Search results for: far field intensity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9825

Search results for: far field intensity

8475 Patent on Brian: Brain Waves Stimulation

Authors: Jalil Qoulizadeh, Hasan Sadeghi

Abstract:

Brain waves are electrical wave patterns that are produced in the human brain. Knowing these waves and activating them can have a positive effect on brain function and ultimately create an ideal life. The brain has the ability to produce waves from 0.1 to above 65 Hz. (The Beta One device produces exactly these waves) This is because it is said that the waves produced by the Beta One device exactly match the waves produced by the brain. The function and method of this device is based on the magnetic stimulation of the brain. The technology used in the design and producƟon of this device works in a way to strengthen and improve the frequencies of brain waves with a pre-defined algorithm according to the type of requested function, so that the person can access the expected functions in life activities. to perform better. The effect of this field on neurons and their stimulation: In order to evaluate the effect of this field created by the device, on the neurons, the main tests are by conducting electroencephalography before and after stimulation and comparing these two baselines by qEEG or quantitative electroencephalography method using paired t-test in 39 subjects. It confirms the significant effect of this field on the change of electrical activity recorded after 30 minutes of stimulation in all subjects. The Beta One device is able to induce the appropriate pattern of the expected functions in a soft and effective way to the brain in a healthy and effective way (exactly in accordance with the harmony of brain waves), the process of brain activities first to a normal state and then to a powerful one. Production of inexpensive neuroscience equipment (compared to existing rTMS equipment) Magnetic brain stimulation for clinics - homes - factories and companies - professional sports clubs.

Keywords: stimulation, brain, waves, betaOne

Procedia PDF Downloads 81
8474 Boundary Layer Flow of a Casson Nanofluid Past a Vertical Exponentially Stretching Cylinder in the Presence of a Transverse Magnetic Field with Internal Heat Generation/Absorption

Authors: G. Sarojamma, K. Vendabai

Abstract:

An analysis is carried out to investigate the effect of magnetic field and heat source on the steady boundary layer flow and heat transfer of a Casson nanofluid over a vertical cylinder stretching exponentially along its radial direction. Using a similarity transformation, the governing mathematical equations, with the boundary conditions are reduced to a system of coupled, non –linear ordinary differential equations. The resulting system is solved numerically by the fourth order Runge – Kutta scheme with shooting technique. The influence of various physical parameters such as Reynolds number, Prandtl number, magnetic field, Brownian motion parameter, thermophoresis parameter, Lewis number and the natural convection parameter are presented graphically and discussed for non – dimensional velocity, temperature and nanoparticle volume fraction. Numerical data for the skin – friction coefficient, local Nusselt number and the local Sherwood number have been tabulated for various parametric conditions. It is found that the local Nusselt number is a decreasing function of Brownian motion parameter Nb and the thermophoresis parameter Nt.

Keywords: casson nanofluid, boundary layer flow, internal heat generation/absorption, exponentially stretching cylinder, heat transfer, brownian motion, thermophoresis

Procedia PDF Downloads 389
8473 Similarity Solutions of Nonlinear Stretched Biomagnetic Flow and Heat Transfer with Signum Function and Temperature Power Law Geometries

Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows

Abstract:

Biomagnetic fluid dynamics is an interdisciplinary field comprising engineering, medicine, and biology. Bio fluid dynamics is directed towards finding and developing the solutions to some of the human body related diseases and disorders. This article describes the flow and heat transfer of two dimensional, steady, laminar, viscous and incompressible biomagnetic fluid over a non-linear stretching sheet in the presence of magnetic dipole. Our model is consistent with blood fluid namely biomagnetic fluid dynamics (BFD). This model based on the principles of ferrohydrodynamic (FHD). The temperature at the stretching surface is assumed to follow a power law variation, and stretching velocity is assumed to have a nonlinear form with signum function or sign function. The governing boundary layer equations with boundary conditions are simplified to couple higher order equations using usual transformations. Numerical solutions for the governing momentum and energy equations are obtained by efficient numerical techniques based on the common finite difference method with central differencing, on a tridiagonal matrix manipulation and on an iterative procedure. Computations are performed for a wide range of the governing parameters such as magnetic field parameter, power law exponent temperature parameter, and other involved parameters and the effect of these parameters on the velocity and temperature field is presented. It is observed that for different values of the magnetic parameter, the velocity distribution decreases while temperature distribution increases. Besides, the finite difference solutions results for skin-friction coefficient and rate of heat transfer are discussed. This study will have an important bearing on a high targeting efficiency, a high magnetic field is required in the targeted body compartment.

