Search results for: sustainable and eco-friendly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4716

Search results for: sustainable and eco-friendly

3396 Developing a Comprehensive Green Building Rating System Tailored for Nigeria: Analyzing International Sustainable Rating Systems to Create Environmentally Responsible Standards for the Nigerian Construction Industry and Built Environment

Authors: Azeez Balogun

Abstract:

Inexperienced building score practices are continually evolving and vary across areas. Yet, a few middle ideas stay steady, such as website selection, design, energy efficiency, water and material conservation, indoor environmental great, operational optimization, and waste discount. The essence of green building lies inside the optimization of 1 or more of those standards. This paper conducts a comparative analysis of 7 extensively recognized sustainable score structures—BREEAM, CASBEE, green GLOBES, inexperienced superstar, HK-BEAM, IGBC green homes, and LEED—based totally on the perceptions and opinions of stakeholders in Nigeria certified in green constructing rating systems. The purpose is to pick out and adopt an appropriate green building rating device for Nigeria. Numerous components of those systems had been tested to determine the high-quality health of the Nigerian built environment. The findings imply that LEED, the important machine within the USA and Canada, is the most suitable for Nigeria due to its sturdy basis, extensive funding, and confirmed blessings. LEED obtained the highest rating of eighty out of one hundred points on this assessment.

Keywords: structure, built surroundings, inexperienced building score gadget, Nigeria Inexperienced Constructing Council, sustainability

Procedia PDF Downloads 28
3395 Dynamic Cellular Remanufacturing System (DCRS) Design

Authors: Tariq Aljuneidi, Akif Asil Bulgak

Abstract:

Remanufacturing may be defined as the process of bringing used products to “like-new” functional state with warranty to match, and it is one of the most popular product end-of-life scenarios. An efficient remanufacturing network lead to an efficient design of sustainable manufacturing enterprise. In remanufacturing network, products are collected from the customer zone, disassembled and remanufactured at a suitable remanufacturing facility. In this respect, another issue to consider is how the returned product to be remanufactured, in other words, what is the best layout for such facility. In order to achieve a sustainable manufacturing system, Cellular Manufacturing System (CMS) designs are highly recommended, CMSs combine high throughput rates of line layouts with the flexibility offered by functional layouts (job shop). Introducing the CMS while designing a remanufacturing network will benefit the utilization of such a network. This paper presents and analyzes a comprehensive mathematical model for the design of Dynamic Cellular Remanufacturing Systems (DCRSs). In this paper, the proposed model is the first one to date that consider CMS and remanufacturing system simultaneously. The proposed DCRS model considers several manufacturing attributes such as multi-period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, available time for workers, worker assignments, and machine procurement, where the demand is totally satisfied from a returned product. A numerical example is presented to illustrate the proposed model.

Keywords: cellular manufacturing system, remanufacturing, mathematical programming, sustainability

Procedia PDF Downloads 378
3394 Strategic Leadership and Sustainable Project Management in Enugu, Nigeria

Authors: Nnadi Ezekiel Ejiofor

Abstract:

In Enugu, Nigeria, this study investigates the connection between strategic leadership and project management sustainability, with an emphasis on building projects in the State. The study set out to accomplish two specific goals: first, it sought to establish a link between creative project management and resource efficiency in construction projects in Enugu State, Nigeria; and second, it sought to establish a link between innovative thinking and waste minimization in those same projects. A structured questionnaire was used to collect primary data from 45 registered construction enterprises in the study area as part of the study's descriptive research approach. Due to the nonparametric nature of the data, Spearman Rank Order Correlation was used to evaluate the acquired data. The findings demonstrate that creative project management had a significant positive impact on resource efficiency in construction projects carried out by architecture firms in Enugu State, Nigeria (r =.849; p.001), and that innovative thinking had a significant impact on waste reduction in those same projects (r =.849; p.001). It was determined that strategic leadership had a significant impact on the sustainability of project management, and it was thus advised that project managers should foresee, prepare for, and effectively communicate present and future developments to project staff in order to ensure that the objective of sustainable initiatives, such as recycling and reuse, is implemented in construction projects.

Keywords: construction, project management, strategic leadership, sustainability, waste reduction

Procedia PDF Downloads 50
3393 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context

Authors: Mohamed Redha Menani

Abstract:

The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.

Keywords: transboundary water resources, SASS, governance, climatic changes

Procedia PDF Downloads 82
3392 Exploring Drivers and Barriers to Environmental Supply Chain Management in the Pharmaceutical Industry of Ghana

Authors: Gifty Kumadey, Albert Tchey Agbenyegah

Abstract:

(i) Overview and research goal(s): This study aims to address research gaps in the Ghanaian pharmaceutical industry by examining the impact of environmental supply chain management (ESCM) practices on environmental and operational performance. Previous studies have provided inconclusive evidence on the relationship between ESCM practices and environmental and operational performance. The research aims to provide a clearer understanding of the impact of ESCM practices on environmental and operational performance in the context of the Ghanaian pharmaceutical industry. Limited research has been conducted on ESCM practices in developing countries, particularly in Africa. The study aims to bridge this gap by examining the drivers and barriers specific to the pharmaceutical industry in Ghana. The research aims to analyze the impact of ESCM practices on the achievement of Sustainable Development Goals (SDGs) in the Ghanaian pharmaceutical industry, focusing on SDGs 3, 12, 13, and 17. It also explores the potential for partnerships and collaborations to advance ESCM practices in the pharmaceutical industry. The research hypotheses suggest that pressure from stakeholder positively influences the adoption of ESCM practices in the Ghanaian pharmaceutical industry. By addressing these goals, the study aims to contribute to sustainable development initiatives and offer practical recommendations to enhance ESCM A practices in the industry. (ii) Research methods and data: This study uses a quantitative research design to examine the drivers and barriers to environmental supply chain management in the pharmaceutical industry in Accra.The sample size is approximately 150 employees, with senior and middle-level managers from pharmaceutical industry of Ghana. A purposive sampling technique is used to select participants with relevant knowledge and experience in environmental supply chain management. Data will be collected using a structured questionnaire using Likert scale responses. Descriptive statistics will be used to analyze the data and provide insights into current practices and their impact on environmental and operational performance. (iii) Preliminary results and conclusions: Main contributions: Identifying drivers/barriers to ESCM in Ghana's pharmaceutical industry, evaluating current ESCM practices, examining impact on performance, providing practical insights, contributing to knowledge on ESCM in Ghanaian context. The research contributes to SDGs 3, 9, and 12 by promoting sustainable practices and responsible consumption in the industry. The study found that government rules and regulations are the most critical drivers for ESCM adoption, with senior managers playing a significant role. However, employee and competitor pressures have a lesser impact. The industry has made progress in implementing certain ESCM practices, but there is room for improvement in areas like green distribution and reverse logistics. The study emphasizes the importance of government support, management engagement, and comprehensive implementation of ESCM practices in the industry. Future research should focus on overcoming barriers and challenges to effective ESCM implementation.

