Search results for: ensemble learning supervised machine learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8789

Search results for: ensemble learning supervised machine learning

7439 Pedagogical Tools In The 21st Century

Authors: M. Aherrahrou

Abstract:

Moroccan education is currently facing many difficulties and problems due to traditional methods of teaching. Neuro -Linguistic Programming (NLP) appears to hold much potential for education at all levels. In this paper, the major aim is to explore the effect of certain Neuro -Linguistic Programming techniques in one educational institution in Morocco. Quantitative and Qualitative methods are used. The findings prove the effectiveness of this new approach regarding Moroccan education, and it is a promising tool to improve the quality of learning.

Keywords: learning and teaching environment, Neuro- Linguistic Programming, education, quality of learning

Procedia PDF Downloads 354
7438 An Exploration of Promoting EFL Students’ Language Learning Autonomy Using Multimodal Teaching - A Case Study of an Art University in Western China

Authors: Dian Guan

Abstract:

With the wide application of multimedia and the Internet, the development of teaching theories, and the implementation of teaching reforms, many different university English classroom teaching modes have emerged. The university English teaching mode is changing from the traditional teaching mode based on conversation and text to the multimodal English teaching mode containing discussion, pictures, audio, film, etc. Applying university English teaching models is conducive to cultivating lifelong learning skills. In addition, lifelong learning skills can also be called learners' autonomous learning skills. Learners' independent learning ability has a significant impact on English learning. However, many university students, especially art and design students, don't know how to learn individually. When they become university students, their English foundation is a relative deficiency because they always remember the language in a traditional way, which, to a certain extent, neglects the cultivation of English learners' independent ability. As a result, the autonomous learning ability of most university students is not satisfactory. The participants in this study were 60 students and one teacher in their first year at a university in western China. Two observations and interviews were conducted inside and outside the classroom to understand the impact of a multimodal teaching model of university English on students' autonomous learning ability. The results were analyzed, and it was found that the multimodal teaching model of university English significantly affected learners' autonomy. Incorporating classroom presentations and poster exhibitions into multimodal teaching can increase learners' interest in learning and enhance their learning ability outside the classroom. However, further exploration is needed to develop multimodal teaching materials and evaluate multimodal teaching outcomes. Despite the limitations of this study, the study adopts a scientific research method to analyze the impact of the multimodal teaching mode of university English on students' independent learning ability. It puts forward a different outlook for further research on this topic.

Keywords: art university, EFL education, learner autonomy, multimodal pedagogy

Procedia PDF Downloads 99
7437 Using Differentiation Instruction to Create a Personalized Experience

Authors: Valerie Yocco Rossi

Abstract:

Objective: The author will share why differentiation is necessary for all classrooms as well as strategies for differentiating content, process, and product. Through learning how to differentiate, teachers will be able to create activities and assessments to meet the abilities, readiness levels, and interests of all learners. Content and Purpose: This work will focus on how to create a learning experience for students that recognizes their different interests, abilities, and readiness levels by differentiating content, process, and product. Likewise, the best learning environments allow for choice. Choice boards allow students to select tasks based on interests. There can be challenging and basic tasks to meet the needs of various abilities. Equally, rubrics allow for personalized and differentiated assessments based on readiness levels and cognitive abilities. The principals of DI help to create a classroom where all students are learning to the best of their abilities. Outcomes: After reviewing the work, readers will be able to (1) identify the benefits of differentiated instruction; (2) convert traditional learning activities to differentiated ones; (3) differentiate, writing-based assessments.

Keywords: differentiation, personalized learning, design, instructional strategies

Procedia PDF Downloads 68
7436 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features

Authors: Bushra Zafar, Usman Qamar

Abstract:

Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.

Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection

Procedia PDF Downloads 315
7435 FLEX: A Backdoor Detection and Elimination Method in Federated Scenario

Authors: Shuqi Zhang

Abstract:

Federated learning allows users to participate in collaborative model training without sending data to third-party servers, reducing the risk of user data privacy leakage, and is widely used in smart finance and smart healthcare. However, the distributed architecture design of federation learning itself and the existence of secure aggregation protocols make it inherently vulnerable to backdoor attacks. To solve this problem, the federated learning backdoor defense framework FLEX based on group aggregation, cluster analysis, and neuron pruning is proposed, and inter-compatibility with secure aggregation protocols is achieved. The good performance of FLEX is verified by building a horizontal federated learning framework on the CIFAR-10 dataset for experiments, which achieves 98% success rate of backdoor detection and reduces the success rate of backdoor tasks to 0% ~ 10%.

Keywords: federated learning, secure aggregation, backdoor attack, cluster analysis, neuron pruning

Procedia PDF Downloads 92
7434 Online Learning Management System for Teaching

Authors: Somchai Buaroong

Abstract:

This research aims to investigating strong points and challenges in application of an online learning management system to an English course. Data were collected from observation, learners’ oral and written reports, and the teacher’s journals. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The findings show that the system was an additional channel to enhance English language learning through written class assignments that were digitally accessible by any group members, and through communication between the teacher and learners and among learners themselves. Thus, the learning management system could be a promising tool for foreign language teachers. Also revealed in the study were difficulties in its use. The article ends with discussions of findings of the system for foreign language classes in association to pedagogy are also included and in the level of signification.

Keywords: english course, foreign language system, online learning management system, teacher’s journals

Procedia PDF Downloads 284
7433 A Project-Based Learning Approach in the Course of 'Engineering Skills' for Undergraduate Engineering Students

Authors: Armin Eilaghi, Ahmad Sedaghat, Hayder Abdurazzak, Fadi Alkhatib, Shiva Sadeghi, Martin Jaeger

Abstract:

A summary of experiences, recommendations, and lessons learnt in the application of PBL in the course of “Engineering Skills” in the School of Engineering at Australian College of Kuwait in Kuwait is presented. Four projects were introduced as part of the PBL course “Engineering Skills” to 24 students in School of Engineering. These students were grouped in 6 teams to develop their skills in 10 learning outcomes. The learning outcomes targeted skills such as drawing, design, modeling, manufacturing and analysis at a preliminary level; and also some life line learning and teamwork skills as these students were exposed for the first time to the PBL (project based learning). The students were assessed for 10 learning outcomes of the course and students’ feedback was collected using an anonymous survey at the end of the course. Analyzing the students’ feedbacks, it is observed that 67% of students preferred multiple smaller projects than a single big project because it provided them with more time and attention focus to improve their “soft skills” including project management, risk assessment, and failure analysis. Moreover, it is found that 63% of students preferred to work with different team members during the course to improve their professional communication skills. Among all, 62% of students believed that working with team members from other departments helped them to increase the innovative aspect of projects and improved their overall performance. However, 70% of students counted extra time needed to regenerate momentum with the new teams as the major challenge. Project based learning provided a suitable platform for introducing students to professional engineering practice and meeting the needs of students, employers and educators. It was found that students achieved their 10 learning outcomes and gained new skills developed in this PBL unit. This was reflected in their portfolios and assessment survey.

Keywords: project-based learning, engineering skills, undergraduate engineering, problem-based learning

Procedia PDF Downloads 164
7432 Measuring Self-Regulation and Self-Direction in Flipped Classroom Learning

Authors: S. A. N. Danushka, T. A. Weerasinghe

Abstract:

The diverse necessities of instruction could be addressed effectively with the support of new dimensions of ICT integrated learning such as blended learning –which is a combination of face-to-face and online instruction which ensures greater flexibility in student learning and congruity of course delivery. As blended learning has been the ‘new normality' in education, many experimental and quasi-experimental research studies provide ample of evidence on its successful implementation in many fields of studies, but it is hard to justify whether blended learning could work similarly in the delivery of technology-teacher development programmes (TTDPs). The present study is bound with the particular research uncertainty, and having considered existing research approaches, the study methodology was set to decide the efficient instructional strategies for flipped classroom learning in TTDPs. In a quasi-experimental pre-test and post-test design with a mix-method research approach, the major study objective was tested with two heterogeneous samples (N=135) identified in a virtual learning environment in a Sri Lankan university. Non-randomized informal ‘before-and-after without control group’ design was employed, and two data collection methods, identical pre-test and post-test and Likert-scale questionnaires were used in the study. Selected two instructional strategies, self-directed learning (SDL) and self-regulated learning (SRL), were tested in an appropriate instructional framework with two heterogeneous samples (pre-service and in-service teachers). Data were statistically analyzed, and an efficient instructional strategy was decided via t-test, ANOVA, ANCOVA. The effectiveness of the two instructional strategy implementation models was decided via multiple linear regression analysis. ANOVA (p < 0.05) shows that age, prior-educational qualifications, gender, and work-experiences do not impact on learning achievements of the two diverse groups of learners through the instructional strategy is changed. ANCOVA (p < 0.05) analysis shows that SDL is efficient for two diverse groups of technology-teachers than SRL. Multiple linear regression (p < 0.05) analysis shows that the staged self-directed learning (SSDL) model and four-phased model of motivated self-regulated learning (COPES Model) are efficient in the delivery of course content in flipped classroom learning.

Keywords: COPES model, flipped classroom learning, self-directed learning, self-regulated learning, SSDL model

Procedia PDF Downloads 197
7431 Polarity Classification of Social Media Comments in Turkish

Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras

Abstract:

People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.

Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews

Procedia PDF Downloads 145
7430 Interrogating Student-Teachers’ Transformative Learning Role, Resources and Journey Considering Pedagogical Reform in Teacher Education Continuums

Authors: Nji Clement Bang, Rosemary Shafack M., Kum Henry Asei, Yaro Loveline Y

Abstract:

Scholars perceive learner-centered teaching-learning reform as roles and resources in teacher education (TE) and professional outcome with transformative learning (TL) continuum dimensions. But, teaching-learning reform is fast proliferating amidst debilitating stakeholder systemic dichotomies, resources, commitment, resistance and poor quality outcome that necessitate stronger TE and professional continuums. Scholars keep seeking greater understanding of themes in teaching-learning reform, TE and professional outcome as continuums and how policymakers, student-teachers, teacher trainers and local communities concerned with initial TE can promote continuous holistic quality performance. To sustain the debate continuum and answer the overarching question, we use mixed-methods research-design with diverse literature and 409 sample-data. Onset text, interview and questionnaire analyses reveal debilitating teaching-learning reform in TE continuums that need TL revival. Follow-up focus group discussion and teaching considering TL insights reinforce holistic teaching-learning in TE. Therefore, significant increase in diverse prior-experience articulation1; critical reflection-discourse engagement2; teaching-practice interaction3; complex-activity constrain control4 and formative outcome- reintegration5 reinforce teaching-learning in learning-to-teach role-resource pathways and outcomes. Themes reiterate complex teaching-learning in TE programs that suits TL journeys and student-teachers and students cum teachers, workers/citizens become akin, transformative-learners who evolve personal and collective roles-resources towards holistic-lifelong-learning outcomes. The article could assist debate about quality teaching-learning reform through TL dimensions as TE and professional role-resource continuums.

Keywords: transformative learning perspectives, teacher education, initial teacher education, learner-centered pedagogical reform, life-long learning

Procedia PDF Downloads 75
7429 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
7428 The Use of Social Networking Sites in eLearning

Authors: Clifford De Raffaele, Luana Bugeja, Serengul Smith

Abstract:

The adaptation of social networking sites within higher education has garnered significant interest in the recent years with numerous researches considering it as a possible shift from the traditional classroom based learning paradigm. Notwithstanding this increase in research and conducted studies however, the adaption of SNS based modules have failed to proliferate within Universities. This paper, commences its contribution by analyzing the various models and theories proposed in literature and amalgamates together various effective aspects for the inclusion of social technology within e-Learning. A three phased framework is further proposed which details the necessary considerations for the successful adaptation of SNS in enhancing the students learning experience. This proposal outlines the theoretical foundations which will be analyzed in practical implementation across international university campuses.

Keywords: eLearning, higher education, social network sites, student learning

Procedia PDF Downloads 338
7427 The Use of Modern Technology to Enhance English Language Teaching and Learning: An Analysis

Authors: Fazilet Alachaher (Benzerdjeb)

Abstract:

From the chalkboard to the abacus and beyond, technology has always played an important role in education. Educational technology refers to any teaching tool that helps supports learning, and given the rapid advancements in Information Technology and multimedia applications, the potential to support the teaching of foreign languages in our universities is ever greater. In language teaching and learning, we have a lot of to choose from the world of technology: TV, CDs, DVDs, Computers, the Internet, Email, and Blogs. The use of modern technologies can enrich the experience of learning a foreign language because they provide features that are not present in traditional technology. They can offer a wide range of multimedia resources, opportunities for intensive one-to-one learning in language labs and resources for authentic materials, which can be motivating to both students and teachers. The advent of Information and Communication Technology (ICT) and online interaction can also open up new range of self-access and distance learning opportunities The two last decades have witnessed a revolution due to the onset of technology, and has changed the dynamics of various industries, and has also influenced the way people live and work in society. That is why using the multimedia to create a certain context to teach English has its unique advantages. This paper tries then to analyse the necessity of multimedia technology to language teaching and brings out the problems faced by using these technologies. It also aims at making English teachers aware of the strategies to use it in an effective manner.

Keywords: strategies English teaching, multimedia technology, advantages, disadvantages, English learning

Procedia PDF Downloads 459
7426 Analysis of Photic Zone’s Summer Period-Dissolved Oxygen and Temperature as an Early Warning System of Fish Mass Mortality in Sampaloc Lake in San Pablo, Laguna

Authors: Al Romano, Jeryl C. Hije, Mechaela Marie O. Tabiolo

Abstract:

The decline in water quality is a major factor in aquatic disease outbreaks and can lead to significant mortality among aquatic organisms. Understanding the relationship between dissolved oxygen (DO) and water temperature is crucial, as these variables directly impact the health, behavior, and survival of fish populations. This study investigated how DO levels, water temperature, and atmospheric temperature interact in Sampaloc Lake to assess the risk of fish mortality. By employing a combination of linear regression models and machine learning techniques, researchers developed predictive models to forecast DO concentrations at various depths. The results indicate that while DO levels generally decrease with depth, the predicted concentrations are sufficient to support the survival of common fish species in Sampaloc Lake during March, April, and May 2025.

Keywords: aquaculture, dissolved oxygen, water temperature, regression analysis, machine learning, fish mass mortality, early warning system

Procedia PDF Downloads 32
7425 Using Machine Learning to Classify Different Body Parts and Determine Healthiness

Authors: Zachary Pan

Abstract:

Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.

Keywords: body part, healthcare, machine learning, neural networks

Procedia PDF Downloads 103
7424 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa

Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam

Abstract:

Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.

Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines

Procedia PDF Downloads 514
7423 Application of Neuroscience in Aligning Instructional Design to Student Learning Style

Authors: Jayati Bhattacharjee

Abstract:

Teaching is a very dynamic profession. Teaching Science is as much challenging as Learning the subject if not more. For instance teaching of Chemistry. From the introductory concepts of subatomic particles to atoms of elements and their symbols and further presenting the chemical equation and so forth is a challenge on both side of the equation Teaching Learning. This paper combines the Neuroscience of Learning and memory with the knowledge of Learning style (VAK) and presents an effective tool for the teacher to authenticate Learning. The model of ‘Working Memory’, the Visio-spatial sketchpad, the central executive and the phonological loop that transforms short-term memory to long term memory actually supports the psychological theory of Learning style i.e. Visual –Auditory-Kinesthetic. A closer examination of David Kolbe’s learning model suggests that learning requires abilities that are polar opposites, and that the learner must continually choose which set of learning abilities he or she will use in a specific learning situation. In grasping experience some of us perceive new information through experiencing the concrete, tangible, felt qualities of the world, relying on our senses and immersing ourselves in concrete reality. Others tend to perceive, grasp, or take hold of new information through symbolic representation or abstract conceptualization – thinking about, analyzing, or systematically planning, rather than using sensation as a guide. Similarly, in transforming or processing experience some of us tend to carefully watch others who are involved in the experience and reflect on what happens, while others choose to jump right in and start doing things. The watchers favor reflective observation, while the doers favor active experimentation. Any lesson plan based on the model of Prescriptive design: C+O=M (C: Instructional condition; O: Instructional Outcome; M: Instructional method). The desired outcome and conditions are independent variables whereas the instructional method is dependent hence can be planned and suited to maximize the learning outcome. The assessment for learning rather than of learning can encourage, build confidence and hope amongst the learners and go a long way to replace the anxiety and hopelessness that a student experiences while learning Science with a human touch in it. Application of this model has been tried in teaching chemistry to high school students as well as in workshops with teachers. The response received has proven the desirable results.

Keywords: working memory model, learning style, prescriptive design, assessment for learning

Procedia PDF Downloads 351
7422 Detecting Hate Speech And Cyberbullying Using Natural Language Processing

Authors: Nádia Pereira, Paula Ferreira, Sofia Francisco, Sofia Oliveira, Sidclay Souza, Paula Paulino, Ana Margarida Veiga Simão

Abstract:

Social media has progressed into a platform for hate speech among its users, and thus, there is an increasing need to develop automatic detection classifiers of offense and conflicts to help decrease the prevalence of such incidents. Online communication can be used to intentionally harm someone, which is why such classifiers could be essential in social networks. A possible application of these classifiers is the automatic detection of cyberbullying. Even though identifying the aggressive language used in online interactions could be important to build cyberbullying datasets, there are other criteria that must be considered. Being able to capture the language, which is indicative of the intent to harm others in a specific context of online interaction is fundamental. Offense and hate speech may be the foundation of online conflicts, which have become commonly used in social media and are an emergent research focus in machine learning and natural language processing. This study presents two Portuguese language offense-related datasets which serve as examples for future research and extend the study of the topic. The first is similar to other offense detection related datasets and is entitled Aggressiveness dataset. The second is a novelty because of the use of the history of the interaction between users and is entitled the Conflicts/Attacks dataset. Both datasets were developed in different phases. Firstly, we performed a content analysis of verbal aggression witnessed by adolescents in situations of cyberbullying. Secondly, we computed frequency analyses from the previous phase to gather lexical and linguistic cues used to identify potentially aggressive conflicts and attacks which were posted on Twitter. Thirdly, thorough annotation of real tweets was performed byindependent postgraduate educational psychologists with experience in cyberbullying research. Lastly, we benchmarked these datasets with other machine learning classifiers.

Keywords: aggression, classifiers, cyberbullying, datasets, hate speech, machine learning

Procedia PDF Downloads 227
7421 Enhancing Early Detection of Coronary Heart Disease Through Cloud-Based AI and Novel Simulation Techniques

Authors: Md. Abu Sufian, Robiqul Islam, Imam Hossain Shajid, Mahesh Hanumanthu, Jarasree Varadarajan, Md. Sipon Miah, Mingbo Niu

Abstract:

Coronary Heart Disease (CHD) remains a principal cause of global morbidity and mortality, characterized by atherosclerosis—the build-up of fatty deposits inside the arteries. The study introduces an innovative methodology that leverages cloud-based platforms like AWS Live Streaming and Artificial Intelligence (AI) to early detect and prevent CHD symptoms in web applications. By employing novel simulation processes and AI algorithms, this research aims to significantly mitigate the health and societal impacts of CHD. Methodology: This study introduces a novel simulation process alongside a multi-phased model development strategy. Initially, health-related data, including heart rate variability, blood pressure, lipid profiles, and ECG readings, were collected through user interactions with web-based applications as well as API Integration. The novel simulation process involved creating synthetic datasets that mimic early-stage CHD symptoms, allowing for the refinement and training of AI algorithms under controlled conditions without compromising patient privacy. AWS Live Streaming was utilized to capture real-time health data, which was then processed and analysed using advanced AI techniques. The novel aspect of our methodology lies in the simulation of CHD symptom progression, which provides a dynamic training environment for our AI models enhancing their predictive accuracy and robustness. Model Development: it developed a machine learning model trained on both real and simulated datasets. Incorporating a variety of algorithms including neural networks and ensemble learning model to identify early signs of CHD. The model's continuous learning mechanism allows it to evolve adapting to new data inputs and improving its predictive performance over time. Results and Findings: The deployment of our model yielded promising results. In the validation phase, it achieved an accuracy of 92% in predicting early CHD symptoms surpassing existing models. The precision and recall metrics stood at 89% and 91% respectively, indicating a high level of reliability in identifying at-risk individuals. These results underscore the effectiveness of combining live data streaming with AI in the early detection of CHD. Societal Implications: The implementation of cloud-based AI for CHD symptom detection represents a significant step forward in preventive healthcare. By facilitating early intervention, this approach has the potential to reduce the incidence of CHD-related complications, decrease healthcare costs, and improve patient outcomes. Moreover, the accessibility and scalability of cloud-based solutions democratize advanced health monitoring, making it available to a broader population. This study illustrates the transformative potential of integrating technology and healthcare, setting a new standard for the early detection and management of chronic diseases.

Keywords: coronary heart disease, cloud-based ai, machine learning, novel simulation techniques, early detection, preventive healthcare

Procedia PDF Downloads 63
7420 Digital Learning Repositories for Vocational Teaching and Knowledge Sharing

Authors: Prachyanun Nilsook, Panita Wannapiroon

Abstract:

The purpose of this research is to study a Digital Learning Repository System (DLRS) on vocational teachers and teaching in Thailand. The innobpcd.net is a DLRS being utilized by the Office of Vocational Education Commission and operationalized by the Bureau of Personnel Competency Development for vocational education teachers. The aim of the system is to support and enhance the process of vocational teaching and to improve staff development by providing teachers with a variety of network connections and information. The system provides centralized hosting and access to content, and the ability to share digital objects or files, to set permissions and controls for access to content that can be used vocational education teachers for their teaching and for their own development. The elements of DLRS include; Digital learning system, Media Library, Knowledge-based system and Mobile Application. The system aims to link vocational teachers to the most effective emerging technologies available for learning, so they are better resourced to support their vocational students. The initial results from this evaluation indicate that there is a range of services provided by the system being used by vocational teachers and this paper indicates which facilities have the greatest usage and impact on vocational teaching in Thailand.

Keywords: digital learning repositories, vocational education, knowledge sharing, learning objects

Procedia PDF Downloads 464
7419 The Relationship between Human Pose and Intention to Fire a Handgun

Authors: Joshua van Staden, Dane Brown, Karen Bradshaw

Abstract:

Gun violence is a significant problem in modern-day society. Early detection of carried handguns through closed-circuit television (CCTV) can aid in preventing potential gun violence. However, CCTV operators have a limited attention span. Machine learning approaches to automating the detection of dangerous gun carriers provide a way to aid CCTV operators in identifying these individuals. This study provides insight into the relationship between human key points extracted using human pose estimation (HPE) and their intention to fire a weapon. We examine the feature importance of each keypoint and their correlations. We use principal component analysis (PCA) to reduce the feature space and optimize detection. Finally, we run a set of classifiers to determine what form of classifier performs well on this data. We find that hips, shoulders, and knees tend to be crucial aspects of the human pose when making these predictions. Furthermore, the horizontal position plays a larger role than the vertical position. Of the 66 key points, nine principal components could be used to make nonlinear classifications with 86% accuracy. Furthermore, linear classifications could be done with 85% accuracy, showing that there is a degree of linearity in the data.

Keywords: feature engineering, human pose, machine learning, security

Procedia PDF Downloads 91
7418 Visualizing the Consequences of Smoking Using Augmented Reality

Authors: B. Remya Mohan, Kamal Bijlani, R. Jayakrishnan

Abstract:

Visualization in an educational context provides the learner with visual means of information. Conceptualizing certain circumstances such as consequences of smoking can be done more effectively with the help of the technology, Augmented Reality (AR). It is a new methodology for effective learning. This paper proposes an approach on how AR based on Marker Technology simulates the harmful effects of smoking and its consequences using Unity 3D game engine. The study also illustrates the impact of AR technology on students for better learning. AR technology can be used as a method to improve learning.

Keywords: augmented reality, marker technology, multi-platform, virtual buttons

Procedia PDF Downloads 574
7417 Class Control Management Issues and Solutions in Interactive Learning Theories’ Efficiency and the Application Case Study: 3rd Year Primary School

Authors: Mohammed Belalia Douma

Abstract:

Interactive learning is considered as the most effective strategy of learning, it is an educational philosophy based on the learner's contribution and involvement mainly in classroom and how he interacts toward his small society “classroom”, and the level of his collaboration into challenge, discovering, games, participation, all these can be provided through the interactive learning, which aims to activate the learner's role in the operation of learning, which focuses on research and experimentation, and the learner's self-reliance in obtaining information, acquiring skills, and forming values and attitudes. Whereas not based on memorization only, but rather on developing thinking and the ability to solve problems, on teamwork and collaborative learning. With the exchange or roles - teacher to student- , when the student will be more active and performing operations more than the student under the interactive learning method; we might face a several issues dealing with class controlling management, noise, and stability of learning… etc. This research paper is observing the application of the interactive learning on reality “classroom” and answers several assumptions and analyzes the issues coming up of these strategies mainly: noise, class control…etc The research sample was about 150 student of the 3rd year primary school in “Chlef” district, Algeria, level: beginners in the range of age 08 to 10 years old . We provided a questionnaire of confidential fifteen questions and also analyzing the attitudes of learners during three months. it have witnessed as teachers a variety of strategies dealing with applying the interactive learning but with a different issues; time management, noise, uncontrolled classes, overcrowded classes. Finally, it summed up that although the active education is an inevitably effective method of teaching, however, there are drawbacks to this, in addition to the fact that not all theoretical strategies can be applied and we conclude with solutions of this case study.

Keywords: interactive learning, student, learners, strategies.

Procedia PDF Downloads 57
7416 To Gamify Learning English Academic Vocabulary Through Interactive Web-Based E-Books: International Students

Authors: Rabea Alfahad

Abstract:

Learning English academic vocabulary poses a challenge on learning English.In this study, we harnessed interactive web-based e-books, and usedgamification and collaborative responsive writingto teach English academic vocabulary. We recruited 50 international students to investigate the impact of gamification on the participants’ learning gains. In so doing, the participants were randomly assigned to two groups: one group learned English academic vocabulary with gamification, and the second group learnedthem with traditional instructional methods. We used a pre/posttest to gauge the students’ cognitive attainment. We then administered independent samples t-test to find out the impact of gamification on learning academic vocabulary. We also employed an IMMS to collect data regarding the motivational level of the students. We administered a MANOVA test to measure the motivational level of the students in both groups. The results of this study suggested that …

Keywords: english language learners, technologhy integration, teaching, gamification

Procedia PDF Downloads 122
7415 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 111
7414 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging

Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa

Abstract:

Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.

Keywords: breast, machine learning, MRI, radiomics

Procedia PDF Downloads 266
7413 Examination of Public Hospital Unions Technical Efficiencies Using Data Envelopment Analysis and Machine Learning Techniques

Authors: Songul Cinaroglu

Abstract:

Regional planning in health has gained speed for developing countries in recent years. In Turkey, 89 different Public Hospital Unions (PHUs) were conducted based on provincial levels. In this study technical efficiencies of 89 PHUs were examined by using Data Envelopment Analysis (DEA) and machine learning techniques by dividing them into two clusters in terms of similarities of input and output indicators. Number of beds, physicians and nurses determined as input variables and number of outpatients, inpatients and surgical operations determined as output indicators. Before performing DEA, PHUs were grouped into two clusters. It is seen that the first cluster represents PHUs which have higher population, demand and service density than the others. The difference between clusters was statistically significant in terms of all study variables (p ˂ 0.001). After clustering, DEA was performed for general and for two clusters separately. It was found that 11% of PHUs were efficient in general, additionally 21% and 17% of them were efficient for the first and second clusters respectively. It is seen that PHUs, which are representing urban parts of the country and have higher population and service density, are more efficient than others. Random forest decision tree graph shows that number of inpatients is a determinative factor of efficiency of PHUs, which is a measure of service density. It is advisable for public health policy makers to use statistical learning methods in resource planning decisions to improve efficiency in health care.

Keywords: public hospital unions, efficiency, data envelopment analysis, random forest

Procedia PDF Downloads 126
7412 The Impact of E-Learning on Medication Administration of Nursing Students

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement, or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery, and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: e-learning, medication administration, nursing, nursing students

Procedia PDF Downloads 252
7411 Classroom Readiness of Open and Distance Learning Student Teachers

Authors: E. C. du Plessis

Abstract:

Teaching practice is a major component of teacher education and the preparation of teachers for the real-life classroom throughout the world. Learning is seen as a constructive process, whether it is classroom based or takes place by means of distance education. Blending theory and practice with effective education in distance context as part of situated learning is crucial. Therefore, the aim of this research was to determine distance education student teachers' classroom readiness on completion of the teaching practice modules of their Postgraduate Certificate in Education (PGCE) course. A qualitative research approach was used for the collection, analysis, and interpretation of data. A total of 15 student teachers enrolled at the College of Education of an ODL (Open and Distance Learning) institution were selected and volunteered to participate in the research. In the light of the results of the research, it is recommended that more attention is given to the interaction between mentor teachers, academic lecturers, and student teachers, as well as the expectations and responsibilities of these role-players.

Keywords: communities of practice, mentor teachers, open and distance learning, practicum, professional development, student teachers, teaching practice

Procedia PDF Downloads 161
7410 Comparative Connectionism: Study of the Biological Constraints of Learning Through the Manipulation of Various Architectures in a Neural Network Model under the Biological Principle of the Correlation Between Structure and Function

Authors: Giselle Maggie-Fer Castañeda Lozano

Abstract:

The main objective of this research was to explore the role of neural network architectures in simulating behavioral phenomena as a potential explanation for selective associations, specifically related to biological constraints on learning. Biological constraints on learning refer to the limitations observed in conditioning procedures, where learning is expected to occur. The study involved simulations of five different experiments exploring various phenomena and sources of biological constraints in learning. These simulations included the interaction between response and reinforcer, stimulus and reinforcer, specificity of stimulus-reinforcer associations, species differences, neuroanatomical constraints, and learning in uncontrolled conditions. The overall results demonstrated that by manipulating neural network architectures, conditions can be created to model and explain diverse biological constraints frequently reported in comparative psychology literature as learning typicities. Additionally, the simulations offer predictive content worthy of experimental testing in the pursuit of new discoveries regarding the specificity of learning. The implications and limitations of these findings are discussed. Finally, it is suggested that this research could inaugurate a line of inquiry involving the use of neural networks to study biological factors in behavior, fostering the development of more ethical and precise research practices.

Keywords: comparative psychology, connectionism, conditioning, experimental analysis of behavior, neural networks

Procedia PDF Downloads 70