Keywords: biomagnetic fluid, FHD, MHD, nonlinear stretching sheet

Procedia PDF Downloads 161
8472 Factors Impacting Training and Adult Education Providers’ Business Performance: The Singapore Context

Authors: Zan Chen, D. Kwok

Abstract:

The SkillsFuture Singapore’s mission to develop a responsive and forward-looking Training and Adult Education (TAE) and workforce development system is undergirded by how successful TAE providers are in their business performance and strategies that strengthen their operational efficiency and processes. Therefore, understanding the factors that drive the business performance of TAE providers is critical to the success of SkillsFuture Singapore’s initiatives. This study aims to investigate how business strategy, work autonomy, work intensity and professional development support impact the business performance of private TAE providers. Specifically, the three research questions are: (1) Are there significant relationships between the above-mentioned four factors and TAE providers’ business performance?; (2) Are there significant differences on the four factors between low and high TAE providers’ business performance groups?; and (3) To what extent and in what manner do the four factors predict TAE providers’ business performance? This was part of the first national study on organizations and professionals working in the Training and Adult Education (TAE) sector. Data from 265 private TAE providers where respondents were Chief Executive Officers representatives from the Senior Management were analyzed. The results showed that business strategy (the extent that the organization leads the way in terms of developing new products and services; uses up-to-date learning technologies; customizes its products and services to the client’s needs), work autonomy (the extent that the staff personally have an influence on how hard they work; deciding what tasks they are to do; deciding how they are to do the tasks, and deciding the quality standards to which they work) and professional development support (both monetary and non-monetary support and incentives) had positive and significant relationships with business performance. However, no significant relationship is found between work intensity and business performance. A business strategy, work autonomy and professional development support were significantly higher in the high business performance group compared to the low-performance group among the TAE providers. Results of hierarchical regression analyses controlling for the size of the TAE providers showed significant impacts of business strategy, work autonomy and professional development support on TAE providers’ business performance. Overall, the model accounted for 27% of the variance in TAE providers’ business performance. This study provides policymakers with insights into improving existing policies, designing new initiatives and implementing targeting interventions to support TAE providers. The findings also have implications on how the TAE providers could better formulate their organizational strategies and business models. Finally, limitations of study, along with directions for future research will be discussed in the paper.

Keywords: adult education, business performance, business strategy, training, work autonomy

Procedia PDF Downloads 208
8471 Numerical Investigation of Blood Flow around a Leaflet Valve through a Perforating Vein

Authors: Zohreh Sheidaei, Farhad Sadegh Moghanlou, Rahim Vesal

Abstract:

Diseases related to leg venous system are common worldwide. An incompetent vein with deformed wall and insufficient valves affects flow field of blood and disrupts the process of blood circulating system. Having enough knowledge about the flow field through veins will help find new ways to cure the related diseases. In the present study, blood flow around a leaflet valve of a perforating vein is investigated numerically by Finite Element Method. Flow behavior and vortexes, generated around the leaflet valves, are studied considering valve opening percentage. Obtained velocity and pressure fields show mechanical stresses on vein wall and these valves and consequently introduce the regions susceptible to deformation.

Keywords: fluid flow, leaflet valve, numerical investigation, perforating vein

Procedia PDF Downloads 411
8470 Quasistationary States and Mean Field Model

Authors: Sergio Curilef, Boris Atenas

Abstract:

Systems with long-range interactions are very common in nature. They are observed from the atomic scale to the astronomical scale and exhibit anomalies, such as inequivalence of ensembles, negative heat capacity, ergodicity breaking, nonequilibrium phase transitions, quasistationary states, and anomalous diffusion. These anomalies are exacerbated when special initial conditions are imposed; in particular, we use the so-called water bag initial conditions that stand for a uniform distribution. Several theoretical and practical implications are discussed here. A potential energy inspired by dipole-dipole interactions is proposed to build the dipole-type Hamiltonian mean-field model. As expected, the dynamics is novel and general to the behavior of systems with long-range interactions, which is obtained through molecular dynamics technique. Two plateaus sequentially emerge before arriving at equilibrium, which are corresponding to two different quasistationary states. The first plateau is a type of quasistationary state the lifetime of which depends on a power law of N and the second plateau seems to be a true quasistationary state as reported in the literature. The general behavior of the model according to its dynamics and thermodynamics is described. Using numerical simulation we characterize the mean kinetic energy, caloric curve, and the diffusion law through the mean square of displacement. The present challenge is to characterize the distributions in phase space. Certainly, the equilibrium state is well characterized by the Gaussian distribution, but quasistationary states in general depart from any Gaussian function.

