difficulties associated with modelling these waves. We will mathematically formulate the equations that allow the determination of the stream function, and then the free surface equation. A similar method is used to determine the exact analytical solution for an obstacle in the shape of a sinusoidal arch.

Keywords: analytical solution, free-surface wave, hydraulic channel, inviscid fluid

Procedia PDF Downloads 194
1029 Advanced Bio-Fuels for Biorefineries: Incorporation of Waste Tires and Calcium-Based Catalysts to the Pyrolysis of Biomass

Authors: Alberto Veses, Olga Sanhauja, María Soledad Callén, Tomás García

Abstract:

The appropriate use of renewable sources emerges as a decisive point to minimize the environmental impact caused by fossil fuels use. Particularly, the use of lignocellulosic biomass becomes one of the best promising alternatives since it is the only carbon-containing renewable source that can produce bioproducts similar to fossil fuels and it does not compete with food market. Among all the processes that can valorize lignocellulosic biomass, pyrolysis is an attractive alternative because it is the only thermochemical process that can produce a liquid biofuel (bio-oil) in a simple way and solid and gas fractions that can be used as energy sources to support the process. However, in order to incorporate bio-oils in current infrastructures and further process in future biorefineries, their quality needs to be improved. Introducing different low-cost catalysts and/or incorporating different polymer residues to the process are some of the new, simple and low-cost strategies that allow the user to directly obtain advanced bio-oils to be used in future biorefineries in an economic way. In this manner, from previous thermogravimetric analyses, local agricultural wastes such as grape seeds (GS) were selected as lignocellulosic biomass while, waste tires (WT) were selected as polymer residue. On the other hand, CaO was selected as low-cost catalyst based on previous experiences by the group. To reach this aim, a specially-designed fixed bed reactor using N₂ as a carrier gas was used. This reactor has the peculiarity to incorporate a vertical mobile liner that allows the user to introduce the feedstock in the oven once the selected temperature (550 ºC) is reached, ensuring higher heating rates needed for the process. Obtaining a well-defined phase distribution in the resulting bio-oil is crucial to ensure the viability to the process. Thus, once experiments were carried out, not only a well-defined two layers was observed introducing several mixtures (reaching values up to 40 wt.% of WT) but also, an upgraded organic phase, which is the one considered to be processed in further biorefineries. Radical interactions between GS and WT released during the pyrolysis process and dehydration reactions enhanced by CaO can promote the formation of better-quality bio-oils. The latter was reflected in a reduction of water and oxygen content of bio-oil and hence, a substantial increase of its heating value and its stability. Moreover, not only sulphur content was reduced from solely WT pyrolysis but also potential and negative issues related to a strong acidic environment of conventional bio-oils were minimized due to its basic pH and lower total acid numbers. Therefore, acidic compounds obtained in the pyrolysis such as CO₂-like substances can react with the CaO and minimize acidic problems related to lignocellulosic bio-oils. Moreover, this CO₂ capture promotes H₂ production from water gas shift reaction favoring hydrogen-transfer reactions, improving the final quality of the bio-oil. These results show the great potential of grapes seeds to carry out the catalytic co-pyrolysis process with different plastic residues in order to produce a liquid bio-oil that can be considered as a high-quality renewable vector.

Keywords: advanced bio-oils, biorefinery, catalytic co-pyrolysis of biomass and waste tires, lignocellulosic biomass

Procedia PDF Downloads 234
1028 Centrifuge Testing to Determine the Effect of Temperature on the Adhesion Strength of Ice

Authors: Zaid A. Janjua, Barbara Turnbull, Kwing-So Choi

Abstract:

The adhesion of glaze ice on power infrastructure, ships and aerofoils cause monetary and structural damage. Here we investigate the influence of temperature as an important parameter affecting adhesion strength of ice. Two terms are defined to investigate this: 'freezing temperature', the temperature at which glaze ice forms; and 'ambient temperature', the temperature of the surrounding during the test. Using three metal surfaces, the adhesion strength of ice has been calculated as a value of shear stress at the point of detachment on a spinning centrifuge. Findings show that the ambient temperature has a greater influence than the freezing temperature on the adhesion strength of ice. This is because there exists an amorphous liquid-like layer at the ice-surface interface, whose bond with the surface increases in strength at lower ambient temperatures when the substrate conducts heat much faster than the ice and acts as a heat sink. The results will help us to measure the actual adhesion strength of ice to metal surfaces based on data from weather monitoring devices. Future tests envisaged focus on thermally non-conducting substrates and their influence on adhesion strength.