Keywords: environmental supply chain, sustainable development goal, ghana pharmaceutical industry, government regulations

Procedia PDF Downloads 94
3391 Environmental Planning for Sustainable Utilization of Lake Chamo Biodiversity Resources: Geospatially Supported Approach, Ethiopia

Authors: Alemayehu Hailemicael Mezgebe, A. J. Solomon Raju

Abstract:

Context: Lake Chamo is a significant lake in the Ethiopian Rift Valley, known for its diversity of wildlife and vegetation. However, the lake is facing various threats due to human activities and global effects. The poor management of resources could lead to food insecurity, ecological degradation, and loss of biodiversity. Research Aim: The aim of this study is to analyze the environmental implications of lake level changes using GIS and remote sensing. The research also aims to examine the floristic composition of the lakeside vegetation and propose spatially oriented environmental planning for the sustainable utilization of the biodiversity resources. Methodology: The study utilizes multi-temporal satellite images and aerial photographs to analyze the changes in the lake area over the past 45 years. Geospatial analysis techniques are employed to assess land use and land cover changes and change detection matrix. The composition and role of the lakeside vegetation in the ecological and hydrological functions are also examined. Findings: The analysis reveals that the lake has shrunk by 14.42% over the years, with significant modifications to its upstream segment. The study identifies various threats to the lake-wetland ecosystem, including changes in water chemistry, overfishing, and poor waste management. The study also highlights the impact of human activities on the lake's limnology, with an increase in conductivity, salinity, and alkalinity. Floristic composition analysis of the lake-wetland ecosystem showed definite pattern of the vegetation distribution. The vegetation composition can be generally categorized into three belts namely, the herbaceous belt, the legume belt and the bush-shrub-small trees belt. The vegetation belts collectively act as different-sized sieve screen system and calm down the pace of incoming foreign matter. This stratified vegetation provides vital information to decide the management interventions for the sustainability of lake-wetland ecosystem.Theoretical Importance: The study contributes to the understanding of the environmental changes and threats faced by Lake Chamo. It provides insights into the impact of human activities on the lake-wetland ecosystem and emphasizes the need for sustainable resource management. Data Collection and Analysis Procedures: The study utilizes aerial photographs, satellite imagery, and field observations to collect data. Geospatial analysis techniques are employed to process and analyze the data, including land use/land cover changes and change detection matrices. Floristic composition analysis is conducted to assess the vegetation patterns Question Addressed: The study addresses the question of how lake level changes and human activities impact the environmental health and biodiversity of Lake Chamo. It also explores the potential opportunities and threats related to water utilization and waste management. Conclusion: The study recommends the implementation of spatially oriented environmental planning to ensure the sustainable utilization and maintenance of Lake Chamo's biodiversity resources. It emphasizes the need for proper waste management, improved irrigation facilities, and a buffer zone with specific vegetation patterns to restore and protect the lake outskirt.

Keywords: buffer zone, geo-spatial, lake chamo, lake level changes, sustainable utilization

Procedia PDF Downloads 87
3390 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations

Authors: I. S. R. Butswat, D. Zahraddeen

Abstract:

This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.

Keywords: animal, agriculture, entreprenurship, wealth

Procedia PDF Downloads 247
3389 A Study of Possible Approach to Facilitate Social Sustainability of Industrial Land Redevelopment-Led Urban Regeneration

Authors: Hung Hing Chan, Tai-Shan Hu

Abstract:

Kaohsiung has been an industrial city of Taiwan for over a hundred year. Consequently, there are several abandoned industrial lands left when the process of deindustrialization has started, resulting in the decay of the adjacent urban communities. These industrial lands, which are brownfields that are potentially or already contaminated by hazardous substances, have created social injustice to the surrounding communities. The redevelopments of industrial lands bring a sustainable development to the communities, while the redevelopments can be in different forms, depending on the natural conditions. This research studies the possible approaches to facilitate social sustainability of urban regeneration resulted from the industrial land redevelopment projects, which has always been ignored. The aim of the research is to find out the best western practices of brownfield redevelopment to facilitate social aspect of sustainable urban regeneration and make a contribution to the industrial land redevelopment of Taiwan. The research is conducted via literature review and case study. Industrial land redevelopment has been a social focus in the blighted communities to promote urban regeneration after the post-industrial age. The tendency of this kind of redevelopment is towards constructing the built environment, as a result the environmental and economic aspect of sustainability of the redeveloped industrial land will be boosted, while the social aspect will not be necessarily better since the local communities affected are rarely engaged in the decision-making process and inadequate resource allocation to the projects is not guaranteed. To ensure the improvement of social sustainability is reached, the recommendations of this research, such as civic engagement, a formation of dedicated brownfield regeneration agency and resource allocation to employ brownfield process manager and to strategic communication, should be incorporated into the real practices of industrial land-led urban regeneration. Besides, the case study also shows that the social sustainability of industrial land-led urban regeneration can be promoted by (1) upholding the local feature and public participation in the regeneration process, (2) allocating resources and enforcing responsibility system, and (3) assuring financial resource for the urban regeneration projects and residents. Subsequent research will involve in-depth interviews with the chiefs of the village of related communities in Kaohsiung and questionnaire with the community members to comprehend their opinions regarding social sustainability, aiming at evaluating the social sustainability and finding out which kind of redevelopment project tends to support the social dimension of sustainable development more.