Keywords: dipole-type interactions, dynamics and thermodynamics, mean field model, quasistationary states

Procedia PDF Downloads 211
8469 The Impact of Three Different Insecticides Against Fall Armyworms on Maize Productivity, in Somalia

Authors: Ahmed Ali Hassan

Abstract:

The fall armyworm (FAW) was first identified in 2016 in Africa. FAW is widely distributed in Somalia and severely damages the maize crop. The effect of three different pesticides used to control the autumn armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera), on maize productivity was investigated in this study. During the 2020–2021 growing season, three insecticides (Malathion 57 EC, Ampligo150 ZC, and Carbryle 85 WP) were evaluated at field demonstration plots. Our result showed that significant mortality of S. frugiperda was observed on the treatment plot treated with Amplico. After spraying, Ampligo resulted in (92.200%) larval death. Compared to Carbaryl, which was less active and only caused 36.367% mortality after application, Malathion had a moderate mortality rate of 53.733%. Consequently, our current finding shows that the three selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions, and the most effective treatment was Amplico.

Keywords: maize, fall armyworm, insecticides, mortality

Procedia PDF Downloads 25
8468 Heat Transfer Enhancement by Turbulent Impinging Jet with Jet's Velocity Field Excitations Using OpenFOAM

Authors: Naseem Uddin

Abstract:

Impinging jets are used in variety of engineering and industrial applications. This paper is based on numerical simulations of heat transfer by turbulent impinging jet with velocity field excitations using different Reynolds Averaged Navier-Stokes Equations models. Also Detached Eddy Simulations are conducted to investigate the differences in the prediction capabilities of these two simulation approaches. In this paper the excited jet is simulated in non-commercial CFD code OpenFOAM with the goal to understand the influence of dynamics of impinging jet on heat transfer. The jet’s frequencies are altered keeping in view the preferred mode of the jet. The Reynolds number based on mean velocity and diameter is 23,000 and jet’s outlet-to-target wall distance is 2. It is found that heat transfer at the target wall can be influenced by judicious selection of amplitude and frequencies.

Keywords: excitation, impinging jet, natural frequency, turbulence models

Procedia PDF Downloads 273
8467 Detailed Analysis of Multi-Mode Optical Fiber Infrastructures for Data Centers

Authors: Matej Komanec, Jan Bohata, Stanislav Zvanovec, Tomas Nemecek, Jan Broucek, Josef Beran

Abstract:

With the exponential growth of social networks, video streaming and increasing demands on data rates, the number of newly built data centers rises proportionately. The data centers, however, have to adjust to the rapidly increased amount of data that has to be processed. For this purpose, multi-mode (MM) fiber based infrastructures are often employed. It stems from the fact, the connections in data centers are typically realized within a short distance, and the application of MM fibers and components considerably reduces costs. On the other hand, the usage of MM components brings specific requirements for installation service conditions. Moreover, it has to be taken into account that MM fiber components have a higher production tolerance for parameters like core and cladding diameters, eccentricity, etc. Due to the high demands for the reliability of data center components, the determination of properly excited optical field inside the MM fiber core belongs to the key parameters while designing such an MM optical system architecture. Appropriately excited mode field of the MM fiber provides optimal power budget in connections, leads to the decrease of insertion losses (IL) and achieves effective modal bandwidth (EMB). The main parameter, in this case, is the encircled flux (EF), which should be properly defined for variable optical sources and consequent different mode-field distribution. In this paper, we present detailed investigation and measurements of the mode field distribution for short MM links purposed in particular for data centers with the emphasis on reliability and safety. These measurements are essential for large MM network design. The various scenarios, containing different fibers and connectors, were tested in terms of IL and mode-field distribution to reveal potential challenges. Furthermore, we focused on estimation of particular defects and errors, which can realistically occur like eccentricity, connector shifting or dust, were simulated and measured, and their dependence to EF statistics and functionality of data center infrastructure was evaluated. The experimental tests were performed at two wavelengths, commonly used in MM networks, of 850 nm and 1310 nm to verify EF statistics. Finally, we provide recommendations for data center systems and networks, using OM3 and OM4 MM fiber connections.