Keywords: ice adhesion, centrifuge, glaze ice, freezing temperature, ambient temperature

Procedia PDF Downloads 339
1027 Flexural Analysis of Palm Fiber Reinforced Hybrid Polymer Matrix Composite

Authors: G.Venkatachalam, Gautham Shankar, Dasarath Raghav, Krishna Kuar, Santhosh Kiran, Bhargav Mahesh

Abstract:

Uncertainty in the availability of fossil fuels in the future and global warming increased the need for more environment-friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as a reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

Keywords: Adhesion, CNSL, Flexural Analysis, Hybrid Matrix Composite, Palm Fiber

Procedia PDF Downloads 403
1026 Acrosomal Integrity, DNA Integrity and Post-Thawing Motility of Goat Semen after Methionine Supplementation

Authors: K. A. El-Battawy, W. S. El-Nattat

Abstract:

The aim of the present investigation was to evaluate the impact of methionine on the preservation, acrosomal integrity, DNA integrity and post thawing motility of extended goat semen. Semen samples were diluted with a Tris-based extender containing the additive methionine 1.5, 2.5 and 5mM then the diluted samples were kept in glass tubes and cooled from 37°C to 5°C in a cold cabinet, and maintained at 5°C. Sperm motility (SM%), alive sperm (AS%), sperm abnormalities (SA%) acrosomal integrity and DNA integrity were determined at 5°C for periods of 0,24, 48and 72 h of liquid storage. Furthermore, the influence of methionine on post-thawing motility was assessed. The results elaborated that the addition of methionine and L-tyrosine particularly 2.5mM of methionine significantly improved SM% and reduced dead sperm %. Furthermore, the addition of 2.5mM methionine improved post-thawing motility (43.75 ± 1.25% vs. 32.50 ± 3.23 in the control group). Moreover, the frequency of acrosomal defects was lower in treated groups than in control. In conclusion, the addition of methionine induced remarkable physiological effects on goat semen quality during conservation for 7-days-long period at 5°C and improved its freezability.

Keywords: methionine, acrosome, semen, cryopreservation

Procedia PDF Downloads 401
1025 Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films

Authors: Pandiyarajan Thangaraj, Mangalaraja Ramalinga Viswanathan, Karthikeyan Balasubramanian, Héctor D. Mansilla, José Ruiz

Abstract:

Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials.

Keywords: rare earth doped ZnO, polymer composites, structural characterization, surface modification

Procedia PDF Downloads 361
1024 The Ever-Changing Connection Among Banks and Insurers: An Examination of the Financial Standing of the Financial System

Authors: Iqra Ali

Abstract:

This study uses panel Vector Auto Regression (VAR) to analyses the dynamic link between banking and insurance activities based on the asset size of the insurance industry for 73 countries between 1980 and 2014. Assets in the insurance industry and banking activities usually have a Granger causal link, according to panel Granger-causality tests. Impulse response analyses for the entire sample show that the size of insurance assets responds favorably to a shock to the liquid liabilities and deposits of the financial system but negatively to a shock to deposit money bank assets and private credit offered by commercial banks, other financial institutions, and deposit banks. While the findings for middle- and low-income nations varied significantly, the observations for high-income countries are essentially the same. Furthermore, we find that there is a substantial interplay between banking and insurance activity in civil law nations as opposed to common law ones.

Keywords: vector autoregression, banking, insurance, Granger-causality

Procedia PDF Downloads 0
1023 The Effect of Cigarette Smoking on the Production of 20-Hydroxyeicosatetraenoic Acid in Human Platelet

Authors: Yazun Jarrar

Abstract:

Smoking has effect on platelet aggregation and the activity of anti-platelet drugs. The chemical 20-hydroxyeicosatetraenoic acid (20-HETE) is a cardiotoxic arachidonic acid metabolite which increases platelet aggregation. In this study, we investigated the influence of cigarette smoking on 20-HETE levels and protein expression of 20-HETE producing enzyme CYP4A11 in isolated platelets from smoker and non-smoker volunteers. The protein expression and 20-HETE levels were analyzed using immunoblot and High-Performance Liquid Chromatography with Mass Spectrometry (HPL-MS) assays. The results showed that 20-HETE level was higher significantly among smokers than non-smokers (t-test, p-value<0.05). The protein expression of CYP4A11 was significantly higher (t-test, p-value<0.05) among the platelets of smokers. We concluded that cigarette smoking increased the level of platelet activator 20-HETE through increasing the protein expression of CYP4A11. These findings may increase the understanding of smoking-drug interaction during antiplatelets therapy.