Keywords: brownfield, industrial land, redevelopment, social sustainability, urban regeneration

Procedia PDF Downloads 217
3388 Sustainable Urban Resilience and Climate-Proof Urban Planning

Authors: Carmela Mariano

Abstract:

The literature, the scientific and disciplinary debate related to the impacts of climate change on the territory has highlighted, in recent years, the need for climate-proof and resilient tools of urban planning that adopt an integrated and inter-scalar approach for the construction of urban regeneration strategies by the objectives of the European Strategy on adaptation to climate change, the 2030 Agenda for Sustainable Development and the Climate Conference. This article addresses the operational implications of urban climate resilience in urban planning tools as a priority objective of policymakers (government bodies, institutions, etc.) to respond to the risks of climate change-related impacts on the environment. Within the general framework of the research activities carried out by the author, this article provides a critical synthesis of the analysis and evaluation of some case studies from the Italian national context, which enabled, through an inductive method, the assessment of the process of implementing the adaptation to climate change within the regional urban planning frameworks (regional urban laws), specific regional adaptation strategies or local adaptation plans and within the territorial and urban planning tools of a metropolitan or local scale. This study aims to identify theoretical–methodological, and operational references for the innovation and integration of planning tools concerning climate change that allow local planners to test these references in specific territorial contexts to practical adaptation strategies for local action.

Keywords: urban resilience, urban regeneration, climate-proof-planning, urban planning

Procedia PDF Downloads 18
3387 A Comparative Analysis of Solid Waste Treatment Technologies on Cost and Environmental Basis

Authors: Nesli Aydin

Abstract:

Waste management decision making in developing countries has moved towards being more pragmatic, transparent, sustainable and comprehensive. Turkey is required to make its waste related legislation compatible with European Legislation as it is a candidate country of the European Union. Improper Turkish practices such as open burning and open dumping practices must be abandoned urgently, and robust waste management systems have to be structured. The determination of an optimum waste management system in any region requires a comprehensive analysis in which many criteria are taken into account by stakeholders. In conducting this sort of analysis, there are two main criteria which are evaluated by waste management analysts; economic viability and environmentally friendliness. From an analytical point of view, a central characteristic of sustainable development is an economic-ecological integration. It is predicted that building a robust waste management system will need significant effort and cooperation between the stakeholders in developing countries such as Turkey. In this regard, this study aims to provide data regarding the cost and environmental burdens of waste treatment technologies such as an incinerator, an autoclave (with different capacities), a hydroclave and a microwave coupled with updated information on calculation methods, and a framework for comparing any proposed scenario performances on a cost and environmental basis.

Keywords: decision making, economic viability, environmentally friendliness, waste management systems

Procedia PDF Downloads 305
3386 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 426
3385 Enhancing Cellulose Acetate Films: Impact of Glycerol and Ionic Liquid Plasticizers

Authors: Rezzouq Asiya, Bouftou Abderrahim, Belfadil Doha, Taoufyk Azzeddine, El Bouchti Mehdi, Zyade Souad, Cherkaoui Omar, Majid Sanaa

Abstract:

Plastic packaging is widely used, but its pollution is a major environmental problem. Solutions require new sustainable technologies, environmental management, and the use of bio-based polymers as sustainable packaging. Cellulose acetate (CA) is a biobased polymer used in a variety of applications such as the manufacture of plastic films, textiles, and filters. However, it has limitations in terms of thermal stability and rigidity, which necessitates the addition of plasticizers to optimize its use in packaging. Plasticizers are molecules that increase the flexibility of polymers, but their influence on the chemical and physical properties of films (CA) has not been studied in detail. Some studies have focused on mechanical and thermal properties. However, an in-depth analysis is needed to understand the interactions between the additives and the polymer matrix. In this study, the aim is to examine the effect of two types of plasticizers, glycerol (a conventional plasticizer) and an ionic liquid, on the transparency, mechanical, thermal and barrier properties of cellulose acetate (CA) films prepared by the solution-casting method . Various analytical techniques were used to characterize these films, including infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), water vapor permeability (WVP), oxygen permeability, scanning electron microscopy (SEM), opacity, transmission analysis and mechanical tests.

Keywords: cellulose acetate, plasticizers, biopolymers, ionic liquid, glycerol.

Procedia PDF Downloads 40
3384 Micro-Oculi Facades as a Sustainable Urban Facade

Authors: Ok-Kyun Im, Kyoung Hee Kim

Abstract:

We live in an era that faces global challenges of climate changes and resource depletion. With the rapid urbanization and growing energy consumption in the built environment, building facades become ever more important in architectural practice and environmental stewardship. Furthermore, building facade undergoes complex dynamics of social, cultural, environmental and technological changes. Kinetic facades have drawn attention of architects, designers, and engineers in the field of adaptable, responsive and interactive architecture since 1980’s. Materials and building technologies have gradually evolved to address the technical implications of kinetic facades. The kinetic façade is becoming an independent system of the building, transforming the design methodology to sustainable building solutions. Accordingly, there is a need for a new design methodology to guide the design of a kinetic façade and evaluate its sustainable performance. The research objectives are two-fold: First, to establish a new design methodology for kinetic facades and second, to develop a micro-oculi façade system and assess its performance using the established design method. The design approach to the micro-oculi facade is comprised of 1) façade geometry optimization and 2) dynamic building energy simulation. The façade geometry optimization utilizes multi-objective optimization process, aiming to balance the quantitative and qualitative performances to address the sustainability of the built environment. The dynamic building energy simulation was carried out using EnergyPlus and Radiance simulation engines with scripted interfaces. The micro-oculi office was compared with an office tower with a glass façade in accordance with ASHRAE 90.1 2013 to understand its energy efficiency. The micro-oculi facade is constructed with an array of circular frames attached to a pair of micro-shades called a micro-oculus. The micro-oculi are encapsulated between two glass panes to protect kinetic mechanisms with longevity. The micro-oculus incorporates rotating gears that transmit the power to adjacent micro-oculi to minimize the number of mechanical parts. The micro-oculus rotates around its center axis with a step size of 15deg depending on the sun’s position while maximizing daylighting potentials and view-outs. A 2 ft by 2ft prototyping was undertaken to identify operational challenges and material implications of the micro-oculi facade. In this research, a systematic design methodology was proposed, that integrates multi-objectives of kinetic façade design criteria and whole building energy performance simulation within a holistic design process. This design methodology is expected to encourage multidisciplinary collaborations between designers and engineers to collaborate issues of the energy efficiency, daylighting performance and user experience during design phases. The preliminary energy simulation indicated that compared to a glass façade, the micro-oculi façade showed energy savings due to its improved thermal properties, daylighting attributes, and dynamic solar performance across the day and seasons. It is expected that the micro oculi façade provides a cost-effective, environmentally-friendly, sustainable, and aesthetically pleasing alternative to glass facades. Recommendations for future studies include lab testing to validate the simulated data of energy and optical properties of the micro-oculi façade. A 1:1 performance mock-up of the micro-oculi façade can suggest in-depth understanding of long-term operability and new development opportunities applicable for urban façade applications.

Keywords: energy efficiency, kinetic facades, sustainable architecture, urban facades

Procedia PDF Downloads 257
3383 Comparative Fracture Parameters of Khaya ivorensis and Magnolia obovata: Outlooks for the Development of Sustainable Mobility Materials

Authors: Riccardo Houngbegnon, Loic Chrislin Nguedjio, Valery Doko, José Xavier, Miran Merhar, Rostand Moutou Pitti

Abstract:

Against a backdrop of heightened awareness of environmental impact and the reduction of space debris, the use of sustainable materials for mobility applications is emerging as a promising solution to minimize the environmental footprint of our technologies. Among recent innovative developments in the use of wood, the Japanese species Magnolia obovata attracted particular interest when it was used in the design of the first wooden satellite launched in November 2024. The aim of this project is to explore new species that could replace M. obovata in a mobile context. Khaya ivorensis, a tropical African species, was selected and compared to M. obovata in terms of resistance to cracking, a key criterion in the durability of mobility infrastructures. Prior to the cracking tests, K. ivorensis and M. obovata were characterized to determine their basic mechanical properties. The results presented here relate to this characterization phase, in particular the four-point bending, compression and BING tests, which provided us with strengths and moduli. These results were compared with those found in the literature, which allowed us to observe a number of differences. CHARPY resilience tests were also performed and compare to critical energy release rate in order to estimate the ability of the two species to absorb energy, particularly following impacts and various shocks.

Keywords: energy release rate, Khaya ivorensis, magnolia obovata, wood for mobility

Procedia PDF Downloads 7
3382 Renewable Energy Utilization for Future Sustainability: An Approach to Roof-Mounted Photovoltaic Array Systems and Domestic Rooftop Rainwater Harvesting System Implementation in a Himachal Pradesh, India

Authors: Rajkumar Ghosh, Ananya Mukhopadhyay

Abstract:

This scientific paper presents a thorough investigation into the integration of roof-mounted photovoltaic (PV) array systems and home rooftop rainwater collection systems in a remote community in Himachal Pradesh, India, with the goal of optimum utilization of natural resources for attaining sustainable living conditions by 2030. The study looks into the technical feasibility, environmental benefits, and socioeconomic impacts of this integrated method, emphasizing its ability to handle energy and water concerns in remote rural regions. This comprehensive method not only provides a sustainable source of electricity but also ensures a steady supply of clean water, promoting resilience and improving the quality of life for the village's residents. This research highlights the potential of such integrated systems in supporting sustainable conditions in rural areas through a combination of technical feasibility studies, economic analysis, and community interaction. There would be 20690 villages and 1.48 million homes (23.79% annual growth rate) in Himachal Pradesh if all residential buildings in the state had roof-mounted photovoltaic arrays to capture solar energy for power generation. The energy produced is utilized to power homes, lessening dependency on traditional fossil fuels. The same residential buildings housed domestic rooftop rainwater collection systems. Rainwater runoff from rooftops is collected and stored in tanks for use in a number of residential purposes, such as drinking, cooking, and irrigation. The gathered rainfall enhances the region's limited groundwater resources, easing the strain on local wells and aquifers. Although Himachal Pradesh of India is a Power state, the PV arrays have reduced the reliance of village on grid power and diesel generators by providing a steady source of electricity. Rooftop rainwater gathering has not only increased residential water supply but it has also lessened the burden on local groundwater resources. This helps to replenish groundwater and offers a more sustainable water supply for the town. The neighbourhood has saved money by utilizing renewable energy and rainwater gathering. Furthermore, lower fossil fuel consumption reduces greenhouse gas emissions, which helps to mitigate the effects of climate change. The integrated strategy of installing grid connected rooftop photovoltaic arrays and home rooftop rainwater collecting systems in Himachal Pradesh rural community demonstrates a feasible model for sustainable development. According to “Swaran Jayanti Energy Policy of Himachal Pradesh”, Himachal Pradesh is planned 10 GW from rooftop mode from Solar Power. Government of India provides 40% subsidy on solar panel of 1-3 kw and subsidy of Rs 6,000 per kw per year to encourage domestic consumers of Himachal Pradesh. This effort solves energy and water concerns, improves economic well-being, and helps to conserve the environment. Such integrated systems can serve as a model for sustainable development in rural areas not only in Himachal Pradesh, but also in other parts of the world where resource scarcity is a major concern. Long-term performance and scalability of such integrated systems should be the focus of future study. Efforts should also be made to duplicate this approach in other rural areas and examine its socioeconomic and environmental implications over time.