Keywords: optical fiber, multi-mode, data centers, encircled flux

Procedia PDF Downloads 375
8466 Mapping the Turbulence Intensity and Excess Energy Available to Small Wind Systems over 4 Major UK Cities

Authors: Francis C. Emejeamara, Alison S. Tomlin, James Gooding

Abstract:

Due to the highly turbulent nature of urban air flows, and by virtue of the fact that turbines are likely to be located within the roughness sublayer of the urban boundary layer, proposed urban wind installations are faced with major challenges compared to rural installations. The challenge of operating within turbulent winds can however, be counteracted by the development of suitable gust tracking solutions. In order to assess the cost effectiveness of such controls, a detailed understanding of the urban wind resource, including its turbulent characteristics, is required. Estimating the ambient turbulence and total kinetic energy available at different control response times is essential in evaluating the potential performance of wind systems within the urban environment should effective control solutions be employed. However, high resolution wind measurements within the urban roughness sub-layer are uncommon, and detailed CFD modelling approaches are too computationally expensive to apply routinely on a city wide scale. This paper therefore presents an alternative semi-empirical methodology for estimating the excess energy content (EEC) present in the complex and gusty urban wind. An analytical methodology for predicting the total wind energy available at a potential turbine site is proposed by assessing the relationship between turbulence intensities and EEC, for different control response times. The semi-empirical model is then incorporated with an analytical methodology that was initially developed to predict mean wind speeds at various heights within the built environment based on detailed mapping of its aerodynamic characteristics. Based on the current methodology, additional estimates of turbulence intensities and EEC allow a more complete assessment of the available wind resource. The methodology is applied to 4 UK cities with results showing the potential of mapping turbulence intensities and the total wind energy available at different heights within each city. Considering the effect of ambient turbulence and choice of wind system, the wind resource over neighbourhood regions (of 250 m uniform resolution) and building rooftops within the 4 cities were assessed with results highlighting the promise of mapping potential turbine sites within each city.

Keywords: excess energy content, small-scale wind, turbulence intensity, urban wind energy, wind resource assessment

Procedia PDF Downloads 474
8465 Vibrational Behavior of Cylindrical Shells in Axial Magnetic Field

Authors: Sedrak Vardanyan

Abstract:

The investigation of the vibrational character of magnetic cylindrical shells placed in an axial magnetic field has important practical applications. In this work, we study the vibrational behaviour of such a cylindrical shell by making use of the so-called exact space treatment, which does not assume any hypothesis. We discuss the effects of several practically important boundary conditions on the vibrations of the described setup. We find that, for some cases of boundary conditions, e.g. clamped, simply supported or peripherally earthed, as well as for some values of the wave numbers, the vibrational frequencies of the shell are approximately zero. The theoretical and numerical exploration of this fact confirms that the vibrations are absent or attenuate very rapidly. For all the considered cases, the imaginary part of the frequencies is negative, which implies stability for the vibrational process.

Keywords: bending vibrational frequencies, exact space treatment, free vibrations, magnetic cylindrical shells

Procedia PDF Downloads 279
8464 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. That is why the need for automation of this task is urgent. A lot of studies have investigated the subject using different standard image processing descriptors and sometimes hand-crafted ones.In this work, we make a comparative study between classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN, Autoencoders, Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches

Keywords: pollens identification, features extraction, pollens classification, automated palynology

Procedia PDF Downloads 136
8463 Frontier Dynamic Tracking in the Field of Urban Plant and Habitat Research: Data Visualization and Analysis Based on Journal Literature

Authors: Shao Qi

Abstract:

The article uses the CiteSpace knowledge graph analysis tool to sort and visualize the journal literature on urban plants and habitats in the Web of Science and China National Knowledge Infrastructure databases. Based on a comprehensive interpretation of the visualization results of various data sources and the description of the intrinsic relationship between high-frequency keywords using knowledge mapping, the research hotspots, processes and evolution trends in this field are analyzed. Relevant case studies are also conducted for the hotspot contents to explore the means of landscape intervention and synthesize the understanding of research theories. The results show that (1) from 1999 to 2022, the research direction of urban plants and habitats gradually changed from focusing on plant and animal extinction and biological invasion to the field of human urban habitat creation, ecological restoration, and ecosystem services. (2) The results of keyword emergence and keyword growth trend analysis show that habitat creation research has shown a rapid and stable growth trend since 2017, and ecological restoration has gained long-term sustained attention since 2004. The hotspots of future research on urban plants and habitats in China may focus on habitat creation and ecological restoration.

Keywords: research trends, visual analysis, habitat creation, ecological restoration

Procedia PDF Downloads 61
8462 Integrated Mathematical Modeling and Advance Visualization of Magnetic Nanoparticle for Drug Delivery, Drug Release and Effects to Cancer Cell Treatment

Authors: Norma Binti Alias, Che Rahim Che The, Norfarizan Mohd Said, Sakinah Abdul Hanan, Akhtar Ali

Abstract:

This paper discusses on the transportation of magnetic drug targeting through blood within vessels, tissues and cells. There are three integrated mathematical models to be discussed and analyze the concentration of drug and blood flow through magnetic nanoparticles. The cell therapy brought advancement in the field of nanotechnology to fight against the tumors. The systematic therapeutic effect of Single Cells can reduce the growth of cancer tissue. The process of this nanoscale phenomena system is able to measure and to model, by identifying some parameters and applying fundamental principles of mathematical modeling and simulation. The mathematical modeling of single cell growth depends on three types of cell densities such as proliferative, quiescent and necrotic cells. The aim of this paper is to enhance the simulation of three types of models. The first model represents the transport of drugs by coupled partial differential equations (PDEs) with 3D parabolic type in a cylindrical coordinate system. This model is integrated by Non-Newtonian flow equations, leading to blood liquid flow as the medium for transportation system and the magnetic force on the magnetic nanoparticles. The interaction between the magnetic force on drug with magnetic properties produces induced currents and the applied magnetic field yields forces with tend to move slowly the movement of blood and bring the drug to the cancer cells. The devices of nanoscale allow the drug to discharge the blood vessels and even spread out through the tissue and access to the cancer cells. The second model is the transport of drug nanoparticles from the vascular system to a single cell. The treatment of the vascular system encounters some parameter identification such as magnetic nanoparticle targeted delivery, blood flow, momentum transport, density and viscosity for drug and blood medium, intensity of magnetic fields and the radius of the capillary. Based on two discretization techniques, finite difference method (FDM) and finite element method (FEM), the set of integrated models are transformed into a series of grid points to get a large system of equations. The third model is a single cell density model involving the three sets of first order PDEs equations for proliferating, quiescent and necrotic cells change over time and space in Cartesian coordinate which regulates under different rates of nutrients consumptions. The model presents the proliferative and quiescent cell growth depends on some parameter changes and the necrotic cells emerged as the tumor core. Some numerical schemes for solving the system of equations are compared and analyzed. Simulation and computation of the discretized model are supported by Matlab and C programming languages on a single processing unit. Some numerical results and analysis of the algorithms are presented in terms of informative presentation of tables, multiple graph and multidimensional visualization. As a conclusion, the integrated of three types mathematical modeling and the comparison of numerical performance indicates that the superior tool and analysis for solving the complete set of magnetic drug delivery system which give significant effects on the growth of the targeted cancer cell.

Keywords: mathematical modeling, visualization, PDE models, magnetic nanoparticle drug delivery model, drug release model, single cell effects, avascular tumor growth, numerical analysis

Procedia PDF Downloads 428
8461 On Quasi Conformally Flat LP-Sasakian Manifolds with a Coefficient α

Authors: Jay Prakash Singh

Abstract:

The aim of the present paper is to study properties of Quasi conformally flat LP-Sasakian manifolds with a coefficient α. In this paper, we prove that a Quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α is an η−Einstein and in a quasi conformally flat LP-Sasakian manifold M (n > 3) with a constant coefficient α if the scalar curvature tensor is constant then M is of constant curvature.

Keywords: LP-Sasakian manifolds, quasi-conformal curvature tensor, concircular vector field, torse forming vector field, Einstein manifold

Procedia PDF Downloads 792
8460 Experimental Performance and Numerical Simulation of Double Glass Wall

Authors: Thana Ananacha

Abstract:

This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered namely 400 and 800 W.m-2 the corresponding initial condition temperatures were to 30.5 and 38.5 ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.

Keywords: thermal simulation, Double Glass Wall, velocity field, finite element method (FEM)

Procedia PDF Downloads 359
8459 Magneto-Solutal Convection in Newtonian Fluid Layer with Modulated Gravity

Authors: Om Prakash Keshri, Anand Kumar, Vinod K. Gupta

Abstract:

In the present study, the effect of gravity modulation on the onset of convection in viscous fluid layer under the influence of induced magnetic field, salted from above on the boundaries, has been investigated. Linear and nonlinear stability analysis has been performed. A linear stability analysis is performed to show that the gravity modulation can significantly affect the stability limits of the system. A method based on small amplitude of the modulation is used to compute the critical value of Rayleigh number and wave number. The effect of Smith number, salute Rayleigh number and magnetic Prandtl number on the stability of the system is investigated.

Keywords: viscous fluid, induced magnetic field, gravity modulation, salute convection

Procedia PDF Downloads 190
8458 Possible Exposure of Persons with Cardiac Pacemakers to Extremely Low Frequency (ELF) Electric and Magnetic Fields

Authors: Leena Korpinen, Rauno Pääkkönen, Fabriziomaria Gobba, Vesa Virtanen

Abstract:

The number of persons with implanted cardiac pacemakers (PM) has increased in Western countries. The aim of this paper is to investigate the possible situations where persons with a PM may be exposed to extremely low frequency (ELF) electric (EF) and magnetic fields (MF) that may disturb their PM. Based on our earlier studies, it is possible to find such high public exposure to EFs only in some places near 400 kV power lines, where an EF may disturb a PM in unipolar mode. Such EFs cannot be found near 110 kV power lines. Disturbing MFs can be found near welding machines. However, we do not have measurement data from welding. Based on literature and earlier studies at Tampere University of Technology, it is difficult to find public EF or MF exposure that is high enough to interfere with PMs.

Keywords: cardiac pacemaker, electric field, magnetic field, electrical engineering

Procedia PDF Downloads 432
8457 Linking Theory to Practice: An Analysis of Papers Submitted by Participants in a Teacher Mentoring Course

Authors: Varda Gil, Ella Shoval, Tussia Mira

Abstract:

Teacher mentoring is a complex practical profession whose unique characteristic is the teacher-mentors' commitment to helping teachers link theory with teaching practice in the process of decision-making and in their reflections on teaching. The aim of this research is to examine the way practicing teacher-mentors participating in a teacher mentoring course made the connection between theory and practice. The researchers analyzed 20 final papers submitted by participants in a course to train teacher mentors. The participants were all veteran high-school teachers. The course comprised 112 in-class hours in addition to mentoring novices in the field. The course covered the following topics: The teacher-mentors' perception of their role; formative and summative evaluation of the novices; tutoring strategies and tools; types of learners; and ways of communicating and dealing with novice teachers' resistance to counseling. The course participants were required to write a 4-5 page reflective summary of their field mentoring practice. In addition, they were required to link theories explicitly learned in the course to their practice in the field. A qualitative analysis of the papers led to the creation of the taxonomy of the link between theory and practice relating to four topics: The kinds of links made between theory and practice, the quality of these links, the links made between private teaching theories and official teaching theory, and the qualities of these links. This taxonomy may prove to be a useful tool in the teacher-mentor training processes.

Keywords: taxonomy, teacher-mentors, theory, practice, teacher-mentor training

Procedia PDF Downloads 354
8456 FPGA Implementation of Adaptive Clock Recovery for TDMoIP Systems

Authors: Semih Demir, Anil Celebi

Abstract:

Circuit switched networks widely used until the end of the 20th century have been transformed into packages switched networks. Time Division Multiplexing over Internet Protocol (TDMoIP) is a system that enables Time Division Multiplexing (TDM) traffic to be carried over packet switched networks (PSN). In TDMoIP systems, devices that send TDM data to the PSN and receive it from the network must operate with the same clock frequency. In this study, it was aimed to implement clock synchronization process in Field Programmable Gate Array (FPGA) chips using time information attached to the packages received from PSN. The designed hardware is verified using the datasets obtained for the different carrier types and comparing the results with the software model. Field tests are also performed by using the real time TDMoIP system.

Keywords: clock recovery on TDMoIP, FPGA, MATLAB reference model, clock synchronization

Procedia PDF Downloads 278
8455 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques

Authors: Masoomeh Alsadat Mirshafaei

Abstract:

The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.

Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest

Procedia PDF Downloads 37
8454 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada

Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck

Abstract:

It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.

Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions

Procedia PDF Downloads 333
8453 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂

Authors: Ankita Tiwari, Jyoti Saini, Subhasis Ghosh

Abstract:

For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions.

Keywords: Van der Waal ferromagnet, 2D ferromagnetism, phase transition, itinerant ferromagnetism, long range order

Procedia PDF Downloads 71
8452 Tectonic Complexity: Out-of-Sequence Thrusting in the Higher Himalaya of Jhakri-Sarahan region, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

The study focuses on the tectonics of out-of-sequence thrusting (OOST) in the NW region of the Himalaya, particularly in Himachal Pradesh. The research aims to identify the features and nature of OOST in the field and the associated rock types and lithological boundaries in the field of NW Himalaya, Himachal Pradesh, India. The research employs fieldwork and micro-structure observations, correlations, and analyses to identify and analyze the OOST features and associated rock types. The study reveals the presence of three OOSTs, namely Jhakri Thrust (JT), Sarahan Thrust (ST), and Chaura Thrust (CT), which consist of several branches, some of which are still active. The thrust system exhibits varying internal geometry, including box folds, boudins, scar folds, crenulation cleavages, kink folds, and tension gashes. The CT, which is concealed beneath Jutogh Thrust sheet, represents a steepened downward thrust, while the JT has a western dip and is south-westward verging. The research provides crucial information on the tectonics of OOST in the NW region of the Himalaya, particularly in Himachal Pradesh, which is crucial in understanding the regional geological evolution and associated hazards. The data were collected through fieldwork and micro-structure observations, correlations, and analyses of rock samples. The data were analyzed using tectonic and geochronological techniques to identify the nature and characteristics of OOST. The research addressed the question of identifying Higher Himalayan OOST in the field of NW Himalaya, Himachal Pradesh, India, and the associated rock types and lithological boundaries. The study concludes that there is minimal documentation and a lack of suitable exposure of rocks to generalize the features of OOST in the field in NW Higher Himalaya, Himachal Pradesh. The study recommends more extensive mapping and fieldwork to improve understanding of OOST in the region.

Keywords: out-of-sequence thrust (OOST), main central thrust (MCT), jhakri thrust (JT), sarahan thrust (ST), chaura thrust (CT), higher himalaya (HH)

Procedia PDF Downloads 91
8451 Measuring Greenhouse Gas Exchange from Paddy Field Using Eddy Covariance Method in Mekong Delta, Vietnam

Authors: Vu H. N. Khue, Marian Pavelka, Georg Jocher, Jiří Dušek, Le T. Son, Bui T. An, Ho Q. Bang, Pham Q. Huong

Abstract:

Agriculture is an important economic sector of Vietnam, the most popular of which is wet rice cultivation. These activities are also known as the main contributor to the national greenhouse gas. In order to understand more about greenhouse gas exchange in these activities and to investigate the factors influencing carbon cycling and sequestration in these types of ecosystems, since 2019, the first eddy covariance station has been installed in a paddy field in Long An province, Mekong Delta. The station was equipped with state-of-the-art equipment for CO₂ and CH₄ gas exchange and micrometeorology measurements. In this study, data from the station was processed following the ICOS recommendations (Integrated Carbon Observation System) standards for CO₂, while CH₄ was manually processed and gap-filled using a random forest model from methane-gapfill-ml, a machine learning package, as there is no standard method for CH₄ flux gap-filling yet. Finally, the carbon equivalent (Ce) balance based on CO₂ and CH₄ fluxes was estimated. The results show that in 2020, even though a new water management practice - alternate wetting and drying - was applied to reduce methane emissions, the paddy field released 928 g Cₑ.m⁻².yr⁻¹, and in 2021, it was reduced to 707 g Cₑ.m⁻².yr⁻¹. On a provincial level, rice cultivation activities in Long An, with a total area of 498,293 ha, released 4.6 million tons of Cₑ in 2020 and 3.5 million tons of Cₑ in 2021.

Keywords: eddy covariance, greenhouse gas, methane, rice cultivation, Mekong Delta

Procedia PDF Downloads 142
8450 Economic Analysis of Endogenous Growth Model with ICT Capital

Authors: Shoji Katagiri, Hugang Han

Abstract:

This paper clarifies the role of ICT capital in Economic Growth. Albeit ICT remarkably contributes to economic growth, there are few studies on ICT capital in ICT sector from theoretical point of view. In this paper, production function of ICT which is used as input of intermediate good in final good and ICT sectors is incorporated into our model. In this setting, we analyze the role of ICT on balance growth path and show the possibility of general equilibrium solutions for this model. Through the simulation of the equilibrium solutions, we find that when ICT impacts on economy and economic growth increases, it is necessary that increases of efficiency at ICT sector and of accumulation of non-ICT and ICT capitals occur simultaneously.

Keywords: endogenous economic growth, ICT, intensity, capital accumulation

Procedia PDF Downloads 455
8449 Solution Growth of Titanium Nitride Nanowires for Implantation Application

Authors: Roaa Sait, Richard Cross

Abstract:

The synthesis and characterization of one dimensional nanostructure such as nanowires has received considerable attention. Much effort has concentrated on TiN material especially in the biological field due to its useful and unique properties in this field. Therefore, for the purpose of this project, synthesis of Titanium Nitride (TiN) nanowires (NWs) will be presented. They will be synthesised by growing titanium dioxide (Ti) NWs in an aqueous solution at low temperatures under atmospheric pressure. Then the grown nanowires will undergo a 'Nitrodation process' in which results in the formation of TiN NWs. The structure, morphology and composition of the grown nanowires will be characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD) and Cyclic Voltammetry (CV). Obtaining TiN NWs is a challenging task since it has not been formulated before, as far as we acknowledge. This might be due to the fact that nitriding Ti NWs can be difficult in terms of optimizing experimental parameters.

Keywords: nanowires, dissolution-growth, nucleation, PECVD, deposition, spin coating, scanning electron microscopic analysis, cyclic voltammetry analysis

Procedia PDF Downloads 360
8448 Neuropedagogy as a Scientific Discipline: Interdisciplinary Description of the Theoretical Basis for the Development of a Research Field

Authors: M. Chojak

Abstract:

Recently, more and more scientific disciplines refer to research in the field of neurobiology. Interdisciplinary research procedures are created using modern methods of brain imaging. Neither did the pedagogues start looking for neuronal conditions for various processes. The publications began to show concepts such as ‘neuropedagogy’, ‘neuroeducation’, ‘neurodidactics’, ‘brain-friendly education’. They were and are still used interchangeably. In the offer of training for teachers, the topics of multiple intelligences or educational kinesiology began to be more and more popular. These and other ideas have been actively introduced into the curricula. To our best knowledge, the literature on the subject lacks articles organizing the new nomenclature and indicating the methodological framework for research that would confirm the effectiveness of the above-mentioned innovations. The author of this article tries to find the place for neuropedagogy in the system of sciences, define its subject of research, methodological framework and basic concepts. This is necessary to plan studies that will verify the so-called neuromyths.

Keywords: brain, education, neuropedagogy, research

Procedia PDF Downloads 173
8447 Effect of Different Weed Management Strategies in Chickpea Yield

Authors: Ijaz Ahmed Khan, Zaheen Ullah, Rahamdad, Gul Hassan

Abstract:

A field experiment was conducted at Agricultural Research Station Ahmad Wala, Karak, Khyber Pakhtunkhwa Province during rabi season of 2010-011 to study the effect of different weed management practices on weed control in chickpea under field conditions. The results revealed that treatments showed significant influence on weed density, seed yield kg ha-1 and other growth parameters. Significantly lower weed density (98 m-2) was recorded with the application of Isoproturon 500 EW as compared to control plots having 368.3 weeds m-2. Moreover, significantly highest seed yield (1583.3 kg ha-1) was produced in the plots assigned with Isoproturon 500 EW followed by Eucalyptus extract that produce seed yield of 1416.7 kg ha-1. It was concluded from the study that Isoproturon 500 EW is the best option for controlling weeds and increase the seed yield kg ha-1 of chickpea.

Keywords: chickpea, herbicides, weed control, weeds extracts

Procedia PDF Downloads 560
8446 Ground State Properties of Neutron Magic Isotones

Authors: G. Saxena, M. Kaushik

Abstract:

In the present investigation, we have employed RMF+BCS (relativistic mean-field plus BCS) approach to carry out a systematic study for the ground state properties of the entire chains of even-even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126. The main body of the results of our calculations includes the binding energy, deformation, two proton separation energies, rms radii of the proton and neutron distributions as well as the proton and neutron density profiles etc. Several of these results have been given in the form of a series of graphs for a ready reference. In addition, the possible locations of the proton and neutron drip-lines as well as the (Z,N) values for the shell closures as suggested by the detailed analyzes of the single particle spectra, and the two proton and two-neutron separation energies for the different isotonic chains are also discussed in detail.

Keywords: relativistic mean field theory, neutron magic nuclei, shell closure, separation energy, deformation

Procedia PDF Downloads 404