Keywords: smoking, 20-HETE, CYP4A11, platelet

Procedia PDF Downloads 183
1022 Evaluation of Microstructure, Mechanical and Abrasive Wear Response of in situ TiC Particles Reinforced Zinc Aluminum Matrix Alloy Composites

Authors: Mohammad M. Khan, Pankaj Agarwal

Abstract:

The present investigation deals with the microstructures, mechanical and detailed wear characteristics of in situ TiC particles reinforced zinc aluminum-based metal matrix composites. The composites have been synthesized by liquid metallurgy route using vortex technique. The composite was found to be harder than the matrix alloy due to high hardness of the dispersoid particles therein. The former was also lower in ultimate tensile strength and ductility as compared to the matrix alloy. This could be explained to be due to the use of coarser size dispersoid and larger interparticle spacing. Reasonably uniform distribution of the dispersoid phase in the alloy matrix and good interfacial bonding between the dispersoid and matrix was observed. The composite exhibited predominantly brittle mode of fracture with microcracking in the dispersoid phase indicating effective easy transfer of load from matrix to the dispersoid particles. To study the wear behavior of the samples three different types of tests were performed namely: (i) sliding wear tests using a pin on disc machine under dry condition, (ii) high stress (two-body) abrasive wear tests using different combinations of abrasive media and specimen surfaces under the conditions of varying abrasive size, traversal distance and load, and (iii) low-stress (three-body) abrasion tests using a rubber wheel abrasion tester at various loads and traversal distances using different abrasive media. In sliding wear test, significantly lower wear rates were observed in the case of base alloy over that of the composites. This has been attributed to the poor room temperature strength as a result of increased microcracking tendency of the composite over the matrix alloy. Wear surfaces of the composite revealed the presence of fragmented dispersoid particles and microcracking whereas the wear surface of matrix alloy was observed to be smooth with shallow grooves. During high-stress abrasion, the presence of the reinforcement offered increased resistance to the destructive action of the abrasive particles. Microcracking tendency was also enhanced because of the reinforcement in the matrix. The negative effect of the microcracking tendency was predominant by the abrasion resistance of the dispersoid. As a result, the composite attained improved wear resistance than the matrix alloy. The wear rate increased with load and abrasive size due to a larger depth of cut made by the abrasive medium. The wear surfaces revealed fine grooves, and damaged reinforcement particles while subsurface regions revealed limited plastic deformation and microcracking and fracturing of the dispersoid phase. During low-stress abrasion, the composite experienced significantly less wear rate than the matrix alloy irrespective of the test conditions. This could be explained to be due to wear resistance offered by the hard dispersoid phase thereby protecting the softer matrix against the destructive action of the abrasive medium. Abraded surfaces of the composite showed protrusion of dispersoid phase. The subsurface regions of the composites exhibited decohesion of the dispersoid phase along with its microcracking and limited plastic deformation in the vicinity of the abraded surfaces.

Keywords: abrasive wear, liquid metallurgy, metal martix composite, SEM

Procedia PDF Downloads 149
1021 On the Importance of Quality, Liquidity Level and Liquidity Risk: A Markov-Switching Regime Approach

Authors: Tarik Bazgour, Cedric Heuchenne, Danielle Sougne

Abstract:

We examine time variation in the market beta of portfolios sorted on quality, liquidity level and liquidity beta characteristics across stock market phases. Using US stock market data for the period 1970-2010, we find, first, the US stock market was driven by four regimes. Second, during the crisis regime, low (high) quality, high (low) liquidity beta and illiquid (liquid) stocks exhibit an increase (a decrease) in their market betas. This finding is consistent with the flight-to-quality and liquidity phenomena. Third, we document the same pattern across stocks when the market volatility is low. We argue that, during low volatility times, investors shift their portfolios towards low quality and illiquid stocks to seek portfolio gains. The pattern observed in the tranquil regime can be, therefore, explained by a flight-to-low-quality and to illiquidity. Finally, our results reveal that liquidity level is more important than liquidity beta during the crisis regime.