Keywords: renewable energy, photovoltaic arrays, rainwater harvesting, sustainability, rural development, Himachal Pradesh, India

Procedia PDF Downloads 100
3381 Cutting Propagation Studies in Pennisetum divisum and Tamarix aucheriana as Native Plant Species of Kuwait

Authors: L. Almulla

Abstract:

Native plants are better adapted to the local environment providing a more natural effect on landscape projects; their use will both conserve natural resources and produce sustainable greenery. Continuation of evaluation of additional native plants is essential to increase diversity of plant resources for greenery projects. Therefore, in this project an effort was made to study the mass multiplication of further native plants for greenery applications. Standardization of vegetative propagation methods is essential for conservation and sustainable utilization of native plants in restoration projects. Moreover, these simple propagation methods can be readily adapted by the local nursery sector in Kuwait. In the present study, various treatments were used to mass multiply selected plants using vegetative parts to secure maximum rooting and initial growth. Soft or semi-hardwood cuttings of selected native plants were collected from mother plants and subjected to different treatments. Pennisetum divisum can be vegetatively propagated by cuttings/off-shoots. However, Tamarix aucheriana showed maximum number of rooted cuttings and stronger vigor seedlings with the lowest growth hormone concentration. Standardizing the propagation techniques for the native plant species will add to the rehabilitation and landscape revegetation projects in Kuwait.

Keywords: Kuwait desert, landscape, rooting percentage, vegetative propagation

Procedia PDF Downloads 122
3380 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 137
3379 Embodying the Ecological Validity in Creating the Sustainable Public Policy: A Study in Strengthening the Green Economy in Indonesia

Authors: Gatot Dwi Hendro, Hayyan ul Haq

Abstract:

This work aims to explore the strategy in embodying the ecological validity in creating the sustainability of public policy, particularly in strengthening the green economy in Indonesia. This green economy plays an important role in supporting the national development in Indonesia, as it is a part of the national policy that posits the primary priority in Indonesian governance. The green economy refers to the national development covering strategic natural resources, such as mining, gold, oil, coal, forest, water, marine, and the other supporting infrastructure for products and distribution, such as fabrics, roads, bridges, and so forth. Thus, all activities in those national development should consider the sustainability. This sustainability requires the strong commitment of the national and regional government, as well as the local governments to put the ecology as the main requirement for issuing any policy, such as licence in mining production, and developing and building new production and supporting infrastructures for optimising the national resources. For that reason this work will focus on the strategy how to embody the ecological values and norms in the public policy. In detail, this work will offer the method, i.e. legal techniques, in visualising and embodying the norms and public policy that valid ecologically. This ecological validity is required in order to maintain and sustain our collective life.

Keywords: ecological validity, sustainable development, coherence, Indonesian Pancasila values, environment, marine

Procedia PDF Downloads 485
3378 Proposing of an Adaptable Land Readjustment Model for Developing of the Informal Settlements in Kabul City

Authors: Habibi Said Mustafa, Hiroko Ono

Abstract:

Since 2006, Afghanistan is dealing with one of the most dramatic trend of urban movement in its history, cities and towns are expanding in size and number. Kabul is the capital of Afghanistan and as well as the fast-growing city in the Asia. The influx of the returnees from neighbor countries and other provinces of Afghanistan caused high rate of artificial growth which slums increased. As an unwanted consequence of this growth, today informal settlements have covered a vast portion of the city. Land Readjustment (LR) has proved to be an important tool for developing informal settlements and reorganizing urban areas but its implementation always varies from country to country and region to region within the countries. Consequently, to successfully develop the informal settlements in Kabul, we need to define an Afghan model of LR specifically for Afghanistan which needs to incorporate all those factors related to the socio-economic condition of the country. For this purpose, a part of the old city of Kabul has selected as a study area which is located near the Central Business District (CBD). After the further analysis and incorporating all needed factors, the result shows a positive potential for the implementation of an adaptable Land Readjustment model for Kabul city which is more sustainable and socio-economically friendly. It will enhance quality of life and provide better urban services for the residents. Moreover, it will set a vision and criteria by which sustainable developments shall proceed in other similar informal settlements of Kabul.

Keywords: adaptation, informal settlements, Kabul, land readjustment, preservation

Procedia PDF Downloads 203
3377 Cycleloop Personal Rapid Transit: An Exploratory Study for Last Mile Connectivity in Urban Transport

Authors: Suresh Salla

Abstract:

In this paper, author explores for most sustainable last mile transport mode addressing present problems of traffic congestion, jams, pollution and travel stress. Development of energy-efficient sustainable integrated transport system(s) is/are must to make our cities more livable. Emphasis on autonomous, connected, electric, sharing system for effective utilization of systems (vehicles and public infrastructure) is on the rise. Many surface mobility innovations like PBS, Ride hailing, ride sharing, etc. are, although workable but if we analyze holistically, add to the already congested roads, difficult to ride in hostile weather, causes pollution and poses commuter stress. Sustainability of transportation is evaluated with respect to public adoption, average speed, energy consumption, and pollution. Why public prefer certain mode over others? How commute time plays a role in mode selection or shift? What are the factors play-ing role in energy consumption and pollution? Based on the study, it is clear that public prefer a transport mode which is exhaustive (i.e., less need for interchange – network is widespread) and intensive (i.e., less waiting time - vehicles are available at frequent intervals) and convenient with latest technologies. Average speed is dependent on stops, number of intersections, signals, clear route availability, etc. It is clear from Physics that higher the kerb weight of a vehicle; higher is the operational energy consumption. Higher kerb weight also demands heavier infrastructure. Pollution is dependent on source of energy, efficiency of vehicle, average speed. Mode can be made exhaustive when the unit infrastructure cost is less and can be offered intensively when the vehicle cost is less. Reliable and seamless integrated mobility till last ¼ mile (Five Minute Walk-FMW) is a must to encourage sustainable public transportation. Study shows that average speed and reliability of dedicated modes (like Metro, PRT, BRT, etc.) is high compared to road vehicles. Electric vehicles and more so battery-less or 3rd rail vehicles reduce pollution. One potential mode can be Cycleloop PRT, where commuter rides e-cycle in a dedicated path – elevated, at grade or underground. e-Bike with kerb weight per rider at 15 kg being 1/50th of car or 1/10th of other PRT systems makes it sustainable mode. Cycleloop tube will be light, sleek and scalable and can be modular erected, either on modified street lamp-posts or can be hanged/suspended between the two stations. Embarking and dis-embarking points or offline stations can be at an interval which suits FMW to mass public transit. In terms of convenience, guided e-Bike can be made self-balancing thus encouraging driverless on-demand vehicles. e-Bike equipped with smart electronics and drive controls can intelligently respond to field sensors and autonomously move reacting to Central Controller. Smart switching allows travel from origin to destination without interchange of cycles. DC Powered Batteryless e-cycle with voluntary manual pedaling makes it sustainable and provides health benefits. Tandem e-bike, smart switching and Platoon operations algorithm options provide superior through-put of the Cycleloop. Thus Cycleloop PRT will be exhaustive, intensive, convenient, reliable, speedy, sustainable, safe, pollution-free and healthy alternative mode for last mile connectivity in cities.

Keywords: cycleloop PRT, five-minute walk, lean modular infrastructure, self-balanced intelligent e-cycle

Procedia PDF Downloads 131
3376 Food Sovereignty as Local Resistance to Unequal Access to Food and Natural Resources in Latin America: A Gender Perspective

Authors: Ana Alvarenga De Castro

Abstract:

Food sovereignty has been brought by the international peasants’ movement, La Via Campesina, as a precondition to food security, speaking about the right of each nation to keep its own supply of foods respecting cultural, sustainable practices and productive diversity. The political conceptualization nowadays goes beyond saying that this term is about achieving the rights of farmers to control the food systems according to local specificities, and about equality in the access to natural resources and quality food. The current feminization of agroecosystems and of food insecurity identified by researchers and recognized by international agencies like the UN and FAO has enhanced the feminist discourse into the food sovereignty movement, considering the historical inequalities that place women farmers in subaltern positions inside the families and rural communities. The current tendency in many rural areas of more women taking responsibility for food production and still facing the lack of access to natural resources meets particular aspects in Latin America due to the global economic logic which places the Global South in the position of raw material supplier for the industrialized North, combined with regional characteristics. In this context, Latin American countries play the role of commodities exporters in the international labor division, including among exported items grains, soybean paste, and ores, to the expense of local food chains which provide domestic quality food supply under more sustainable practices. The connections between gender inequalities and global territorial inequalities related to the access and control of food and natural resources are pointed out by feminist political ecology - FPE - authors, and are linked in this article to the potentialities and limitations of women farmers to reproduce diversified agroecosystems in the tropical environments. The work brings the importance of local practices held by women farmers which are crucial to maintaining sustainable agricultural systems and their results on seeds, soil, biodiversity and water conservation. This work presents an analysis of documents, releases, videos and other publicized experiences launched by some peasants’ organizations in Latin America which evidence the different technical and political answers that meet food sovereignty from peasants’ groups that are attributed to women farmers. They are associated with articles presenting the empirical analysis of women farmers' practices in Latin America. The combination drove to discuss the benefits of peasants' conceptions about food systems and their connections with local realities and the gender issues linked to the food sovereignty conceptualization. Conclusion meets that reality on the field cannot reach food sovereignty's ideal homogeneously and that agricultural sustainable practices are dependent on rights' achievement and social inequalities' eradication.

Keywords: food sovereignty, gender, diversified agricultural systems, access to natural resources

Procedia PDF Downloads 248
3375 Inquiry on Regenerative Tourism in an Avian Destination: A Case Study of Kaliveli in Tamil Nadu, India

Authors: Anu Chandran, Reena Esther Rani

Abstract:

Background of the Study: Dotted with multiple Unique Destination Prepositions (UDPs), Tamil Nadu is an established tourism brand as regards leisure, MICE, culture, and ecological flavors. Albeit, the enchanting destination possesses distinctive attributes and resources yet to be tapped for better competitive advantage. Being a destination that allures an incredible variety of migratory birds, Tamil Nadu is deemed to be an ornithologist’s paradise. This study primarily explores the prospects of developing Kaliveli, recognized as a bird sanctuary in the Tindivanam forest division of the Villupuram district in the State. Kaliveli is an ideal nesting site for migratory birds and is currently apt for a prospective analysis of regenerative tourism. Objectives of the study: This research lays an accent on avian tourism as part and parcel of sustainable tourism ventures. The impacts of projects like the Ornithological Conservation Centre on tourists have been gauged in the present paper. It maps the futuristic proactive propositions linked to regenerative tourism on the site. How far technological innovations can do a world of good in Kaliveli through Artificial Intelligence, Smart Tourism, and similar latest coinages to entice real eco-tourists, have been conceptualized. The experiential dimensions of resource stewardship as regards facilitating tourists’ relish the offerings in a sustainable manner is at the crux of this work. Methodology: Modeled as a case study, this work tries to deliberate on the impact of existing projects attributed to avian fauna in Kalveli. Conducted in the qualitative research design mode, the case study method was adopted for the processing and presentation of study results drawn by applying thematic content analysis based on the data collected from the field. Result and discussion: One of the key findings relates to the kind of nature trails that can be a regenerative dynamic for eco-friendly tourism in Kaliveli. Field visits have been conducted to assess the niche tourism aspects which could be incorporated with the regenerative tourism model to be framed as part of the study.

Keywords: regenerative tourism, Kaliveli bird sanctuary, sustainable development, resource Stewardship, Ornithology, Avian Fauna

Procedia PDF Downloads 79
3374 Development of Sustainable Farming Compartment with Treated Wastewater in Abu Dhabi

Authors: Jongwan Eun, Sam Helwany, Lakshyana K. C.

