Search results for: urban growth model
11369 Neuroprotective Effects of Dehydroepiandrosterone (DHEA) in Rat Model of Alzheimer’s Disease
Authors: Hanan F. Aly, Fateheya M. Metwally, Hanaa H. Ahmed
Abstract:
The current study is undertaken to elucidate a possible neuroprotective role of dehydroepiandrosterone (DHEA) against the development of Alzheimer’s disease in experimental rat model. Alzheimer’s disease was produced in young female ovariectomized rats by intraperitoneal administration of AlCl3 (4.2 mg/kg body weight) daily for 12 weeks. Half of these animals also received orally DHEA (250 mg/kg body weight, three times weekly) for 18 weeks. Control groups of animals received either DHAE alone, or no DHEA, or were not ovariectomized. After such treatment the animals were analyzed for oxidative stress biomarkers such as hydrogen peroxide, nitric oxide and malondialdehyde, total antioxidant capacity, reduced glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase activities, antiapoptotic marker Bcl-2 and brain derived neurotrophic factor. Also, brain cholinergic markers (acetylcholinesterase and acetylcholine) were determined. The results revealed significant increase in oxidative stress parameters associated with significant decrease in the antioxidant enzyme activities in Al-intoxicated ovariectomized rats. Significant depletion in brain Bcl-2 and brain-derived neurotrophic factor levels were also detected. Moreover, significant elevations in brain acetylcholinesterase activity accompanied with significant reduction in acetylcholine level were recorded. Significant amelioration in all investigated parameters was detected as a result of treatment of Al-intoxicated ovariectomized rats with DHEA. These results were confirmed by histological examination of brain sections. These results clearly indicate a neuroprotective effect of DHEA against Alzheimer’s disease.Keywords: Alzheimer’s disease, oxidative stress, apoptosis, dehydroepiandrosterone
Procedia PDF Downloads 32811368 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling
Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski
Abstract:
A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.Keywords: CFD, combustion, ignition, simulation, timing
Procedia PDF Downloads 30011367 Multiple Primary Pulmonary Meningiomas: A Case Report
Authors: Wellemans Isabelle, Remmelink Myriam, Foucart Annick, Rusu Stefan, Compère Christophe
Abstract:
Primary pulmonary meningioma (PPM) is a very rare tumor, and its occurrence has been reported only sporadically. Multiple PPMs are even more exceptional, and herein, we report, to the best of our knowledge, the fourth case, focusing on the clinicopathological features of the tumor. Moreover, the possible relationship between the use of progesterone–only contraceptives and the development of these neoplasms will be discussed. Case Report: We report a case of a 51-year-old female presenting three solid pulmonary nodules, with the following localizations: right upper lobe, middle lobe, and left lower lobe, described as incidental findings on computed tomography (CT) during a pre-bariatric surgery check-up. The patient revealed no drinking or smoking history. The physical exam was unremarkable except for the obesity. The lesions ranged in size between 6 and 24 mm and presented as solid nodules with lobulated contours. The largest lesion situated in the middle lobe had mild fluorodeoxyglucose (FDG) uptake on F-18 FDG positron emission tomography (PET)/CT, highly suggestive of primary lung neoplasm. For pathological assessment, video-assisted thoracoscopic middle lobectomy and wedge resection of the right upper nodule was performed. Histological examination revealed relatively well-circumscribed solid proliferation of bland meningothelial cells growing in whorls and lobular nests, presenting intranuclear pseudo-inclusions and psammoma bodies. No signs of anaplasia were observed. The meningothelial cells expressed diffusely Vimentin, focally Progesterone receptors and were negative for epithelial (cytokeratin (CK) AE1/AE3, CK7, CK20, Epithelial Membrane Antigen (EMA)), neuroendocrine markers (Synaptophysin, Chromogranin, CD56) and Estrogenic receptors. The proliferation labelling index Ki-67 was low (<5%). Metastatic meningioma was ruled out by brain and spine magnetic resonance imaging (MRI) scans. The third lesion localized in the left lower lobe was followed-up and resected three years later because of its slow but significant growth (14 mm to 16 mm), alongside two new infra centimetric lesions. Those three lesions showed a morphological and immunohistochemical profile similar to previously resected lesions. The patient was disease-free one year post-last surgery. Discussion: Although PPMs are mostly benign and slow-growing tumors with an excellent prognosis, they do not present specific radiological characteristics, and it is difficult to differentiate it from other lung tumors, histopathologic examination being essential. Aggressive behavior is associated with atypical or anaplastic features (WHO grades II–III) The etiology is still uncertain and different mechanisms have been proposed. A causal connection between sexual hormones and meningothelial proliferation has long been suspected and few studies examining progesterone only contraception and meningioma risk have all suggested an association. In line with this, our patient was treated with Levonorgestrel, a progesterone agonist, intra-uterine device (IUD). Conclusions: PPM, defined by the typical histological and immunohistochemical features of meningioma in the lungs and the absence of central nervous system lesions, is an extremely rare neoplasm, mainly solitary and associating, and indolent growth. Because of the unspecific radiologic findings, it should always be considered in the differential diagnosis of lung neoplasms. Regarding multiple PPM, only three cases are reported in the literature, and this is the first described in a woman treated by a progesterone-only IUD to the best of our knowledge.Keywords: pulmonary meningioma, multiple meningioma, meningioma, pulmonary nodules
Procedia PDF Downloads 11911366 Integrated Dynamic Analysis of Semi-Submersible Flap Type Concept
Authors: M. Rafiur Rahman, M. Mezbah Uddin, Mohammad Irfan Uddin, M. Moinul Islam
Abstract:
With a rapid development of offshore renewable energy industry, the research activities in regards of harnessing power from offshore wind and wave energy are increasing day by day. Integration of wind turbines and wave energy converters into one combined semi-submersible platform might be a cost-economy and beneficial option. In this paper, the coupled integrated dynamic analysis in the time domain (TD) of a simplified semi-submersible flap type concept (SFC) is accomplished via state-of-the-art numerical code referred as Simo-Riflex-Aerodyn (SRA). This concept is a combined platform consisting of a semi-submersible floater supporting a 5 MW horizontal axis wind turbine (WT) and three elliptical shaped flap type wave energy converters (WECs) on three pontoons. The main focus is to validate the numerical model of SFC with experimental results and perform the frequency domain (FD) and TD response analysis. The numerical analysis is performed using potential flow theory for hydrodynamics and blade element momentum (BEM) theory for aerodynamics. A variety of environmental conditions encompassing the functional & survival conditions for short-term sea (1-hour simulation) are tested to evaluate the sustainability of the SFC. The numerical analysis is performed in full scale. Finally, the time domain analysis of heave, pitch & surge motions is performed numerically using SRA and compared with the experimental results. Due to the simplification of the model, there are some discrepancies which are discussed in brief.Keywords: coupled integrated dynamic analysis, SFC, time domain analysis, wave energy converters
Procedia PDF Downloads 22511365 Fuzzy Time Series- Markov Chain Method for Corn and Soybean Price Forecasting in North Carolina Markets
Authors: Selin Guney, Andres Riquelme
Abstract:
Among the main purposes of optimal and efficient forecasts of agricultural commodity prices is to guide the firms to advance the economic decision making process such as planning business operations and marketing decisions. Governments are also the beneficiaries and suppliers of agricultural price forecasts. They use this information to establish a proper agricultural policy, and hence, the forecasts affect social welfare and systematic errors in forecasts could lead to a misallocation of scarce resources. Various empirical approaches have been applied to forecast commodity prices that have used different methodologies. Most commonly-used approaches to forecast commodity sectors depend on classical time series models that assume values of the response variables are precise which is quite often not true in reality. Recently, this literature has mostly evolved to a consideration of fuzzy time series models that provide more flexibility in terms of the classical time series models assumptions such as stationarity, and large sample size requirement. Besides, fuzzy modeling approach allows decision making with estimated values under incomplete information or uncertainty. A number of fuzzy time series models have been developed and implemented over the last decades; however, most of them are not appropriate for forecasting repeated and nonconsecutive transitions in the data. The modeling scheme used in this paper eliminates this problem by introducing Markov modeling approach that takes into account both the repeated and nonconsecutive transitions. Also, the determination of length of interval is crucial in terms of the accuracy of forecasts. The problem of determining the length of interval arbitrarily is overcome and a methodology to determine the proper length of interval based on the distribution or mean of the first differences of series to improve forecast accuracy is proposed. The specific purpose of this paper is to propose and investigate the potential of a new forecasting model that integrates methodologies for determining the proper length of interval based on the distribution or mean of the first differences of series and Fuzzy Time Series- Markov Chain model. Moreover, the accuracy of the forecasting performance of proposed integrated model is compared to different univariate time series models and the superiority of proposed method over competing methods in respect of modelling and forecasting on the basis of forecast evaluation criteria is demonstrated. The application is to daily corn and soybean prices observed at three commercially important North Carolina markets; Candor, Cofield and Roaring River for corn and Fayetteville, Cofield and Greenville City for soybeans respectively. One main conclusion from this paper is that using fuzzy logic improves the forecast performance and accuracy; the effectiveness and potential benefits of the proposed model is confirmed with small selection criteria value such MAPE. The paper concludes with a discussion of the implications of integrating fuzzy logic and nonarbitrary determination of length of interval for the reliability and accuracy of price forecasts. The empirical results represent a significant contribution to our understanding of the applicability of fuzzy modeling in commodity price forecasts.Keywords: commodity, forecast, fuzzy, Markov
Procedia PDF Downloads 22011364 Drinking Water Quality of Lahore Pakistan: A Comparison of Quality of Drinking Water from Source and Distribution System
Authors: Zainab Abbas Soharwardi, Chunli Su, Fazeelat Tahira, Syed Zahid Aziz
Abstract:
The study monitors the quality of drinking water consumed by urban population of Lahore. A total of 50 drinking water samples (16 from source and 34 from distribution system) were examined for physical, chemical and bacteriological parameters. The parameters including pH, turbidity, electrical conductivity, total dissolved solids, total hardness, calcium, magnesium, total alkalinity, carbonate, sulphate, chloride, nitrite, fluoride, sodium and potassium were analyzed. Sixteen out of fifty samples showed high values of alkalinity compared to EPA standards and WHO guidelines. Twenty-eight samples were analyzed for heavy metals, chromium, iron, copper, zinc, cadmium and lead. Trace amounts of heavy metals were detected in some samples, however for most of the samples values were within the permissible limits although high concentration of zinc was detected in one sample collected from Mughal Pura area. Fifteen samples were analyzed for arsenic. The results were unsatisfactory; around 73% samples showed exceeding values of As. WHO has suggested permissible limits of arsenic < 0.01 ppm, whereas 27 % of samples have shown 0.05 ppm arsenic, which is five times greater than WHO highest permissible limits. All the samples were examined for E. coli bacteria. On the basis of bacteriological analysis, 42 % samples did not meet WHO guidelines and were unsafe for drinking.Keywords: arsenic, heavy metals, ground water, Lahore