Keywords: financial crises, quality, liquidity, liquidity risk, regime-switching models

Procedia PDF Downloads 403
1020 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts

Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat

Abstract:

The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.

Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis

Procedia PDF Downloads 206
1019 Effect of Polyethylene Glycol on Physiochemical Properties of Spherical Agglomerates of Pioglitazone Hydrochloride

Authors: S. V. Patil , S. K. Sahoo, K. Y. Chougule, S. S. Patil

Abstract:

Spherically agglomerated crystals of Pioglitazone hydrochloride (PGH) with improved flowability and compactibility were successfully prepared by emulsion solvent diffusion method. Plane agglomerates and agglomerates with additives: polyethylene glycol 6000 (PEG), polyvinyl pyrrolidone (PVP) and β cyclodextrin (β-CD) were prepared using methanol, chloroform and water as good solvent, bridging liquid and poor solvent respectively. Particle size, flowability, compactibility and packability of plane, PEG and β-CD agglomerates were preferably improved for direct tableting compared with raw crystals and PVP agglomerates of PGH. These improved properties of spherically agglomerated crystals were due to their large and spherical shape and enhanced fragmentation during compaction which was well supported by increased tensile strength and less elastic recovery of its compact. X-ray powder diffraction and differential scanning calorimetry study were indicated polymorphic transition of PGH from form II to I during recrystallization but not associated with chemical transition indicated by fourier transforms infrared spectra.

Keywords: spherical crystallization, pioglitazone hydrochloride, compactibility, packability

Procedia PDF Downloads 354
1018 Wear Characteristics of Al Based Composites Fabricated with Nano Silicon Carbide Particles

Authors: Mohammad Reza Koushki Ardestani, Saeed Daneshmand, Mohammad Heydari Vini

Abstract:

In the present study, AA7075/SiO2 composites have been fabricated via liquid metallurgy process. Using the degassing process, the wet ability of the molten aluminum alloys increased which improved the bonding between aluminum matrix and reinforcement (SiO2) particles. AA7075 alloy and SiO2 particles were taken as the base matrix and reinforcements, respectively. Then, contents of 2.5 and 5 wt. % of SiO2 subdivisions were added into the AA7075 matrix. To improve wettability and distribution, reinforcement particles were pre-heated to a temperature of 550°C for each composite sample. A uniform distribution of SiO2 particles was observed through the matrix alloy in the microstructural study. A hardened EN32 steel disc as the counter face was used to evaluate the wear rate pin-on-disc, a wear testing machine containing. The results showed that the wear rate of the AA/SiO2 composites was lesser than that of the monolithic AA7075 samples. Finally, The SEM worn surfaces of samples were investigated.

Keywords: Al7075, SiO₂, wear, composites, stir casting

Procedia PDF Downloads 100
1017 Processing and Characterization of Aluminum Matrix Composite Reinforced with Amorphous Zr₃₇.₅Cu₁₈.₆₇Al₄₃.₉₈ Phase

Authors: P. Abachi, S. Karami, K. Purazrang

Abstract:

The amorphous reinforcements (metallic glasses) can be considered as promising options for reinforcing light-weight aluminum and its alloys. By using the proper type of reinforcement, one can overcome to drawbacks such as interfacial de-cohesion and undesirable reactions which can be created at ceramic particle and metallic matrix interface. In this work, the Zr-based amorphous phase was produced via mechanical milling of elemental powders. Based on Miedema semi-empirical Model and diagrams for formation enthalpies and/or Gibbs free energies of Zr-Cu amorphous phase in comparison with the crystalline phase, the glass formability range was predicted. The composite was produced using the powder mixture of the aluminum and metallic glass and spark plasma sintering (SPS) at the temperature slightly above the glass transition Tg of the metallic glass particles. The selected temperature and rapid sintering route were suitable for consolidation of an aluminum matrix without crystallization of amorphous phase. To characterize amorphous phase formation, X-ray diffraction (XRD) phase analyses were performed on powder mixture after specified intervals of milling. The microstructure of the composite was studied by optical and scanning electron microscope (SEM). Uniaxial compression tests were carried out on composite specimens with the dimension of 4 mm long and a cross-section of 2 ˟ 2mm2. The micrographs indicated an appropriate reinforcement distribution in the metallic matrix. The comparison of stress–strain curves of the consolidated composite and the non-reinforced Al matrix alloy in compression showed that the enhancement of yield strength and mechanical strength are combined with an appreciable plastic strain at fracture. It can be concluded that metallic glasses (amorphous phases) are alternative reinforcement material for lightweight metal matrix composites capable of producing high strength and adequate ductility. However, this is in the expense of minor density increase.