Abstract:

The United Arab Emirates (UAE) is significantly dependent on desalinated water and groundwater resource, which is expensive and highly energy intensive. Despite the scarce water resource, stagnates only 54% of the recycled water was reused in 2012, and due to the lack of infrastructure to reuse the recycled water, the portion is expected to decrease with growing water usage. In this study, an “Oasis” complex comprised of Sustainable Farming Compartments (SFC) was proposed for reusing treated wastewater. The wastewater is used to decrease the ambient temperature of the SFC via an evaporative cooler. The SFC prototype was designed, built, and tested in an environmentally controlled laboratory and field site to evaluate the feasibility and effectiveness of the SFC subjected to various climatic conditions in Abu Dhabi. Based on the experimental results, the temperature drop achieved in the SFC in the laboratory and field site were5 ̊C from 22 ̊C and 7- 15 ̊C (from 33-45 ̊C to average 28 ̊C at relative humidity < 50%), respectively. An energy simulation using TRNSYS was performed to extend and validate the results obtained from the experiment. The results from the energy simulation and experiments show statistically close agreement. The total power consumption of the SFC system was approximately three and a half times lower than that of an electrical air conditioner. Therefore, by using treated wastewater, the SFC has a promising prospect to solve Abu Dhabi’s ecological concern related to desertification and wind erosion.

Keywords: ecological farming system, energy simulation, evaporative cooling system, temperature, treated waste water, temperature

Procedia PDF Downloads 250
3373 Resin-coated Controlled Release Fertilizer (CRF) for Oil Palm: Laboratory and Main Nursery Evaluation

Authors: Umar Adli Amran, Tan Choon Chek, Mohd Shahkhirat Norizan, Then Kek Hoe

Abstract:

Controlled release fertilizer (CRF) enables a regulated nutrients release for more efficient plant uptake compared to the normal granular fertilizer. It reduces nutrients loss via surface run-off and leaching, hence promotes sustainable agriculture. Although the performance of CRF in providing consistent and timely nutrients supply is well known, its expensive price limits it usage in a large scale plantation. This study is conducted to evaluate the properties and performance of bio-based polyurethane (PU)-coated CRF via laboratory and oil palm main nursery trial. The CRF is produced by coating of a normal commercial compound granular fertilizer from FGV Fertiliser Sdn. Bhd., namely Felda 10 (10.5-8-20-3+0.5B), and designated as CRF FGV10. Based on laboratory evaluation, the CRF FGV10 can sustain nutrients release for more than 6 months. Vegetative growth parameters such as girth size, palm height, third frond length, and the total number of fronds produced were recorded. Besides that, dry biomass of the oil palm seedlings was also determined. From the evaluation, it is proved that at 50% reduction of nutrients application rate and for only two times application (T3), CRF FGV10 enabled the oil palm seedlings to achieve similar vegetative growth with the control samples (T1). It is also proven that only PU-coated CRF FGV10 had allowed the reduction of fertilizer rate and application rounds.

Keywords: nutrition, oil palm seedlings, polyurethane, sustainable manuring, vegetative growth

Procedia PDF Downloads 61
3372 Toward Green Islamic Finance: A Case Study from an Emirati Islamic Bank

Authors: Nada Hamed, Mariam Aldhaheri, Sonia Abdennadher

Abstract:

Islamic Finance is not a new term that emerging in the global market, but it is still under scope by many countries. Its characteristics and regulation are not widely clear and implemented. In 2015, The United Nation announced a plan about potential benefits of using Islamic Finance as a sustainable development approach. Enhancing its application in financial markets could protect from unexpected crisis that might be created from the traditional tools of finance. This paper focuses on this area to test if Islamic finance could be used for maintaining sustainable development and if the term of 'Green Islamic Finance' could be implemented to minimize the deficiencies and 'pollution’ generated from traditional techniques and tools of finance. This paper intends to measure the impact on financial performance and sustainability when financial institutions use Islamic finance or better practice it. The objective of this explanatory research is to measure the performance of Islamic Finance with using a case study of an Islamic bank. The paper would analyze and compare the behavior of financial institutions that used traditional financing tools and converted to Islamic banking system. The methodology used is based on a case study of an Islamic bank in Dubai with comparing its performance before implementing Islamic Finance and after. The selected case study represents the first national bank in Emirates Arab Unis who adopt the Islamic finance approach. Based on a time series analysis, a quantitative analysis would be also used through looking at various set of ratios that are routinely used to measure bank performance.

Keywords: Islamic finance, financial stability, green finance, Islamic finance practices, financial ratios

Procedia PDF Downloads 226
3371 Efficient Treatment of Azo Dye Wastewater with Simultaneous Energy Generation by Microbial Fuel Cell

Authors: Soumyadeep Bhaduri, Rahul Ghosh, Rahul Shukla, Manaswini Behera

Abstract:

The textile industry consumes a substantial amount of water throughout the processing and production of textile fabrics. The water eventually turns into wastewater, where it acts as an immense damaging nuisance due to its dye content. Wastewater streams contain a percentage ranging from 2.0% to 50.0% of the total weight of dye used, depending on the dye class. The management of dye effluent in textile industries presents a formidable challenge to global sustainability. The current focus is on implementing wastewater treatment technology that enable the recycling of wastewater, reduce energy usage and offset carbon emissions. Microbial fuel cell (MFC) is a device that utilizes microorganisms as a bio-catalyst to effectively treat wastewater while also producing electricity. The MFC harnesses the chemical energy present in wastewater by oxidizing organic compounds in the anodic chamber and reducing an electron acceptor in the cathodic chamber, thereby generating electricity. This research investigates the potential of MFCs to tackle this challenge of azo dye removal with simultaneously generating electricity. Although MFCs are well-established for wastewater treatment, their application in dye decolorization with concurrent electricity generation remains relatively unexplored. This study aims to address this gap by assessing the effectiveness of MFCs as a sustainable solution for treating wastewater containing azo dyes. By harnessing microorganisms as biocatalysts, MFCs offer a promising avenue for environmentally friendly dye effluent management. The performance of MFCs in treating azo dyes and generating electricity was evaluated by optimizing the Chemical Oxygen Demand (COD) and Hydraulic Retention Time (HRT) of influent. COD and HRT values ranged from 1600 mg/L to 2400 mg/L and 5 to 9 days, respectively. Results showed that the maximum open circuit voltage (OCV) reached 648 mV at a COD of 2400 mg/L and HRT of 5 days. Additionally, maximum COD removal of 98% and maximum color removal of 98.91% were achieved at a COD of 1600 mg/L and HRT of 9 days. Furthermore, the study observed a maximum power density of 19.95 W/m3 at a COD of 2400 mg/L and HRT of 5 days. Electrochemical analysis, including linear sweep voltammetry (LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were done to find out the response current and internal resistance of the system. To optimize pH and dye concentration, pH values were varied from 4 to 10, and dye concentrations ranged from 25 mg/L to 175 mg/L. The highest voltage output of 704 mV was recorded at pH 7, while a dye concentration of 100 mg/L yielded the maximum output of 672 mV. This study demonstrates that MFCs offer an efficient and sustainable solution for treating azo dyes in textile industry wastewater, while concurrently generating electricity. These findings suggest the potential of MFCs to contribute to environmental remediation and sustainable development efforts on a global scale.

Keywords: textile wastewater treatment, microbial fuel cell, renewable energy, sustainable wastewater treatment

Procedia PDF Downloads 22
3370 Engaging Citizen, Sustaining Service Delivery of Rural Water Supply in Indonesia

Authors: Rahmi Yetri Kasri, Paulus Wirutomo

Abstract:

Citizen engagement approach has become increasingly important in the rural water sector. However, the question remains as to what exactly is meant by citizen engagement and how this approach can lead to sustainable service delivery. To understand citizen engagement, this paper argues that we need to understand basic elements of social life that consist of social structure, process, and culture within the realm of community’s living environment. Extracting from empirical data from Pamsimas villages in rural West Java, Indonesia, this paper will identify basic elements of social life and environment that influence and form the engagement of citizen and government in delivering and sustaining rural water supply services in Indonesia. Pamsimas or the Water Supply and Sanitation for Low Income Communities project is the biggest rural water program in Indonesia, implemented since 1993 in more than 27,000 villages. The sustainability of this sector is explored through a rural water supply service delivery life-cycle, starts with capital investment, operational and maintenance, asset expansion or renewal, strategic planning for future services and matching cost with financing. Using mixed-method data collection in case study research, this paper argues that increased citizen engagement contributes to a more sustainable rural water service delivery.

Keywords: citizen engagement, rural water supply, sustainability, Indonesia

Procedia PDF Downloads 269
3369 Impact of Tourism on Sustainability on Essaouira Destination in Morocco

Authors: Hadach Mohamed

Abstract:

Tourism becomes more and more a source of added value for developing countries. In Morocco, the sector contributes at 20% of national GDP, or the effects of this activity become increasingly harmful. The methodology we followed is qualitative, we analyzed the data according to a process-based approach in two longitudinal period from 2001 to 2009 and a period of real time from 2010 to 2014.Through a process-based longitudinal study we analyzed the effects of tourism on the three components of sustainability: economic, environmental and socio-cultural in Essaouira destination in the south west of Morocco. The objective of this paper is to identify among others, harmful effects of mass tourism on fragile destination in terms of load capacity, promotion of youth employment and respect for indigenous traditions. This study also aims to analyze the impact of tourism on the fragile destination, which depends heavily on this activity; it also seeks to test a series of indicators for sustainable development of sensitive areas. Within results, we found that tourism as an activity is very linked to the international situation, tested sustainable development indicators showed us that tourism is environmentally destructive, job creator and changer modes and lives of indigenous. Between the two periods analyzed, the situation becomes more and more vulnerable and the state intervention is becoming more indispensable. We also found that 70% of the population of the destination does not benefit from the income generated by the destination. This raises questions about the fate of the added value of this activity.

Keywords: economic, environmental and socio-cultural, fragile destination, tourism sustainability

Procedia PDF Downloads 254
3368 Advancing Circular Economy Principles: Integrating AI Technology in Street Sanitation for Sustainable Urban Development

Authors: Xukai Fu

Abstract:

The concept of circular economy is interdisciplinary, intersecting environmental engineering, information technology, business, and social science domains. Over the course of its 15-year tenure in the sanitation industry, Jinkai has concentrated its efforts in the past five years on integrating artificial intelligence (AI) technology with street sanitation apparatus and systems. This endeavor has led to the development of various innovations, including the Intelligent Identification Sweeper Truck (Intelligent Waste Recognition and Energy-saving Control System), the Intelligent Identification Water Truck (Intelligent Flushing Control System), the intelligent food waste treatment machine, and the Intelligent City Road Sanitation Surveillance Platform. This study will commence with an examination of prevalent global challenges, elucidating how Jinkai effectively addresses each within the framework of circular economy principles. Utilizing a review and analysis of pertinent environmental management data, we will elucidate Jinkai's strategic approach. Following this, we will investigate how Jinkai utilizes the advantages of circular economy principles to guide the design of street sanitation machinery, with a focus on digitalization integration. Moreover, we will scrutinize Jinkai's sustainable practices throughout the invention and operation phases of street sanitation machinery, aligning with the triple bottom line theory. Finally, we will delve into the significance and enduring impact of corporate social responsibility (CSR) and environmental, social, and governance (ESG) initiatives. Special emphasis will be placed on Jinkai's contributions to community stakeholders, with a particular emphasis on human rights. Despite the widespread adoption of circular economy principles across various industries, achieving a harmonious equilibrium between environmental justice and social justice remains a formidable task. Jinkai acknowledges that the mere development of energy-saving technologies is insufficient for authentic circular economy implementation; rather, they serve as instrumental tools. To earnestly promote and embody circular economy principles, companies must consistently prioritize the UN Sustainable Development Goals and adapt their technologies to address the evolving exigencies of our world.

Keywords: circular economy, core principles, benefits, the tripple bottom line, CSR, ESG, social justice, human rights, