Search results for: biological systems engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13786

Search results for: biological systems engineering

226 Digital Image Correlation: Metrological Characterization in Mechanical Analysis

Authors: D. Signore, M. Ferraiuolo, P. Caramuta, O. Petrella, C. Toscano

Abstract:

The Digital Image Correlation (DIC) is a newly developed optical technique that is spreading in all engineering sectors because it allows the non-destructive estimation of the entire surface deformation without any contact with the component under analysis. These characteristics make the DIC very appealing in all the cases the global deformation state is to be known without using strain gages, which are the most used measuring device. The DIC is applicable to any material subjected to distortion caused by either thermal or mechanical load, allowing to obtain high-definition mapping of displacements and deformations. That is why in the civil and the transportation industry, DIC is very useful for studying the behavior of metallic materials as well as of composite materials. DIC is also used in the medical field for the characterization of the local strain field of the vascular tissues surface subjected to uniaxial tensile loading. DIC can be carried out in the two dimension mode (2D DIC) if a single camera is used or in a three dimension mode (3D DIC) if two cameras are involved. Each point of the test surface framed by the cameras can be associated with a specific pixel of the image, and the coordinates of each point are calculated knowing the relative distance between the two cameras together with their orientation. In both arrangements, when a component is subjected to a load, several images related to different deformation states can be are acquired through the cameras. A specific software analyzes the images via the mutual correlation between the reference image (obtained without any applied load) and those acquired during the deformation giving the relative displacements. In this paper, a metrological characterization of the digital image correlation is performed on aluminum and composite targets both in static and dynamic loading conditions by comparison between DIC and strain gauges measures. In the static test, interesting results have been obtained thanks to an excellent agreement between the two measuring techniques. In addition, the deformation detected by the DIC is compliant with the result of a FEM simulation. In the dynamic test, the DIC was able to follow with a good accuracy the periodic deformation of the specimen giving results coherent with the ones given by FEM simulation. In both situations, it was seen that the DIC measurement accuracy depends on several parameters such as the optical focusing, the parameters chosen to perform the mutual correlation between the images and, finally, the reference points on image to be analyzed. In the future, the influence of these parameters will be studied, and a method to increase the accuracy of the measurements will be developed in accordance with the requirements of the industries especially of the aerospace one.

Keywords: accuracy, deformation, image correlation, mechanical analysis

Procedia PDF Downloads 314
225 Sample Preparation and Coring of Highly Friable and Heterogeneous Bonded Geomaterials

Authors: Mohammad Khoshini, Arman Khoshghalb, Meghdad Payan, Nasser Khalili

Abstract:

Most of the Earth’s crust surface rocks are technically categorized as weak rocks or weakly bonded geomaterials. Deeply weathered, weakly cemented, friable and easily erodible, they demonstrate complex material behaviour and understanding the overlooked mechanical behaviour of such materials is of particular importance in geotechnical engineering practice. Weakly bonded geomaterials are so susceptible to surface shear and moisture that conventional methods of core drilling fail to extract high-quality undisturbed samples out of them. Moreover, most of these geomaterials are of high heterogeneity rendering less reliable and feasible material characterization. In order to compensate for the unpredictability of the material response, either numerous experiments are needed to be conducted or large factors of safety must be implemented in the design process. However, none of these approaches is sustainable. In this study, a method for dry core drilling of such materials is introduced to take high-quality undisturbed core samples. By freezing the material at certain moisture content, a secondary structure is developed throughout the material which helps the whole structure to remain intact during the core drilling process. Moreover, to address the heterogeneity issue, the natural material was reconstructed artificially to obtain a homogeneous material with very high similarity to the natural one in both micro and macro-mechanical perspectives. The method is verified for both micro and macro scale. In terms of micro-scale analysis, using Scanning Electron Microscopy (SEM), pore spaces and inter-particle bonds were investigated and compared between natural and artificial materials. X-Ray Diffraction, XRD, analyses are also performed to control the chemical composition. At the macro scale, several uniaxial compressive strength tests, as well as triaxial tests, were performed to verify the similar mechanical response of the materials. A high level of agreement is observed between micro and macro results of natural and artificially bonded geomaterials. The proposed methods can play an important role to cut down the costs of experimental programs for material characterization and also to promote the accuracy of the numerical modellings based on the experimental results.

Keywords: Artificial geomaterial, core drilling, macro-mechanical behavior, micro-scale, sample preparation, SEM photography, weakly bonded geomaterials

Procedia PDF Downloads 219
224 Gene Expression and Staining Agents: Exploring the Factors That Influence the Electrophoretic Properties of Fluorescent Proteins

Authors: Elif Tugce Aksun Tumerkan, Chris Lowe, Hannah Krupa

Abstract:

Fluorescent proteins are self-sufficient in forming chromophores with a visible wavelength from 3 amino acids sequence within their own polypeptide structure. This chromophore – a molecule that absorbs a photon of light and exhibits an energy transition equal to the energy of the absorbed photon. Fluorescent proteins (FPs) consisted of a chain of 238 amino acid residues and composed of 11 beta strands shaped in a cylinder surrounding an alpha helix structure. A better understanding of the system of the chromospheres and the increasing advance in protein engineering in recent years, the properties of FPs offers the potential for new applications. They have used sensors and probes in molecular biology and cell-based research that giving a chance to observe these FPs tagged cell localization, structural variation and movement. For clarifying functional uses of fluorescent proteins, electrophoretic properties of these proteins are one of the most important parameters. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) analysis is used for determining electrophoretic properties commonly. While there are many techniques are used for determining the functionality of protein-based research, SDS-PAGE analysis can only provide a molecular level assessment of the proteolytic fragments. Before SDS-PAGE analysis, fluorescent proteins need to successfully purified. Due to directly purification of the target, FPs is difficult from the animal, gene expression is commonly used which must be done by transformation with the plasmid. Furthermore, used gel within electrophoresis and staining agents properties have a key role. In this review, the different factors that have the impact on the electrophoretic properties of fluorescent proteins explored. Fluorescent protein separation and purification are the essential steps before electrophoresis that should be done very carefully. For protein purification, gene expression process and following steps have a significant function. For successful gene expression, the properties of selected bacteria for expression, used plasmid are essential. Each bacteria has own characteristics which are very sensitive to gene expression, also used procedure is the important factor for fluorescent protein expression. Another important factors are gel formula and used staining agents. Gel formula has an effect on the specific proteins mobilization and staining with correct agents is a key step for visualization of electrophoretic bands of protein. Visuality of proteins can be changed depending on staining reagents. Apparently, this review has emphasized that gene expression and purification have a stronger effect than electrophoresis protocol and staining agents.

Keywords: cell biology, gene expression, staining agents, SDS-page

Procedia PDF Downloads 198
223 iPSCs More Effectively Differentiate into Neurons on PLA Scaffolds with High Adhesive Properties for Primary Neuronal Cells

Authors: Azieva A. M., Yastremsky E. V., Kirillova D. A., Patsaev T. D., Sharikov R. V., Kamyshinsky R. A., Lukanina K. I., Sharikova N. A., Grigoriev T. E., Vasiliev A. L.

Abstract:

Adhesive properties of scaffolds, which predominantly depend on the chemical and structural features of their surface, play the most important role in tissue engineering. The basic requirements for such scaffolds are biocompatibility, biodegradation, high cell adhesion, which promotes cell proliferation and differentiation. In many cases, synthetic polymers scaffolds have proven advantageous because they are easy to shape, they are tough, and they have high tensile properties. The regeneration of nerve tissue still remains a big challenge for medicine, and neural stem cells provide promising therapeutic potential for cell replacement therapy. However, experiments with stem cells have their limitations, such as low level of cell viability and poor control of cell differentiation. Whereas the study of already differentiated neuronal cell culture obtained from newborn mouse brain is limited only to cell adhesion. The growth and implantation of neuronal culture requires proper scaffolds. Moreover, the polymer scaffolds implants with neuronal cells could demand specific morphology. To date, it has been proposed to use numerous synthetic polymers for these purposes, including polystyrene, polylactic acid (PLA), polyglycolic acid, and polylactide-glycolic acid. Tissue regeneration experiments demonstrated good biocompatibility of PLA scaffolds, despite the hydrophobic nature of the compound. Problem with poor wettability of the PLA scaffold surface could be overcome in several ways: the surface can be pre-treated by poly-D-lysine or polyethyleneimine peptides; roughness and hydrophilicity of PLA surface could be increased by plasma treatment, or PLA could be combined with natural fibers, such as collagen or chitosan. This work presents a study of adhesion of both induced pluripotent stem cells (iPSCs) and mouse primary neuronal cell culture on the polylactide scaffolds of various types: oriented and non-oriented fibrous nonwoven materials and sponges – with and without the effect of plasma treatment and composites with collagen and chitosan. To evaluate the effect of different types of PLA scaffolds on the neuronal differentiation of iPSCs, we assess the expression of NeuN in differentiated cells through immunostaining. iPSCs more effectively differentiate into neurons on PLA scaffolds with high adhesive properties for primary neuronal cells.

Keywords: PLA scaffold, neurons, neuronal differentiation, stem cells, polylactid

Procedia PDF Downloads 87
222 A Development of Science Instructional Model Based on Stem Education Approach to Enhance Scientific Mind and Problem Solving Skills for Primary Students

Authors: Prasita Sooksamran, Wareerat Kaewurai

Abstract:

STEM is an integrated teaching approach promoted by the Ministry of Education in Thailand. STEM Education is an integrated approach to teaching Science, Technology, Engineering, and Mathematics. It has been questioned by Thai teachers on the grounds of how to integrate STEM into the classroom. Therefore, the main objective of this study is to develop a science instructional model based on the STEM approach to enhance scientific mind and problem-solving skills for primary students. This study is participatory action research, and follows the following steps: 1) develop a model 2) seek the advice of experts regarding the teaching model. Developing the instructional model began with the collection and synthesis of information from relevant documents, related research and other sources in order to create prototype instructional model. 2) The examination of the validity and relevance of instructional model by a panel of nine experts. The findings were as follows: 1. The developed instructional model comprised of principles, objective, content, operational procedures and learning evaluation. There were 4 principles: 1) Learning based on the natural curiosity of primary school level children leading to knowledge inquiry, understanding and knowledge construction, 2) Learning based on the interrelation between people and environment, 3) Learning that is based on concrete learning experiences, exploration and the seeking of knowledge, 4) Learning based on the self-construction of knowledge, creativity, innovation and 5) relating their findings to real life and the solving of real-life problems. The objective of this construction model is to enhance scientific mind and problem-solving skills. Children will be evaluated according to their achievements. Lesson content is based on science as a core subject which is integrated with technology and mathematics at grade 6 level according to The Basic Education Core Curriculum 2008 guidelines. The operational procedures consisted of 6 steps: 1) Curiosity 2) Collection of data 3) Collaborative planning 4) Creativity and Innovation 5) Criticism and 6) Communication and Service. The learning evaluation is an authentic assessment based on continuous evaluation of all the material taught. 2. The experts agreed that the Science Instructional Model based on the STEM Education Approach had an excellent level of validity and relevance (4.67 S.D. 0.50).

Keywords: instructional model, STEM education, scientific mind, problem solving

Procedia PDF Downloads 193
221 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 151
220 Building Exoskeletons for Seismic Retrofitting

Authors: Giuliana Scuderi, Patrick Teuffel

Abstract:

The proven vulnerability of the existing social housing building heritage to natural or induced earthquakes requires the development of new design concepts and conceptual method to preserve materials and object, at the same time providing new performances. An integrate intervention between civil engineering, building physics and architecture can convert the social housing districts from a critical part of the city to a strategic resource of revitalization. Referring to bio-mimicry principles the present research proposes a taxonomy with the exoskeleton of the insect, an external, light and resistant armour whose role is to protect the internal organs from external potentially dangerous inputs. In the same way, a “building exoskeleton”, acting from the outside of the building as an enclosing cage, can restore, protect and support the existing building, assuming a complex set of roles, from the structural to the thermal, from the aesthetical to the functional. This study evaluates the structural efficiency of shape memory alloys devices (SMADs) connecting the “building exoskeleton” with the existing structure to rehabilitate, in order to prevent the out-of-plane collapse of walls and for the passive dissipation of the seismic energy, with a calibrated operability in relation to the intensity of the horizontal loads. The two case studies of a masonry structure and of a masonry structure with concrete frame are considered, and for each case, a theoretical social housing building is exposed to earthquake forces, to evaluate its structural response with or without SMADs. The two typologies are modelled with the finite element program SAP2000, and they are respectively defined through a “frame model” and a “diagonal strut model”. In the same software two types of SMADs, called the 00-10 SMAD and the 05-10 SMAD are defined, and non-linear static and dynamic analyses, namely push over analysis and time history analysis, are performed to evaluate the seismic response of the building. The effectiveness of the devices in limiting the control joint displacements resulted higher in one direction, leading to the consideration of a possible calibrated use of the devices in the different walls of the building. The results show also a higher efficiency of the 00-10 SMADs in controlling the interstory drift, but at the same time the necessity to improve the hysteretic behaviour, to maximise the passive dissipation of the seismic energy.

Keywords: adaptive structure, biomimetic design, building exoskeleton, social housing, structural envelope, structural retrofitting

Procedia PDF Downloads 425
219 Assessment of Biochemical Marker Profiles and Their Impact on Morbidity and Mortality of COVID-19 Patients in Tigray, Ethiopia

Authors: Teklay Gebrecherkos, Mahmud Abdulkadir

Abstract:

Abstract: The emergence and subsequent rapid worldwide spread of the COVID-19 pandemic have posed a global crisis, with a tremendously increasing burden of infection, morbidity, and mortality risks. Recent studies have suggested that severe cases of COVID-19 are characterized by massive biochemical, hematological, and inflammatory alterations whose synergistic effect is estimated to progress to multiple organ damage and failure. In this regard, biochemical monitoring of COVID-19 patients, based on comprehensive laboratory assessments and findings, is expected to play a crucial role in effective clinical management and improving the survival rates of patients. However, biochemical markers that can be informative of COVID-19 patient risk stratification and predictor of clinical outcomes are currently scarcely available. The study aims to investigate the profiles of common biochemical markers and their influence on the severity of the COVID-19 infection in Tigray, Ethiopia. Methods: A laboratory-based cross-sectional study was conducted from July to August 2020 at Quiha College of Engineering, Mekelle University COVID-19 isolation and treatment center. Sociodemographic and clinical data were collected using a structured questionnaire. Whole blood was collected from each study participant, and serum samples were separated after being delivered to the laboratory. Hematological biomarkers were analyzed using FACS count, while organ tests and serum electrolytes were analyzed using ion-selective electrode methods using a Cobas-6000 series machine. Data was analyzed using SPSS Vs 20. Results: A total of 120 SARS-CoV-2 patients were enrolled during the study. The participants ranged between 18 and 91 years, with a mean age of 52 (±108.8). The majority (40%) of participants were between the ages of 60 and above. Patients with multiple comorbidities developed severe COVID-19, though not statistically significant (p=0.34). Mann-Whitney U test analysis showed that biochemical tests such as neuropile count (p=0.003), AST levels (p=0.050), serum creatinine (p=0.000), and serum sodium (p=0.015) were significantly correlated with severe COVID-19 disease as compared to non-severe disease. Conclusion: The severity of COVID-19 was associated with higher age, organ tests AST and creatinine, serum Na+, and elevated total neutrophile count. Thus, further study needs to be conducted to evaluate the alterations of biochemical biomarkers and their impact on COVID-19.

Keywords: COVID-19, biomarkers, mortality, Tigray, Ethiopia

Procedia PDF Downloads 47
218 Experimental and Numerical Investigation on the Torque in a Small Gap Taylor-Couette Flow with Smooth and Grooved Surface

Authors: L. Joseph, B. Farid, F. Ravelet

Abstract:

Fundamental studies were performed on bifurcation, instabilities and turbulence in Taylor-Couette flow and applied to many engineering applications like astrophysics models in the accretion disks, shrouded fans, and electric motors. Such rotating machinery performances need to have a better understanding of the fluid flow distribution to quantify the power losses and the heat transfer distribution. The present investigation is focused on high gap ratio of Taylor-Couette flow with high rotational speeds, for smooth and grooved surfaces. So far, few works has been done in a very narrow gap and with very high rotation rates and, to the best of our knowledge, not with this combination with grooved surface. We study numerically the turbulent flow between two coaxial cylinders where R1 and R2 are the inner and outer radii respectively, where only the inner is rotating. The gap between the rotor and the stator varies between 0.5 and 2 mm, which corresponds to a radius ratio η = R1/R2 between 0.96 and 0.99 and an aspect ratio Γ= L/d between 50 and 200, where L is the length of the rotor and d being the gap between the two cylinders. The scaling of the torque with the Reynolds number is determined at different gaps for different smooth and grooved surfaces (and also with different number of grooves). The fluid in the gap is air. Re varies between 8000 and 30000. Another dimensionless parameter that plays an important role in the distinction of the regime of the flow is the Taylor number that corresponds to the ratio between the centrifugal forces and the viscous forces (from 6.7 X 105 to 4.2 X 107). The torque will be first evaluated with RANS and U-RANS models, and compared to empirical models and experimental results. A mesh convergence study has been done for each rotor-stator combination. The results of the torque are compared to different meshes in 2D dimensions. For the smooth surfaces, the models used overestimate the torque compared to the empirical equations that exist in the bibliography. The closest models to the empirical models are those solving the equations near to the wall. The greatest torque achieved with grooved surface. The tangential velocity in the gap was always higher in between the rotor and the stator and not on the wall of rotor. Also the greater one was in the groove in the recirculation zones. In order to avoid endwall effects, long cylinders are used in our setup (100 mm), torque is measured by a co-rotating torquemeter. The rotor is driven by an air turbine of an automotive turbo-compressor for high angular velocities. The results of the experimental measurements are at rotational speed of up to 50 000 rpm. The first experimental results are in agreement with numerical ones. Currently, quantitative study is performed on grooved surface, to determine the effect of number of grooves on the torque, experimentally and numerically.

Keywords: Taylor-Couette flow, high gap ratio, grooved surface, high speed

Procedia PDF Downloads 411
217 Private Coded Computation of Matrix Multiplication

Authors: Malihe Aliasgari, Yousef Nejatbakhsh

Abstract:

The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.

Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers

Procedia PDF Downloads 127
216 Control for Fluid Flow Behaviours of Viscous Fluids and Heat Transfer in Mini-Channel: A Case Study Using Numerical Simulation Method

Authors: Emmanuel Ophel Gilbert, Williams Speret

Abstract:

The control for fluid flow behaviours of viscous fluids and heat transfer occurrences within heated mini-channel is considered. Heat transfer and flow characteristics of different viscous liquids, such as engine oil, automatic transmission fluid, one-half ethylene glycol, and deionized water were numerically analyzed. Some mathematical applications such as Fourier series and Laplace Z-Transforms were employed to ascertain the behaviour-wave like structure of these each viscous fluids. The steady, laminar flow and heat transfer equations are reckoned by the aid of numerical simulation technique. Further, this numerical simulation technique is endorsed by using the accessible practical values in comparison with the anticipated local thermal resistances. However, the roughness of this mini-channel that is one of the physical limitations was also predicted in this study. This affects the frictional factor. When an additive such as tetracycline was introduced in the fluid, the heat input was lowered, and this caused pro rata effect on the minor and major frictional losses, mostly at a very minute Reynolds number circa 60-80. At this ascertained lower value of Reynolds numbers, there exists decrease in the viscosity and minute frictional losses as a result of the temperature of these viscous liquids been increased. It is inferred that the three equations and models are identified which supported the numerical simulation via interpolation and integration of the variables extended to the walls of the mini-channel, yields the utmost reliance for engineering and technology calculations for turbulence impacting jets in the near imminent age. Out of reasoning with a true equation that could support this control for the fluid flow, Navier-stokes equations were found to tangential to this finding. Though, other physical factors with respect to these Navier-stokes equations are required to be checkmated to avoid uncertain turbulence of the fluid flow. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme via numerical simulation method that takes into account certain terms in the full Navier-Stokes equations. However, this resulted in dropping out in the approximation of certain assumptions. Concrete questions raised in the main body of the work are sightseen further in the appendices.

Keywords: frictional losses, heat transfer, laminar flow, mini-channel, number simulation, Reynolds number, turbulence, viscous fluids

Procedia PDF Downloads 179
215 The Importance of Efficient and Sustainable Water Resources Management and the Role of Artificial Intelligence in Preventing Forced Migration

Authors: Fateme Aysin Anka, Farzad Kiani

Abstract:

Forced migration is a situation in which people are forced to leave their homes against their will due to political conflicts, wars and conflicts, natural disasters, climate change, economic crises, or other emergencies. This type of migration takes place under conditions where people cannot lead a sustainable life due to reasons such as security, shelter and meeting their basic needs. This type of migration may occur in connection with different factors that affect people's living conditions. In addition to these general and widespread reasons, water security and resources will be one that is starting now and will be encountered more and more in the future. Forced migration may occur due to insufficient or depleted water resources in the areas where people live. In this case, people's living conditions become unsustainable, and they may have to go elsewhere, as they cannot obtain their basic needs, such as drinking water, water used for agriculture and industry. To cope with these situations, it is important to minimize the causes, as international organizations and societies must provide assistance (for example, humanitarian aid, shelter, medical support and education) and protection to address (or mitigate) this problem. From the international perspective, plans such as the Green New Deal (GND) and the European Green Deal (EGD) draw attention to the need for people to live equally in a cleaner and greener world. Especially recently, with the advancement of technology, science and methods have become more efficient. In this regard, in this article, a multidisciplinary case model is presented by reinforcing the water problem with an engineering approach within the framework of the social dimension. It is worth emphasizing that this problem is largely linked to climate change and the lack of a sustainable water management perspective. As a matter of fact, the United Nations Development Agency (UNDA) draws attention to this problem in its universally accepted sustainable development goals. Therefore, an artificial intelligence-based approach has been applied to solve this problem by focusing on the water management problem. The most general but also important aspect in the management of water resources is its correct consumption. In this context, the artificial intelligence-based system undertakes tasks such as water demand forecasting and distribution management, emergency and crisis management, water pollution detection and prevention, and maintenance and repair control and forecasting.

Keywords: water resource management, forced migration, multidisciplinary studies, artificial intelligence

Procedia PDF Downloads 89
214 Exploration of Building Information Modelling Software to Develop Modular Coordination Design Tool for Architects

Authors: Muhammad Khairi bin Sulaiman

Abstract:

The utilization of Building Information Modelling (BIM) in the construction industry has provided an opportunity for designers in the Architecture, Engineering and Construction (AEC) industry to proceed from the conventional method of using manual drafting to a way that creates alternative designs quickly, produces more accurate, reliable and consistent outputs. By using BIM Software, designers can create digital content that manipulates the use of data using the parametric model of BIM. With BIM software, more alternative designs can be created quickly and design problems can be explored further to produce a better design faster than conventional design methods. Generally, BIM is used as a documentation mechanism and has not been fully explored and utilised its capabilities as a design tool. Relative to the current issue, Modular Coordination (MC) design as a sustainable design practice is encouraged since MC design will reduce material wastage through standard dimensioning, pre-fabrication, repetitive, modular construction and components. However, MC design involves a complex process of rules and dimensions. Therefore, a tool is needed to make this process easier. Since the parameters in BIM can easily be manipulated to follow MC rules and dimensioning, thus, the integration of BIM software with MC design is proposed for architects during the design stage. With this tool, there will be an improvement in acceptance and practice in the application of MC design effectively. Consequently, this study will analyse and explore the function and customization of BIM objects and the capability of BIM software to expedite the application of MC design during the design stage for architects. With this application, architects will be able to create building models and locate objects within reference modular grids that adhere to MC rules and dimensions. The parametric modeling capabilities of BIM will also act as a visual tool that will further enhance the automation of the 3-Dimensional space planning modeling process. (Method) The study will first analyze and explore the parametric modeling capabilities of rule-based BIM objects, which eventually customize a reference grid within the rules and dimensioning of MC. Eventually, the approach will further enhance the architect's overall design process and enable architects to automate complex modeling, which was nearly impossible before. A prototype using a residential quarter will be modeled. A set of reference grids guided by specific MC rules and dimensions will be used to develop a variety of space planning and configuration. With the use of the design, the tool will expedite the design process and encourage the use of MC Design in the construction industry.

Keywords: building information modeling, modular coordination, space planning, customization, BIM application, MC space planning

Procedia PDF Downloads 86
213 Part Variation Simulations: An Industrial Case Study with an Experimental Validation

Authors: Narendra Akhadkar, Silvestre Cano, Christophe Gourru

Abstract:

Injection-molded parts are widely used in power system protection products. One of the biggest challenges in an injection molding process is shrinkage and warpage of the molded parts. All these geometrical variations may have an adverse effect on the quality of the product, functionality, cost, and time-to-market. The situation becomes more challenging in the case of intricate shapes and in mass production using multi-cavity tools. To control the effects of shrinkage and warpage, it is very important to correctly find out the input parameters that could affect the product performance. With the advances in the computer-aided engineering (CAE), different tools are available to simulate the injection molding process. For our case study, we used the MoldFlow insight tool. Our aim is to predict the spread of the functional dimensions and geometrical variations on the part due to variations in the input parameters such as material viscosity, packing pressure, mold temperature, melt temperature, and injection speed. The input parameters may vary during batch production or due to variations in the machine process settings. To perform the accurate product assembly variation simulation, the first step is to perform an individual part variation simulation to render realistic tolerance ranges. In this article, we present a method to simulate part variations coming from the input parameters variation during batch production. The method is based on computer simulations and experimental validation using the full factorial design of experiments (DoE). The robustness of the simulation model is verified through input parameter wise sensitivity analysis study performed using simulations and experiments; all the results show a very good correlation in the material flow direction. There exists a non-linear interaction between material and the input process variables. It is observed that the parameters such as packing pressure, material, and mold temperature play an important role in spread on functional dimensions and geometrical variations. This method will allow us in the future to develop accurate/realistic virtual prototypes based on trusted simulated process variation and, therefore, increase the product quality and potentially decrease the time to market.

Keywords: correlation, molding process, tolerance, sensitivity analysis, variation simulation

Procedia PDF Downloads 184
212 Modeling and Implementation of a Hierarchical Safety Controller for Human Machine Collaboration

Authors: Damtew Samson Zerihun

Abstract:

This paper primarily describes the concept of a hierarchical safety control (HSC) in discrete manufacturing to up-hold productivity with human intervention and machine failures using a systematic approach, through increasing the system availability and using additional knowledge on machines so as to improve the human machine collaboration (HMC). It also highlights the implemented PLC safety algorithm, in applying this generic concept to a concrete pro-duction line using a lab demonstrator called FATIE (Factory Automation Test and Integration Environment). Furthermore, the paper describes a model and provide a systematic representation of human-machine collabora-tion in discrete manufacturing and to this end, the Hierarchical Safety Control concept is proposed. This offers a ge-neric description of human-machine collaboration based on Finite State Machines (FSM) that can be applied to vari-ous discrete manufacturing lines instead of using ad-hoc solutions for each line. With its reusability, flexibility, and extendibility, the Hierarchical Safety Control scheme allows upholding productivity while maintaining safety with reduced engineering effort compared to existing solutions. The approach to the solution begins with a successful partitioning of different zones around the Integrated Manufacturing System (IMS), which are defined by operator tasks and the risk assessment, used to describe the location of the human operator and thus to identify the related po-tential hazards and trigger the corresponding safety functions to mitigate it. This includes selective reduced speed zones and stop zones, and in addition with the hierarchical safety control scheme and advanced safety functions such as safe standstill and safe reduced speed are used to achieve the main goals in improving the safe Human Ma-chine Collaboration and increasing the productivity. In a sample scenarios, It is shown that an increase of productivity in the order of 2.5% is already possible with a hi-erarchical safety control, which consequently under a given assumptions, a total sum of 213 € could be saved for each intervention, compared to a protective stop reaction. Thereby the loss is reduced by 22.8%, if occasional haz-ard can be refined in a hierarchical way. Furthermore, production downtime due to temporary unavailability of safety devices can be avoided with safety failover that can save millions per year. Moreover, the paper highlights the proof of the development, implementation and application of the concept on the lab demonstrator (FATIE), where it is realized on the new safety PLCs, Drive Units, HMI as well as Safety devices in addition to the main components of the IMS.

Keywords: discrete automation, hierarchical safety controller, human machine collaboration, programmable logical controller

Procedia PDF Downloads 371
211 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran

Authors: Iman Shabanzadeh

Abstract:

Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.

Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience

Procedia PDF Downloads 67
210 Social Media Data Analysis for Personality Modelling and Learning Styles Prediction Using Educational Data Mining

Authors: Srushti Patil, Preethi Baligar, Gopalkrishna Joshi, Gururaj N. Bhadri

Abstract:

In designing learning environments, the instructional strategies can be tailored to suit the learning style of an individual to ensure effective learning. In this study, the information shared on social media like Facebook is being used to predict learning style of a learner. Previous research studies have shown that Facebook data can be used to predict user personality. Users with a particular personality exhibit an inherent pattern in their digital footprint on Facebook. The proposed work aims to correlate the user's’ personality, predicted from Facebook data to the learning styles, predicted through questionnaires. For Millennial learners, Facebook has become a primary means for information sharing and interaction with peers. Thus, it can serve as a rich bed for research and direct the design of learning environments. The authors have conducted this study in an undergraduate freshman engineering course. Data from 320 freshmen Facebook users was collected. The same users also participated in the learning style and personality prediction survey. The Kolb’s Learning style questionnaires and Big 5 personality Inventory were adopted for the survey. The users have agreed to participate in this research and have signed individual consent forms. A specific page was created on Facebook to collect user data like personal details, status updates, comments, demographic characteristics and egocentric network parameters. This data was captured by an application created using Python program. The data captured from Facebook was subjected to text analysis process using the Linguistic Inquiry and Word Count dictionary. An analysis of the data collected from the questionnaires performed reveals individual student personality and learning style. The results obtained from analysis of Facebook, learning style and personality data were then fed into an automatic classifier that was trained by using the data mining techniques like Rule-based classifiers and Decision trees. This helps to predict the user personality and learning styles by analysing the common patterns. Rule-based classifiers applied for text analysis helps to categorize Facebook data into positive, negative and neutral. There were totally two models trained, one to predict the personality from Facebook data; another one to predict the learning styles from the personalities. The results show that the classifier model has high accuracy which makes the proposed method to be a reliable one for predicting the user personality and learning styles.

Keywords: educational data mining, Facebook, learning styles, personality traits

Procedia PDF Downloads 232
209 Different Data-Driven Bivariate Statistical Approaches to Landslide Susceptibility Mapping (Uzundere, Erzurum, Turkey)

Authors: Azimollah Aleshzadeh, Enver Vural Yavuz

Abstract:

The main goal of this study is to produce landslide susceptibility maps using different data-driven bivariate statistical approaches; namely, entropy weight method (EWM), evidence belief function (EBF), and information content model (ICM), at Uzundere county, Erzurum province, in the north-eastern part of Turkey. Past landslide occurrences were identified and mapped from an interpretation of high-resolution satellite images, and earlier reports as well as by carrying out field surveys. In total, 42 landslide incidence polygons were mapped using ArcGIS 10.4.1 software and randomly split into a construction dataset 70 % (30 landslide incidences) for building the EWM, EBF, and ICM models and the remaining 30 % (12 landslides incidences) were used for verification purposes. Twelve layers of landslide-predisposing parameters were prepared, including total surface radiation, maximum relief, soil groups, standard curvature, distance to stream/river sites, distance to the road network, surface roughness, land use pattern, engineering geological rock group, topographical elevation, the orientation of slope, and terrain slope gradient. The relationships between the landslide-predisposing parameters and the landslide inventory map were determined using different statistical models (EWM, EBF, and ICM). The model results were validated with landslide incidences, which were not used during the model construction. In addition, receiver operating characteristic curves were applied, and the area under the curve (AUC) was determined for the different susceptibility maps using the success (construction data) and prediction (verification data) rate curves. The results revealed that the AUC for success rates are 0.7055, 0.7221, and 0.7368, while the prediction rates are 0.6811, 0.6997, and 0.7105 for EWM, EBF, and ICM models, respectively. Consequently, landslide susceptibility maps were classified into five susceptibility classes, including very low, low, moderate, high, and very high. Additionally, the portion of construction and verification landslides incidences in high and very high landslide susceptibility classes in each map was determined. The results showed that the EWM, EBF, and ICM models produced satisfactory accuracy. The obtained landslide susceptibility maps may be useful for future natural hazard mitigation studies and planning purposes for environmental protection.

Keywords: entropy weight method, evidence belief function, information content model, landslide susceptibility mapping

Procedia PDF Downloads 135
208 Personality Characteristics Managerial Skills and Career Preference

Authors: Dinesh Kumar Srivastava

Abstract:

After liberalization of the economy, technical education has seen rapid growth in India. A large number of institutions are offering various engineering and management programmes. Every year, a number of students complete B. Tech/M. Tech and MBA programmes of different institutes, universities in India and search for jobs in the industry. A large number of companies visit educational institutes for campus placements. These companies are interested in hiring competent managers. Most students show preference for jobs from reputed companies and jobs having high compensation. In this context, this study was conducted to understand career preference of postgraduate students and junior executives. Personality characteristics influence work life as well as personal life. In the last two decades, five factor model of personality has been found to be a valid predictor of job performance and job satisfaction. This approach has received support from studies conducted in different countries. It includes neuroticism, extraversion, and openness to experience, agreeableness, and conscientiousness. Similarly three social needs, namely, achievement, affiliation and power influence motivation and performance in certain job functions. Both approaches have been considered in the study. The objective of the study was first, to analyse the relationship between personality characteristics and career preference of students and executives. Secondly, the study analysed the relationship between personality characteristics and skills of students. Three managerial skills namely, conceptual, human and technical have been considered in the study. The sample size of the study was 266 including postgraduate students and junior executives. Respondents have completed BE/B. Tech/MBA programme. Three dimensions of career preference namely, identity, variety and security and three managerial skills were considered as dependent variables. The results indicated that neuroticism was not related to any dimension of career preference. Extraversion was not related to identity, variety and security. It was positively related to three skills. Openness to experience was positively related to skills. Conscientiousness was positively related to variety. It was positively related to three skills. Similarly, the relationship between social needs and career preference was examined using correlation. The results indicated that need for achievement was positively related to variety, identity and security. Need for achievement was positively related to managerial skills Need for affiliation was positively related to three dimensions of career preference as well as managerial skills Need for power was positively related to three dimensions of career preference and managerial skills Social needs appear to be stronger predictor of career preference and managerial skills than big five traits. Findings have implications for selection process in industry.

Keywords: big five traits, career preference, personality, social needs

Procedia PDF Downloads 275
207 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Authors: Karolina Porada

Abstract:

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Keywords: brownfields, contemporary parks, landscape architecture, remediation

Procedia PDF Downloads 153
206 Integrating Machine Learning and Rule-Based Decision Models for Enhanced B2B Sales Forecasting and Customer Prioritization

Authors: Wenqi Liu, Reginald Bailey

Abstract:

This study proposes a comprehensive and effective approach to business-to-business (B2B) sales forecasting by integrating advanced machine learning models with a rule-based decision-making framework. The methodology addresses the critical challenge of optimizing sales pipeline performance and improving conversion rates through predictive analytics and actionable insights. The first component involves developing a classification model to predict the likelihood of conversion, aiming to outperform traditional methods such as logistic regression in terms of accuracy, precision, recall, and F1 score. Feature importance analysis highlights key predictive factors, such as client revenue size and sales velocity, providing valuable insights into conversion dynamics. The second component focuses on forecasting sales value using a regression model, designed to achieve superior performance compared to linear regression by minimizing mean absolute error (MAE), mean squared error (MSE), and maximizing R-squared metrics. The regression analysis identifies primary drivers of sales value, further informing data-driven strategies. To bridge the gap between predictive modeling and actionable outcomes, a rule-based decision framework is introduced. This model categorizes leads into high, medium, and low priorities based on thresholds for conversion probability and predicted sales value. By combining classification and regression outputs, this framework enables sales teams to allocate resources effectively, focus on high-value opportunities, and streamline lead management processes. The integrated approach significantly enhances lead prioritization, increases conversion rates, and drives revenue generation, offering a robust solution to the declining pipeline conversion rates faced by many B2B organizations. Our findings demonstrate the practical benefits of blending machine learning with decision-making frameworks, providing a scalable, data-driven solution for strategic sales optimization. This study underscores the potential of predictive analytics to transform B2B sales operations, enabling more informed decision-making and improved organizational outcomes in competitive markets.

Keywords: machine learning, XGBoost, regression, decision making framework, system engineering

Procedia PDF Downloads 32
205 An Investigation into Enablers and Barriers of Reverse Technology Transfer

Authors: Nirmal Kundu, Chandan Bhar, Visveswaran Pandurangan

Abstract:

Technology is the most valued possession for a country or an organization. The economic development depends not on stock of technology but on the capabilities how the technology is being exploited. The technology transfer is the best way how the developing countries have an access to state-of- the-art technology. Traditional technology transfer is a unidirectional phenomenon where technology is transferred from developed to developing countries. But now there is a change of wind. There is a general agreement that global shift of economic power is under way from west to east. As China and India are making the transition from users to producers, and producers to innovators, this has increasing important implications on economy, technology and policy of global trade. As a result, Reverse technology transfer has become a phenomenon and field of study in technology management. The term “Reverse Technology Transfer” is not well defined. Initially the concept of Reverse technology transfer was associated with the phenomenon of “Brain drain” from developing to developed countries. In the second phase, Reverse Technology Transfer was associated with the transfer of knowledge and technology from subsidiaries to multinationals. Finally, time has come now to extend the concept of reverse technology transfer to two different organizations or countries related or unrelated by traditional technology transfer but the transfer or has essentially received the technology through traditional mode of technology transfer. The objective of this paper is to study; 1) the present status of Reverse technology transfer, 2) the factors which are the enablers and barriers of Reverse technology transfer and 3) how the reverse technology transfer strategy can be integrated in the technology policy of a country which will give the countries an economic boost. The research methodology used in this study is a combination of literature review, case studies and key informant interviews. The literature review includes both published as well as unpublished sources of literature. In case study, attempt has been made to study the records of reverse technology transfer that have been occurred in developing countries. In case of key informant interviews, informal telephonic discussions have been carried out with the key executives of the organizations (industry, university and research institutions) who are actively engaged in the process of technology transfer- traditional as well as reverse. Reverse technology transfer is possible only by creating technological capabilities. Following four important enablers coupled with government active and aggressive action can help to build technology base to reach to the goal of Reverse technology transfer 1) Imitation to innovation, 2) Reverse engineering, 3) Collaborative R & D approach, and 4) Preventing reverse brain drain. The barriers that come in the way are the mindset of over dependence, over subordination and parent–child attitude (not adult attitude). Exploitation of these enablers and overcoming the barriers of reverse technology transfer, the developing countries like India and China can prove that going “reverse” is the best way to move forward and again establish themselves as leader of the future world.

Keywords: barriers of reverse technology transfer, enablers of reverse technology transfer, knowledge transfer, reverse technology transfer, technology transfer

Procedia PDF Downloads 400
204 Experimental Investigation on the Effect of Prestress on the Dynamic Mechanical Properties of Conglomerate Based on 3D-SHPB System

Authors: Wei Jun, Liao Hualin, Wang Huajian, Chen Jingkai, Liang Hongjun, Liu Chuanfu

Abstract:

Kuqa Piedmont is rich in oil and gas resources and has great development potential in Tarim Basin, China. However, there is a huge thick gravel layer developed with high content, wide distribution and variation in size of gravel, leading to the condition of strong heterogeneity. So that, the drill string is in a state of severe vibration and the drill bit is worn seriously while drilling, which greatly reduces the rock-breaking efficiency, and there is a complex load state of impact and three-dimensional in-situ stress acting on the rock in the bottom hole. The dynamic mechanical properties and the influencing factors of conglomerate, the main component of gravel layer, are the basis of engineering design and efficient rock breaking method and theoretical research. Limited by the previously experimental technique, there are few works published yet about conglomerate, especially rare in dynamic load. Based on this, a kind of 3D SHPB system, three-dimensional prestress, can be applied to simulate the in-situ stress characteristics, is adopted for the dynamic test of the conglomerate. The results show that the dynamic strength is higher than its static strength obviously, and while the three-dimensional prestress is 0 and the loading strain rate is 81.25~228.42 s-1, the true triaxial equivalent strength is 167.17~199.87 MPa, and the strong growth factor of dynamic and static is 1.61~1.92. And the higher the impact velocity, the greater the loading strain rate, the higher the dynamic strength and the greater the failure strain, which all increase linearly. There is a critical prestress in the impact direction and its vertical direction. In the impact direction, while the prestress is less than the critical one, the dynamic strength and the loading strain rate increase linearly; otherwise, the strength decreases slightly and the strain rate decreases rapidly. In the vertical direction of impact load, the strength increases and the strain rate decreases linearly before the critical prestress, after that, oppositely. The dynamic strength of the conglomerate can be reduced properly by reducing the amplitude of impact load so that the service life of rock-breaking tools can be prolonged while drilling in the stratum rich in gravel. The research has important reference significance for the speed-increasing technology and theoretical research while drilling in gravel layer.

Keywords: huge thick gravel layer, conglomerate, 3D SHPB, dynamic strength, the deformation characteristics, prestress

Procedia PDF Downloads 213
203 The Flooding Management Strategy in Urban Areas: Reusing Public Facilities Land as Flood-Detention Space for Multi-Purpose

Authors: Hsiao-Ting Huang, Chang Hsueh-Sheng

Abstract:

Taiwan is an island country which is affected by the monsoon deeply. Under the climate change, the frequency of extreme rainstorm by typhoon becomes more and more often Since 2000. When the extreme rainstorm comes, it will cause serious damage in Taiwan, especially in urban area. It is suffered by the flooding and the government take it as the urgent issue. On the past, the land use of urban planning does not take flood-detention into consideration. With the development of the city, the impermeable surface increase and most of the people live in urban area. It means there is the highly vulnerability in the urban area, but it cannot deal with the surface runoff and the flooding. However, building the detention pond in hydraulic engineering way to solve the problem is not feasible in urban area. The land expropriation is the most expensive construction of the detention pond in the urban area, and the government cannot afford it. Therefore, the management strategy of flooding in urban area should use the existing resource, public facilities land. It can archive the performance of flood-detention through providing the public facilities land with the detention function. As multi-use public facilities land, it also can show the combination of the land use and water agency. To this purpose, this research generalizes the factors of multi-use for public facilities land as flood-detention space with literature review. The factors can be divided into two categories: environmental factors and conditions of public facilities. Environmental factors including three factors: the terrain elevation, the inundation potential and the distance from the drainage system. In the other hand, there are six factors for conditions of public facilities, including area, building rate, the maximum of available ratio etc. Each of them will be according to it characteristic to given the weight for the land use suitability analysis. This research selects the rules of combination from the logical combination. After this process, it can be classified into three suitability levels. Then, three suitability levels will input to the physiographic inundation model for simulating the evaluation of flood-detention respectively. This study tries to respond the urgent issue in urban area and establishes a model of multi-use for public facilities land as flood-detention through the systematic research process of this study. The result of this study can tell which combination of the suitability level is more efficacious. Besides, The model is not only standing on the side of urban planners but also add in the point of view from water agency. Those findings may serve as basis for land use indicators and decision-making references for concerned government agencies.

Keywords: flooding management strategy, land use suitability analysis, multi-use for public facilities land, physiographic inundation model

Procedia PDF Downloads 362
202 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 78
201 Frequency Interpretation of a Wave Function, and a Vertical Waveform Treated as A 'Quantum Leap'

Authors: Anthony Coogan

Abstract:

Born’s probability interpretation of wave functions would have led to nearly identical results had he chosen a frequency interpretation instead. Logically, Born may have assumed that only one electron was under consideration, making it nonsensical to propose a frequency wave. Author’s suggestion: the actual experimental results were not of a single electron; rather, they were groups of reflected x-ray photons. The vertical waveform used by Scrhödinger in his Particle in the Box Theory makes sense if it was intended to represent a quantum leap. The author extended the single vertical panel to form a bar chart: separate panels would represent different energy levels. The proposed bar chart would be populated by reflected photons. Expansion of basic ideas: Part of Scrhödinger’s ‘Particle in the Box’ theory may be valid despite negative criticism. The waveform used in the diagram is vertical, which may seem absurd because real waves decay at a measurable rate, rather than instantaneously. However, there may be one notable exception. Supposedly, following from the theory, the Uncertainty Principle was derived – may a Quantum Leap not be represented as an instantaneous waveform? The great Scrhödinger must have had some reason to suggest a vertical waveform if the prevalent belief was that they did not exist. Complex wave forms representing a particle are usually assumed to be continuous. The actual observations made were x-ray photons, some of which had struck an electron, been reflected, and then moved toward a detector. From Born’s perspective, doing similar work the years in question 1926-7, he would also have considered a single electron – leading him to choose a probability distribution. Probability Distributions appear very similar to Frequency Distributions, but the former are considered to represent the likelihood of future events. Born’s interpretation of the results of quantum experiments led (or perhaps misled) many researchers into claiming that humans can influence events just by looking at them, e.g. collapsing complex wave functions by 'looking at the electron to see which slit it emerged from', while in reality light reflected from the electron moved in the observer’s direction after the electron had moved away. Astronomers may say that they 'look out into the universe' but are actually using logic opposed to the views of Newton and Hooke and many observers such as Romer, in that light carries information from a source or reflector to an observer, rather the reverse. Conclusion: Due to the controversial nature of these ideas, especially its implications about the nature of complex numbers used in applications in science and engineering, some time may pass before any consensus is reached.

Keywords: complex wave functions not necessary, frequency distributions instead of wave functions, information carried by light, sketch graph of uncertainty principle

Procedia PDF Downloads 201
200 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards

Authors: Golnush Masghati-Amoli, Paul Chin

Abstract:

Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.

Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering

Procedia PDF Downloads 140
199 Study on Adding Story and Seismic Strengthening of Old Masonry Buildings

Authors: Youlu Huang, Huanjun Jiang

Abstract:

A large number of old masonry buildings built in the last century still remain in the city. It generates the problems of unsafety, obsolescence, and non-habitability. In recent years, many old buildings have been reconstructed through renovating façade, strengthening, and adding floors. However, most projects only provide a solution for a single problem. It is difficult to comprehensively solve problems of poor safety and lack of building functions. Therefore, a comprehensive functional renovation program of adding reinforced concrete frame story at the bottom via integrally lifting the building and then strengthening the building was put forward. Based on field measurement and YJK calculation software, the seismic performance of an actual three-story masonry structure in Shanghai was identified. The results show that the material strength of masonry is low, and the bearing capacity of some masonry walls could not meet the code requirements. The elastoplastic time history analysis of the structure was carried out by using SAP2000 software. The results show that under the 7 degrees rare earthquake, the seismic performance of the structure reaches 'serious damage' performance level. Based on the code requirements of the stiffness ration of the bottom frame (lateral stiffness ration of the transition masonry story and frame story), the bottom frame story was designed. The integral lifting process of the masonry building was introduced based on many engineering examples. The reinforced methods for the bottom frame structure strengthened by the steel-reinforced mesh mortar surface layer (SRMM) and base isolators, respectively, were proposed. The time history analysis of the two kinds of structures, under the frequent earthquake, the fortification earthquake, and the rare earthquake, was conducted by SAP2000 software. For the bottom frame structure, the results show that the seismic response of the masonry floor is significantly reduced after reinforced by the two methods compared to the masonry structure. The previous earthquake disaster indicated that the bottom frame is vulnerable to serious damage under a strong earthquake. The analysis results showed that under the rare earthquake, the inter-story displacement angle of the bottom frame floor meets the 1/100 limit value of the seismic code. The inter-story drift of the masonry floor for the base isolated structure under different levels of earthquakes is similar to that of structure with SRMM, while the base-isolated program is better to protect the bottom frame. Both reinforced methods could significantly improve the seismic performance of the bottom frame structure.

Keywords: old buildings, adding story, seismic strengthening, seismic performance

Procedia PDF Downloads 124
198 The Influence of Absorptive Capacity on Process Innovation: An Exploratory Study in Seven Leading and Emerging Countries

Authors: Raphael M. Rettig, Tessa C. Flatten

Abstract:

This empirical study answer calls for research on Absorptive Capacity and Process Innovation. Due to the fourth industrial revolution, manufacturing companies face the biggest disruption of their production processes since the rise of advanced manufacturing technologies in the last century. Therefore, process innovation will become a critical task to master in the future for many manufacturing firms around the world. The general ability of organizations to acquire, assimilate, transform, and exploit external knowledge, known as Absorptive Capacity, was proven to positively influence product innovation and is already conceptually associated with process innovation. The presented research provides empirical evidence for this influence. The findings are based on an empirical analysis of 732 companies from seven leading and emerging countries: Brazil, China, France, Germany, India, Japan, and the United States of America. The answers to the survey were collected in February and March 2018 and addressed senior- and top-level management with a focus on operations departments. The statistical analysis reveals the positive influence of potential and Realized Absorptive Capacity on successful process innovation taking the implementation of new digital manufacturing processes as an example. Potential Absorptive Capacity covering the acquisition and assimilation capabilities of an organization showed a significant positive influence (β = .304, p < .05) on digital manufacturing implementation success and therefore on process innovation. Realized Absorptive Capacity proved to have significant positive influence on process innovation as well (β = .461, p < .01). The presented study builds on prior conceptual work in the field of Absorptive Capacity and process innovation and contributes theoretically to ongoing research in two dimensions. First, the already conceptually associated influence of Absorptive Capacity on process innovation is backed by empirical evidence in a broad international context. Second, since Absorptive Capacity was measured with a focus on new product development, prior empirical research on Absorptive Capacity was tailored to the research and development departments of organizations. The results of this study highlight the importance of Absorptive Capacity as a capability in mechanical engineering and operations departments of organizations. The findings give managers an indication of the importance of implementing new innovative processes into their production system and fostering the right mindset of employees to identify new external knowledge. Through the ability to transform and exploit external knowledge, own production processes can be innovated successfully and therefore have a positive influence on firm performance and the competitive position of their organizations.

Keywords: absorptive capacity, digital manufacturing, dynamic capabilities, process innovation

Procedia PDF Downloads 147
197 Micromechanism of Ionization Effects on Metal/Gas Mixing Instabilty at Extreme Shock Compressing Conditions

Authors: Shenghong Huang, Weirong Wang, Xisheng Luo, Xinzhu Li, Xinwen Zhao

Abstract:

Understanding of material mixing induced by Richtmyer-Meshkov instability (RMI) at extreme shock compressing conditions (high energy density environment: P >> 100GPa, T >> 10000k) is of great significance in engineering and science, such as inertial confinement fusion(ICF), supersonic combustion, etc. Turbulent mixing induced by RMI is a kind of complex fluid dynamics, which is closely related with hydrodynamic conditions, thermodynamic states, material physical properties such as compressibility, strength, surface tension and viscosity, etc. as well as initial perturbation on interface. For phenomena in ordinary thermodynamic conditions (low energy density environment), many investigations have been conducted and many progresses have been reported, while for mixing in extreme thermodynamic conditions, the evolution may be very different due to ionization as well as large difference of material physical properties, which is full of scientific problems and academic interests. In this investigation, the first principle based molecular dynamic method is applied to study metal Lithium and gas Hydrogen (Li-H2) interface mixing in micro/meso scale regime at different shock compressing loading speed ranging from 3 km/s to 30 km/s. It's found that, 1) Different from low-speed shock compressing cases, in high-speed shock compresing (>9km/s) cases, a strong acceleration of metal/gas interface after strong shock compression is observed numerically, leading to a strong phase inverse and spike growing with a relative larger linear rate. And more specially, the spike growing rate is observed to be increased with shock loading speed, presenting large discrepancy with available empirical RMI models; 2) Ionization is happened in shock font zone at high-speed loading cases(>9km/s). An additional local electric field induced by the inhomogeneous diffusion of electrons and nuclei after shock font is observed to occur near the metal/gas interface, leading to a large acceleration of nuclei in this zone; 3) In conclusion, the work of additional electric field contributes to a mechanism of RMI in micro/meso scale regime at extreme shock compressing conditions, i.e., a Rayleigh-Taylor instability(RTI) is induced by additional electric field during RMI mixing process and thus a larger linear growing rate of interface spike.

Keywords: ionization, micro/meso scale, material mixing, shock

Procedia PDF Downloads 234