Keywords: aluminum matrix composite, amorphous phase, mechanical alloying, spark plasma sintering

Procedia PDF Downloads 361
1016 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 172
1015 Identification and Characterization of Small Peptides Encoded by Small Open Reading Frames using Mass Spectrometry and Bioinformatics

Authors: Su Mon Saw, Joe Rothnagel

Abstract:

Short open reading frames (sORFs) located in 5’UTR of mRNAs are known as uORFs. Characterization of uORF-encoded peptides (uPEPs) i.e., a subset of short open reading frame encoded peptides (sPEPs) and their translation regulation lead to understanding of causes of genetic disease, proteome complexity and development of treatments. Existence of uORFs within cellular proteome could be detected by LC-MS/MS. The ability of uORF to be translated into uPEP and achievement of uPEP identification will allow uPEP’s characterization, structures, functions, subcellular localization, evolutionary maintenance (conservation in human and other species) and abundance in cells. It is hypothesized that a subset of sORFs are translatable and that their encoded sPEPs are functional and are endogenously expressed contributing to the eukaryotic cellular proteome complexity. This project aimed to investigate whether sORFs encode functional peptides. Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics were thus employed. Due to probable low abundance of sPEPs and small in sizes, the need for efficient peptide enrichment strategies for enriching small proteins and depleting the sub-proteome of large and abundant proteins is crucial for identifying sPEPs. Low molecular weight proteins were extracted using SDS-PAGE from Human Embryonic Kidney (HEK293) cells and Strong Cation Exchange Chromatography (SCX) from secreted HEK293 cells. Extracted proteins were digested by trypsin to peptides, which were detected by LC-MS/MS. The MS/MS data obtained was searched against Swiss-Prot using MASCOT version 2.4 to filter out known proteins, and all unmatched spectra were re-searched against human RefSeq database. ProteinPilot v5.0.1 was used to identify sPEPs by searching against human RefSeq, Vanderperre and Human Alternative Open Reading Frame (HaltORF) databases. Potential sPEPs were analyzed by bioinformatics. Since SDS PAGE electrophoresis could not separate proteins <20kDa, this could not identify sPEPs. All MASCOT-identified peptide fragments were parts of main open reading frame (mORF) by ORF Finder search and blastp search. No sPEP was detected and existence of sPEPs could not be identified in this study. 13 translated sORFs in HEK293 cells by mass spectrometry in previous studies were characterized by bioinformatics. Identified sPEPs from previous studies were <100 amino acids and <15 kDa. Bioinformatics results showed that sORFs are translated to sPEPs and contribute to proteome complexity. uPEP translated from uORF of SLC35A4 was strongly conserved in human and mouse while uPEP translated from uORF of MKKS was strongly conserved in human and Rhesus monkey. Cross-species conserved uORFs in association with protein translation strongly suggest evolutionary maintenance of coding sequence and indicate probable functional expression of peptides encoded within these uORFs. Translation of sORFs was confirmed by mass spectrometry and sPEPs were characterized with bioinformatics.

Keywords: bioinformatics, HEK293 cells, liquid chromatography-mass spectrometry, ProteinPilot, Strong Cation Exchange Chromatography, SDS-PAGE, sPEPs

Procedia PDF Downloads 186
1014 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide

Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama

Abstract:

The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.

Keywords: carbon sphere, graphene oxide, reduction, layer by layer

Procedia PDF Downloads 140
1013 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 449
1012 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan

Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow

Abstract:

Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 µg/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.

Keywords: pharmaceuticals, personal care products, wastewater, Jordan

Procedia PDF Downloads 328
1011 Pre-Analysis of Printed Circuit Boards Based on Multispectral Imaging for Vision Based Recognition of Electronics Waste

Authors: Florian Kleber, Martin Kampel

Abstract:

The increasing demand of gallium, indium and rare-earth elements for the production of electronics, e.g. solid state-lighting, photovoltaics, integrated circuits, and liquid crystal displays, will exceed the world-wide supply according to current forecasts. Recycling systems to reclaim these materials are not yet in place, which challenges the sustainability of these technologies. This paper proposes a multispectral imaging system as a basis for a vision based recognition system for valuable components of electronics waste. Multispectral images intend to enhance the contrast of images of printed circuit boards (single components, as well as labels) for further analysis, such as optical character recognition and entire printed circuit board recognition. The results show that a higher contrast is achieved in the near infrared compared to ultraviolet and visible light.

Keywords: electronics waste, multispectral imaging, printed circuit boards, rare-earth elements

Procedia PDF Downloads 414
1010 Charge Transport of Individual Thermoelectric Bi₂Te₃ Core-Poly(3,4-Ethylenedioxythiophene):Polystyrenesulfonate Shell Nanowires Determined Using Conductive Atomic Force Microscopy and Spectroscopy

Authors: W. Thongkham, K. Sinthiptharakoon, K. Tantisantisom, A. Klamchuen, P. Khanchaitit, K. Jiramitmongkon, C. Lertsatitthanakorn, M. Liangruksa

Abstract:

Due to demands of sustainable energy, thermoelectricity converting waste heat into electrical energy has become one of the intensive fields of worldwide research. However, such harvesting technology has shown low device performance in the temperature range below 150℃. In this work, a hybrid nanowire of inorganic bismuth telluride (Bi₂Te₃) and organic poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) synthesized using a simple in-situ one-pot synthesis, enhancing efficiency of the nanowire-incorporated PEDOT:PSS-based thermoelectric converter is highlighted. Since the improvement is ascribed to the increased electrical conductivity of the thermoelectric host material, the individual hybrid nanowires are investigated using voltage-dependent conductive atomic force microscopy (CAFM) and spectroscopy (CAFS) considering that the electrical transport measurement can be performed either on insulating or conducting areas of the sample. Correlated with detailed chemical information on the crystalline structure and compositional profile of the nanowire core-shell structure, an electrical transporting pathway through the nanowire and the corresponding electronic-band structure have been determined, in which the native oxide layer on the Bi₂Te₃ surface is not considered, and charge conduction on the topological surface states of Bi₂Te₃ is suggested. Analyzing the core-shell nanowire synthesized using the conventional mixing of as-prepared Bi₂Te₃ nanowire with PEDOT:PSS for comparison, the oxide-removal effect of the in-situ encapsulating polymeric layer is further supported. The finding not only provides a structural information for mechanistic determination of the thermoelectricity, but it also encourages new approach toward more appropriate encapsulation and consequently higher efficiency of the nanowire-based thermoelectric generation.

Keywords: electrical transport measurement, hybrid Bi₂Te₃-PEDOT:PSS nanowire, nanoencapsulation, thermoelectricity, topological insulator

Procedia PDF Downloads 203
1009 Applications of Nanoparticles via Laser Ablation in Liquids: A Review

Authors: Fawaz M. Abdullah, Abdulrahman M. Al-Ahmari, Madiha Rafaqat

Abstract:

Laser ablation of any solid target in the liquid leads to fabricate nanoparticles (NPs) with metal or different compositions of materials such as metals, alloys, oxides, carbides, hydroxides. The fabrication of NPs in liquids based on laser ablation has grown up rapidly in the last decades compared to other techniques. Nowadays, laser ablation has been improved to prepare different types of NPs with special morphologies, microstructures, phases, and sizes, which can be applied in various fields. The paper reviews and highlights the different sizes, shapes and application field of nanoparticles that are produced by laser ablation under different liquids and materials. Also, the paper provides a case study for producing a titanium NPs produced by laser ablation submerged in distilled water. The size of NPs is an important parameter, especially for their usage and applications. The size and shape have been analyzed by SEM, (EDAX) was applied to evaluate the oxidation and elements of titanium NPs and the XRD was used to evaluate the phase composition and the peaks of both titanium and some element. SEM technique showed that the synthesized NPs size ranges were between 15-35 nm which can be applied in various field such as annihilator for cancerous cell etc.

Keywords: nanoparticles, laser ablation, titanium NPs, applications

Procedia PDF Downloads 138
1008 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation

Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi

Abstract:

The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.

Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation

Procedia PDF Downloads 506
1007 Synthesis of Green Fuel Additive from Waste Bio-Glycerol

Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai

Abstract:

Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.

Keywords: bio-acetone, bio-glycerol, acetylation, solketal

Procedia PDF Downloads 261