Procedia PDF Downloads 34511363 Knowledge Transfer through Entrepreneurship: From Research at the University to the Consolidation of a Spin-off Company
Authors: Milica Lilic, Marina Rosales Martínez
Abstract:
Academic research cannot be oblivious to social problems and needs, so projects that have the capacity for transformation and impact should have the opportunity to go beyond the University circles and bring benefit to society. Apart from patents and R&D research contracts, this opportunity can be achieved through entrepreneurship as one of the most direct tools to turn knowledge into a tangible product. Thus, as an example of good practices, it is intended to analyze the case of an institutional entrepreneurship program carried out at the University of Seville, aimed at researchers interested in assessing the business opportunity of their research and expanding their knowledge on procedures for the commercialization of technologies used at academic projects. The program is based on three pillars: training, teamwork sessions and networking. The training includes aspects such as product-client fit, technical-scientific and economic-financial feasibility of a spin-off, institutional organization and decision making, public and private fundraising, and making the spin-off visible in the business world (social networks, key contacts, corporate image and ethical principles). On the other hand, the teamwork sessions are guided by a mentor and aimed at identifying research results with potential, clarifying financial needs and procedures to obtain the necessary resources for the consolidation of the spin-off. This part of the program is considered to be crucial in order for the participants to convert their academic findings into a business model. Finally, the networking part is oriented to workshops about the digital transformation of a project, the accurate communication of the product or service a spin-off offers to society and the development of transferable skills necessary for managing a business. This blended program results in the final stage where each team, through an elevator pitch format, presents their research turned into a business model to an experienced jury. The awarded teams get a starting capital for their enterprise and enjoy the opportunity of formally consolidating their spin-off company at the University. Studying the results of the program, it has been shown that many researchers have basic or no knowledge of entrepreneurship skills and different ways to turn their research results into a business model with a direct impact on society. Therefore, the described program has been used as an example to highlight the importance of knowledge transfer at the University and the role that this institution should have in providing the tools to promote entrepreneurship within it. Keeping in mind that the University is defined by three main activities (teaching, research and knowledge transfer), it is safe to conclude that the latter, and the entrepreneurship as an expression of it, is crucial in order for the other two to comply with their purpose.Keywords: good practice, knowledge transfer, a spin-off company, university
Procedia PDF Downloads 15111362 Experimental and Computational Investigations on the Mitigation of Air Pollutants Using Pulsed Radio Waves
Authors: Gangadhara Siva Naga Venkata Krishna Satya Narayana Swamy Undi
Abstract:
Particulate matter (PM) pollution in ambient air is a major environmental health risk factor contributing to disease and mortality worldwide. Current air pollution control methods have limitations in reducing real-world ambient PM levels. This study demonstrates the efficacy of using pulsed radio wave technology as a distinct approach to lower outdoor particulate pollution. Experimental data were compared with computational models to evaluate the efficiency of pulsed waves in coagulating and settling PM. Results showed 50%+ reductions in PM2.5 and PM10 concentrations at the city scale, with particle removal rates exceeding gravity settling by over 3X. Historical air quality data further validated the significant PM reductions achieved in test cases. Computational analyses revealed the underlying coagulation mechanisms induced by the pulsed waves, supporting the feasibility of this strategy for ambient particulate control. The pulsed electromagnetic technology displayed robustness in sustainably managing PM levels across diverse urban and industrial environments. Findings highlight the promise of this advanced approach as a next-generation solution to mitigate particulate air pollution and associated health burdens globally. The technology's scalability and energy efficiency can help address a key gap in current efforts to improve ambient air quality.Keywords: particulate matter, mitigation technologies, clean air, ambient air pollution
Procedia PDF Downloads 5411361 Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms
Authors: Mansur Abdulrasheed, Ibrahim I. Hussein, Ahmed M. Mubarak, Ahmed F. Umar
Abstract:
This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm) at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibiton (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms.Keywords: antimicrobial, garlic, Moringa oleifera, food borne pathogens
Procedia PDF Downloads 51111360 Finite Element Analysis of a Glass Facades Supported by Pre-Tensioned Cable Trusses
Authors: Khair Al-Deen Bsisu, Osama Mahmoud Abuzeid
Abstract:
Significant technological advances have been achieved in the design and building construction of steel and glass in the last two decades. The metal glass support frame has been replaced by further sophisticated technological solutions, for example, the point fixed glazing systems. The minimization of the visual mass has reached extensive possibilities through the evolution of technology in glass production and the better understanding of the structural potential of glass itself, the technological development of bolted fixings, the introduction of the glazing support attachments of the glass suspension systems and the use for structural stabilization of cables that reduce to a minimum the amount of metal used. The variability of solutions of tension structures, allied to the difficulties related to geometric and material non-linear behavior, usually overrules the use of analytical solutions, letting numerical analysis as the only general approach to the design and analysis of tension structures. With the characteristics of low stiffness, lightweight, and small damping, tension structures are obviously geometrically nonlinear. In fact, analysis of cable truss is not only one of the most difficult nonlinear analyses because the analysis path may have rigid-body modes, but also a time consuming procedure. Non-linear theory allowing for large deflections is used. The flexibility of supporting members was observed to influence the stresses in the pane considerably in some cases. No other class of architectural structural systems is as dependent upon the use of digital computers as are tensile structures. Besides complexity, the process of design and analysis of tension structures presents a series of specificities, which usually lead to the use of special purpose programs, instead of general purpose programs (GPPs), such as ANSYS. In a special purpose program, part of the design know how is embedded in program routines. It is very probable that this type of program will be the option of the final user, in design offices. GPPs offer a range of types of analyses and modeling options. Besides, traditional GPPs are constantly being tested by a large number of users, and are updated according to their actual demands. This work discusses the use of ANSYS for the analysis and design of tension structures, such as cable truss structures under wind and gravity loadings. A model to describe the glass panels working in coordination with the cable truss was proposed. Under the proposed model, a FEM model of the glass panels working in coordination with the cable truss was established.Keywords: Glass Construction material, Facades, Finite Element, Pre-Tensioned Cable Truss
Procedia PDF Downloads 28411359 Electric Vehicle Market Penetration Impact on Greenhouse Gas Emissions for Policy-Making: A Case Study of United Arab Emirates
Authors: Ahmed Kiani
Abstract:
The United Arab Emirates is clearly facing a multitude of challenges in curbing its greenhouse gas emissions to meet its pre-allotted framework of Kyoto protocol and COP21 targets due to its hunger for modernization, industrialization, infrastructure growth, soaring population and oil and gas activity. In this work, we focus on the bonafide zero emission electric vehicles market penetration in the country’s transport industry for emission reduction. We study the global electric vehicle market trends, the complementary battery technologies and the trends by manufacturers, emission standards across borders and prioritized advancements which will ultimately dictate the terms of future conditions for the United Arab Emirate transport industry. Based on our findings and analysis at every stage of current viability and state-of-transport-affairs, we postulate policy recommendations to local governmental entities from a supply and demand perspective covering aspects of technology, infrastructure requirements, change in power dynamics, end user incentives program, market regulators behavior and communications amongst key stakeholders.Keywords: electric vehicles, greenhouse gas emission reductions, market analysis, policy recommendations
Procedia PDF Downloads 31111358 IoT and Advanced Analytics Integration in Biogas Modelling
Authors: Rakesh Choudhary, Ajay Kumar, Deepak Sharma
Abstract:
The main goal of this paper is to investigate the challenges and benefits of IoT integration in biogas production. This overview explains how the inclusion of IoT can enhance biogas production efficiency. Therefore, such collected data can be explored by advanced analytics, including Artificial intelligence (AI) and Machine Learning (ML) algorithms, consequently improving bio-energy processes. To boost biogas generation efficiency, this report examines the use of IoT devices for real-time data collection on key parameters, e.g., pH, temperature, gas composition, and microbial growth. Real-time monitoring through big data has made it possible to detect diverse, complex trends in the process of producing biogas. The Informed by advanced analytics can also help in improving bio-energy production as well as optimizing operational conditions. Moreover, IoT allows remote observation, control and management, which decreases manual intervention needed whilst increasing process effectiveness. Such a paradigm shift in the incorporation of IoT technologies into biogas production systems helps to achieve higher productivity levels as well as more practical biomass quality biomethane through real-time monitoring-based proactive decision-making, thus driving continuous performance improvement.Keywords: internet of things, biogas, renewable energy, sustainability, anaerobic digestion, real-time monitoring, optimization
Procedia PDF Downloads 2511357 Development and Testing of Health Literacy Scales for Chinese Primary and Secondary School Students
Authors: Jiayue Guo, Lili You
Abstract:
Background: Children and adolescent health are crucial for both personal well-being and the nation's future health landscape. Health Literacy (HL) is important in enabling adolescents to self-manage their health, a fundamental step towards health empowerment. However, there are limited tools for assessing HL among elementary and junior high school students. This study aims to construct and validate a test-based HL scale for Chinese students, offering a scientific reference for cross-cultural HL tool development. Methods: We conducted a cross-sectional online survey. Participants were recruited from a stratified cluster random sampling method, a total of 4189 Chinese in-school primary and secondary students. The development of the scale was completed by defining the concept of HL, establishing the item indicator system, screening items (7 health content dimensions), and evaluating reliability and validity. Delphi method expert consultation was used to screen items, the Rasch model was conducted for quality analysis, and Cronbach’s alpha coefficient was used to examine the internal consistency. Results: We developed four versions of the HL scale, each with a total score of 100, encompassing seven key health areas: hygiene, nutrition, physical activity, mental health, disease prevention, safety awareness, and digital health literacy. Each version measures four dimensions of health competencies: knowledge, skills, motivation, and behavior. After the second round of expert consultation, the average importance score of each item by experts is 4.5–5.0, and the coefficient of variation is 0.000–0.174. The knowledge and skills dimensions are judgment-based and multiple-choice questions, with the Rasch model confirming unidimensionality at a 5.7% residual variance. The behavioral and motivational dimensions, measured with scale-type items, demonstrated internal consistency via Cronbach's alpha and strong inter-item correlation with KMO values of 0.924 and 0.787, respectively. Bartlett's test of sphericity, with p-values <0.001, further substantiates the scale's reliability. Conclusions: The new test-based scale, designed to evaluate competencies within a multifaceted framework, aligns with current international adolescent literacy theories and China's health education policies, focusing not only on knowledge acquisition but also on the application of health-related thinking and behaviors. The scale can be used as a comprehensive tool for HL evaluation and a reference for other countries.Keywords: adolescent health, Chinese, health literacy, rasch model, scale development
Procedia PDF Downloads 3511356 Effect of Varying Levels of Concentrate Ration on the Performance of Nili-Ravi Buffalo Heifer Calves
Authors: Z. M. Iqbal, M. Abdullah, K. Javed, M. A. Jabbar, A. Haque, M. Saadullah, F. Shahzad
Abstract:
The current study was conducted to set the appropriate concentrate level for Nili-Ravi buffalo heifers. Twenty seven buffalo heifers were randomly divided into three different groups A, B and C having nine animals in each group. All the heifers were given free access to chopped green fodder and fresh water. In addition, heifers of group A, B and C were given concentrate at the rate of 0.5%, 1% and 1.5% of their body weight. The average daily dry matter intake was 2.69, 3.06 and 3.83 kg with average daily gain of 456.09, 398.56 and 515.87 gm in group A, B and C, respectively. The feed conversion ratio of heifers of these groups was 5.89, 7.74 and 7.52, respectively. There was non-significant (P>0.05) difference in the body measurements (height at wither, body length and heart girth), final body condition and scoring and blood serum (glucose, total protein and cholesterol) of heifers of all the three groups. The results of current study shows that there is non-significant (P>0.05) difference in the growth rate of Nili-Ravi heifers at varying levels of concentrate so, it is cost effective to raise 6-8 month calves by offering concentrate at the rate of 0.5% body weight along with free access of green fodder.Keywords: concentrate level, buffalo heifer, body measurement, green fodder
Procedia PDF Downloads 42711355 Protective Effect of Nigella sativa Oil and Its Neutral Lipid Fraction on Ethanol-Induced Hepatotoxicity in Rat Model
Authors: Asma Mosbah, Hanane Khither, Kamelia Mosbah, Noreddine Kacem Chaouche, Mustapha Benboubetra
Abstract:
In the present investigation, total oil (TO) and its neutral lipid fraction (NLF) extracted from the seed of the well know studied medicinal plant Nigella sativa were tested for their therapeutically effect on alcohol-induced liver injury in rat model. Male Albino rats were divided into five groups of eight animals each and fed a Lieber–DeCarli liquid diet containing 5% ethanol for experimental groups and dextran for control group, for a period of six weeks. Afterwards, rats received, orally, treatments with Nigella sativa extracts (TO, NLF) and N- acetylcysteine (NAC) as a positive control for four weeks. Activities of antioxidant enzymes; superoxide dismutase (SOD) and catalase (CAT), as well as malondialdehyde (MDA) and reduced glutathione (GSH). Biochemical parameters for kidney and liver functions, in treated and non treated rats, were evaluated throughout the time course of an experiment. Liver histological changes were taken into account. Enzymatic activities of both SOD and CAT increased significantly in rats treated with NLF and TO. While MDA level decreased in TO and NLF treated rats, GSH level increased significantly in TO and NLF treated rats. We noted equally a decrease in liver enzymes AST, ALT, and ALP. Microscopic observation of slides from the liver of ethanol treated rats showed a severe hepatotoxicity with lesions. Treatment with fractions leads to an improvement in liver lesions and a marked reduction in necrosis and infiltration. As a conclusion, both extracts of Nigella sativa seeds, TO and NLF, possess an important therapeutic protective potential against ethanol-induced hepatotoxicity in rats.Keywords: alcohol-induced hepatotoxicity, antioxidant enzymes, Nigella sativa seeds, oil fractions
Procedia PDF Downloads 17011354 Jopara: Conversational Code Switching Between Spanish and Guarani a Sociolinguistic Study
Authors: Maria Alejandra Mareco
Abstract:
The purpose of this paper is to explore a communicative strategy used by Guaraní-Spanish bilingual speakers. It will be presented in English or Spanish. This strategy is conversational code-switching, which is used by people from rural as well as urban areas in Formosa, Argentina and Paraguay. Guarani is an Aboriginal Language that is the official language in Paraguay. Code-switching is a language-processing phenomenon that creates communicative and social meaning in a given community. This paper poses a broad question at the onset of this study: Spanish-Guaraní speakers tend to use four different conversational code-switching patterns in their oral alternations, these four categories being: quotation, addressee specification, reiteration, and interjections. Later, spoken data were prioritized in terms of their importance and potential impact on the hypothesis outlined. Different groups of people were observed in real-world settings. They consisted of fourteen proficient Spanish Guaraní bilingual speakers from different social groups and ages. Afterward, a group of informants was chosen to obtain a wide range of natural encounters. Informants were observed with special attention to their natural communication, particularly oral interactions. Furthermore, the relationship between interlocutors during code-switching, as based on a negotiation between them, was considered of most relevance. Results were evaluated according to the interpretative method by testing the co-occurrence of the four conversational categories described above. The testing instruments identified that the four aspects of Spanish Guaraní code-switching introduced above were applied.Keywords: bilingualism, code switching, aboriginal language, language contact
Procedia PDF Downloads 1911353 Numerical Calculation and Analysis of Fine Echo Characteristics of Underwater Hemispherical Cylindrical Shell
Authors: Hongjian Jia
Abstract:
A finite-length cylindrical shell with a spherical cap is a typical engineering approximation model of actual underwater targets. The research on the omni-directional acoustic scattering characteristics of this target model can provide a favorable basis for the detection and identification of actual underwater targets. The elastic resonance characteristics of the target are the results of the comprehensive effect of the target length, shell-thickness ratio and materials. Under the conditions of different materials and geometric dimensions, the coincidence resonance characteristics of the target have obvious differences. Aiming at this problem, this paper obtains the omni-directional acoustic scattering field of the underwater hemispherical cylindrical shell by numerical calculation and studies the influence of target geometric parameters (length, shell-thickness ratio) and material parameters on the coincidence resonance characteristics of the target in turn. The study found that the formant interval is not a stable value and changes with the incident angle. Among them, the formant interval is less affected by the target length and shell-thickness ratio and is significantly affected by the material properties, which is an effective feature for classifying and identifying targets of different materials. The quadratic polynomial is utilized to fully fit the change relationship between the formant interval and the angle. The results show that the three fitting coefficients of the stainless steel and aluminum targets are significantly different, which can be used as an effective feature parameter to characterize the target materials.Keywords: hemispherical cylindrical shell;, fine echo characteristics;, geometric and material parameters;, formant interval
Procedia PDF Downloads 11511352 Impact of Applying Bag House Filter Technology in Cement Industry on Ambient Air Quality - Case Study: Alexandria Cement Company
Authors: Haggag H. Mohamed, Ghatass F. Zekry, Shalaby A. Elsayed
Abstract:
Most sources of air pollution in Egypt are of anthropogenic origin. Alexandria Governorate is located at north of Egypt. The main contributing sectors of air pollution in Alexandria are industry, transportation and area source due to human activities. Alexandria includes more than 40% of the industrial activities in Egypt. Cement manufacture contributes a significant amount to the particulate pollution load. Alexandria Portland Cement Company (APCC) surrounding was selected to be the study area. APCC main kiln stack Total Suspended Particulate (TSP) continuous monitoring data was collected for assessment of dust emission control technology. Electro Static Precipitator (ESP) was fixed on the cement kiln since 2002. The collected data of TSP for first quarter of 2012 was compared to that one in first quarter of 2013 after installation of new bag house filter. In the present study, based on these monitoring data and metrological data a detailed air dispersion modeling investigation was carried out using the Industrial Source Complex Short Term model (ISC3-ST) to find out the impact of applying new bag house filter control technology on the neighborhood ambient air quality. The model results show a drastic reduction of the ambient TSP hourly average concentration from 44.94μg/m3 to 5.78μg/m3 which assures the huge positive impact on the ambient air quality by applying bag house filter technology on APCC cement kilnKeywords: air pollution modeling, ambient air quality, baghouse filter, cement industry
Procedia PDF Downloads 27211351 Bioremediation of Polychlorinated Biphenyl (PCBS) Contaminated Soils: A Case Study from Rietvlei Farm at Borehole No. 11, Limpopo Province, South Africa
Authors: D. Sengani, N. Potgieter, P. E. L. Mojapelo
Abstract:
Three bacteria species which comprise of Gram negative and Gram positive microorganisms were isolated and identified on the basis of morpho-cultural study, catalase tests, oxidase tests and biochemical characteristics were found belonging to different genera including Burkholderia cepacia, Pasteurella pneumotropica and Enterococcus faecalis. The main objective of this study was to isolate and identify PCB degrading bacteria from PCB contaminated soils and test them for their degradation ability of PCBs in natural habitat conditions. The results indicated an overall decrease of PCB concentration level with the gradient average ranging from 1.5 to 1.8 respectively. Enterococcus faecalis removed as much as 32% of PCBs in the contaminated soil samples. Whereas Pasteurella pneumotropica could remove 24% of PCBs, Burkholderia cepacia 21% of PCBs and the mixed culture removed 23%. Data showed that the three bacterial strains could tolerate high concentration of PCBs. The results provided the evidence that naturally occurring bacteria in soil contaminated with PCBs have the potential to degrade PCBs. Statistical analysis showed that there was a significant positive correlation between bacteria growth and treatment with a coefficient of (r) =0.1459 and p value < 0.001.Keywords: bacteria, bioaccumulation, biodegradation, bioremediation, polychlorinated biphenyls
Procedia PDF Downloads 24511350 A Bayesian Population Model to Estimate Reference Points of Bombay-Duck (Harpadon nehereus) in Bay of Bengal, Bangladesh Using CMSY and BSM
Authors: Ahmad Rabby
Abstract:
The demographic trend analyses of Bombay-duck from time series catch data using CMSY and BSM for the first time in Bangladesh. During 2000-2018, CMSY indicates average lowest production in 2000 and highest in 2018. This has been used in the estimation of prior biomass by the default rules. Possible 31030 viable trajectories for 3422 r-k pairs were found by the CMSY analysis and the final estimates for intrinsic rate of population increase (r) was 1.19 year-1 with 95% CL= 0.957-1.48 year-1. The carrying capacity(k) of Bombay-duck was 283×103 tons with 95% CL=173×103 - 464×103 tons and MSY was 84.3×103tons year-1, 95% CL=49.1×103-145×103 tons year-1. Results from Bayesian state-space implementation of the Schaefer production model (BSM) using catch & CPUE data, found catchabilitiy coefficient(q) was 1.63 ×10-6 from lcl=1.27×10-6 to ucl=2.10×10-6 and r= 1.06 year-1 with 95% CL= 0.727 - 1.55 year-1, k was 226×103 tons with 95% CL=170×103-301×103 tons and MSY was 60×103 tons year-1 with 95% CL=49.9 ×103- 72.2 ×103 tons year-1. Results for Bombay-duck fishery management based on BSM assessment from time series catch data illustrated that, Fmsy=0.531 with 95% CL =0.364 - 0.775 (if B > 1/2 Bmsy then Fmsy =0.5r); Fmsy=0.531 with 95% CL =0.364-0.775 (r and Fmsy are linearly reduced if B < 1/2Bmsy). Biomass in 2018 was 110×103 tons with 2.5th to 97.5th percentile=82.3-155×103 tons. Relative biomass (B/Bmsy) in last year was 0.972 from 2.5th percentile to 97.5th percentile=0.728 -1.37. Fishing mortality in last year was 0.738 with 2.5th-97.5th percentile=0.525-1.37. Exploitation F/Fmsy was 1.39, from 2.5th to 97.5th percentile it was 0.988 -1.86. The biological reference points of B/BMSY was smaller than 1.0, while F/FMSY was higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Bombay-duck fishery.Keywords: biological reference points, catchability coefficient, carrying capacity, intrinsic rate of population increase
Procedia PDF Downloads 13111349 South Africa’s Post-Apartheid Film Narratives of HIV/AIDS: A Case of ‘Yesterday’
Authors: Moyahabo Molefe
Abstract:
The persistence of HIV/AIDS infection rates in SA has not only been a subject of academic debate but a mediated narrative that has dominated SA’s post-apartheid film space over the last two decades. SA’s colonial geo-spatial architecture still influences migrant labour patterns, which the Oscar-nominated (2003) SA film ‘Yesterday’ has erstwhile reflected upon, yet continues to account for the spread of HIV/AIDS in SA society. Accordingly, men who had left their homes in the rural areas to work in the mines in the cities become infected with HIV/AIDS, only to return home to infect their wives or partners in the rural areas. This paper analyses, through Social Semiotic theory, how SA geo-spatial arrangement had raptured family structures with both men and women taking new residences in the urban areas where they work away from their homes. By using Social semiotic theory, this paper seeks to understand how images and discourses have been deployed in the film ‘Yesterday’ to demonstrate how HIV/AIDS is embedded in the socio-cultural, economic and political architect of SA society. The study uses qualitative approach and content/text/visual semiotic analysis to decipher meanings from array of imagery and discourses/dialogues that are used to mythologise the relationship between the spread of HIV/AIDS and SA migrant labour patterns. The findings of the study are significant to propose a conceptual framework that can be used to mitigate the spread of HIV/AIDS among SA populace, against the backdrop of changing migrant labour patterns and other related factorsKeywords: colonialism, decoloniality, HIV/AIDS, labour migration patterns, social semiotics
Procedia PDF Downloads 8211348 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine
Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski
Abstract:
This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: crank bearings, diesel engine, oil film, two-stroke engine
Procedia PDF Downloads 21811347 Modeling Local Warming Trend: An Application of Remote Sensing Technique
Authors: Khan R. Rahaman, Quazi K. Hassan
Abstract:
Global changes in climate, environment, economies, populations, governments, institutions, and cultures converge in localities. Changes at a local scale, in turn, contribute to global changes as well as being affected by them. Our hypothesis is built on a consideration that temperature does vary at local level (i.e., termed as local warming) in comparison to the predicted models at the regional and/or global scale. To date, the bulk of the research relating local places to global climate change has been top-down, from the global toward the local, concentrating on methods of impact analysis that use as a starting point climate change scenarios derived from global models, even though these have little regional or local specificity. Thus, our focus is to understand such trends over the southern Alberta, which will enable decision makers, scientists, researcher community, and local people to adapt their policies based on local level temperature variations and to act accordingly. Specific objectives in this study are: (i) to understand the local warming (temperature in particular) trend in context of temperature normal during the period 1961-2010 at point locations using meteorological data; (ii) to validate the data by using specific yearly data, and (iii) to delineate the spatial extent of the local warming trends and understanding influential factors to adopt situation by local governments. Existing data has brought the evidence of such changes and future research emphasis will be given to validate this hypothesis based on remotely sensed data (i.e. MODIS product by NASA).Keywords: local warming, climate change, urban area, Alberta, Canada
Procedia PDF Downloads 35011346 Powerful Media: Reflection of Professional Audience
Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval
Abstract:
As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.Keywords: audience, effect, media, interaction, action laws
Procedia PDF Downloads 49311345 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 13511344 Detection of Paenibacillus larvae (American Foulbrood Disease) by the PCR and Culture in the Remains of the Hive Collected at the Bottom of the Colony
Authors: N. Adjlane, N. Haddad
Abstract:
The American foulbrood is one of the most serious diseases that may affect brood of larvae and pupae stages. The causative organism is a gram positive bacterium Paaenibacillus larvae. American foulbrood infected apiaries suffer from severe economic losses, resulting from significant decreases in honeybee populations and honey production. The aim of this study was to detect Paenibacillus larvae in the remains collected at the bottom of the hive from the suspected hives by direct PCR and culture growth. A total of 56 suspected beehive wax debris samples collected in 40 different apiaries located in the central region of Algeria. MYPGP the culture medium is used during all the identifications of the bacterium. After positive results on samples, biochemical confirmation tests (test of catalase, presence hydrolysis of casein) and microscopic (gram stain) are used in order to verify the accuracy of the initial results. The QIAamp DNA Mini Kit is used to identify the DNA of Paaenibacillus larvae. Paaenibacillus larvae were identified in 14 samples out of 16 by the PCR. A suspected culture-negative sample was found positive through evaluation with PCR. This research is for the bacterium Paaenibacillus larvae in the debris of the colony is an effective method for diagnosis of the pathology of American foulbrood.Keywords: Paenibacillus larvae, honeybee, PCR, microbiological method
Procedia PDF Downloads 41511343 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study
Authors: G. Singh, H.Schuster, U. Füssel
Abstract:
The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode
Procedia PDF Downloads 19011342 Predictions of Thermo-Hydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations
Authors: Tai Yuan Yu, Pei-Jen Wang
Abstract:
Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings, abbreviated as GFBs, are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional, abbreviated as 3D, fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.Keywords: fluid-structure interaction, multi-physics simulations, gas foil bearing, oil-free, transient thermo-hydrodynamic
Procedia PDF Downloads 16511341 Student Feedback of a Major Curricular Reform Based on Course Integration and Continuous Assessment in Electrical Engineering
Authors: Heikki Valmu, Eero Kupila, Raisa Vartia
Abstract:
A major curricular reform was implemented in Metropolia UAS in 2014. The teaching was to be based on larger course entities and collaborative pedagogy. The most thorough reform was conducted in the department of electrical engineering and automation technology. It has been already shown that the reform has been extremely successful with respect to student progression and drop-out rate. The improvement of the results has been much more significant in this department compared to the other engineering departments making only minor pedagogical changes. In the beginning of the spring term of 2017, a thorough student feedback project was conducted in the department. The study consisted of thirty questions about the implementation of the curriculum, the student workload and other matters related to student satisfaction. The reply rate was more than 40%. The students were divided to four different categories: first year students [cat.1] and students of all the three different majors [categories 2-4]. These categories were found valid since all the students have the same course structure in the first two semesters after which they may freely select the major. All staff members are divided into four teams respectively. The curriculum consists of consecutive 15 credit (ECTS) courses each taught by a group of teachers (3-5). There are to be no end exams and continuous assessment is to be employed. In 2014 the different teacher groups were encouraged to employ innovatively different assessment methods within the given specs. One of these methods has been since used in categories 1 and 2. These students have to complete a number of compulsory tasks each week to pass the course and the actual grade is defined by a smaller number of tests throughout the course. The tasks vary from homework assignments, reports and laboratory exercises to larger projects and the actual smaller tests are usually organized during the regular lecture hours. The teachers of the other two majors have been pedagogically more conservative. The student progression has been better in categories 1 and 2 compared to categories 3 and 4. One of the main goals of this survey was to analyze the reasons for the difference and the assessment methods in detail besides the general student satisfaction. The results show that in the categories following more strictly the specified assessment model much more versatile assessment methods are used and the basic spirit of the new pedagogy is followed. Also, the student satisfaction is significantly better in categories 1 and 2. It may be clearly stated that continuous assessment and teacher cooperation improve the learning outcomes, student progression as well as student satisfaction. Too much academic freedom seems to lead to worse results [cat 3 and 4]. A standardized assessment model is launched for all students in autumn 2017. This model is different from the one used so far in categories 1 and 2 allowing more flexibility to teacher groups, but it will force all the teacher groups to follow the general rules in order to improve the results and the student satisfaction further.Keywords: continuous assessment, course integration, curricular reform, student feedback
Procedia PDF Downloads 20711340 High Performance Computing Enhancement of Agent-Based Economic Models
Authors: Amit Gill, Lalith Wijerathne, Sebastian Poledna
Abstract:
This research presents the details of the implementation of high performance computing (HPC) extension of agent-based economic models (ABEMs) to simulate hundreds of millions of heterogeneous agents. ABEMs offer an alternative approach to study the economy as a dynamic system of interacting heterogeneous agents, and are gaining popularity as an alternative to standard economic models. Over the last decade, ABEMs have been increasingly applied to study various problems related to monetary policy, bank regulations, etc. When it comes to predicting the effects of local economic disruptions, like major disasters, changes in policies, exogenous shocks, etc., on the economy of the country or the region, it is pertinent to study how the disruptions cascade through every single economic entity affecting its decisions and interactions, and eventually affect the economic macro parameters. However, such simulations with hundreds of millions of agents are hindered by the lack of HPC enhanced ABEMs. In order to address this, a scalable Distributed Memory Parallel (DMP) implementation of ABEMs has been developed using message passing interface (MPI). A balanced distribution of computational load among MPI-processes (i.e. CPU cores) of computer clusters while taking all the interactions among agents into account is a major challenge for scalable DMP implementations. Economic agents interact on several random graphs, some of which are centralized (e.g. credit networks, etc.) whereas others are dense with random links (e.g. consumption markets, etc.). The agents are partitioned into mutually-exclusive subsets based on a representative employer-employee interaction graph, while the remaining graphs are made available at a minimum communication cost. To minimize the number of communications among MPI processes, real-life solutions like the introduction of recruitment agencies, sales outlets, local banks, and local branches of government in each MPI-process, are adopted. Efficient communication among MPI-processes is achieved by combining MPI derived data types with the new features of the latest MPI functions. Most of the communications are overlapped with computations, thereby significantly reducing the communication overhead. The current implementation is capable of simulating a small open economy. As an example, a single time step of a 1:1 scale model of Austria (i.e. about 9 million inhabitants and 600,000 businesses) can be simulated in 15 seconds. The implementation is further being enhanced to simulate 1:1 model of Euro-zone (i.e. 322 million agents).Keywords: agent-based economic model, high performance computing, MPI-communication, MPI-process
Procedia PDF Downloads 132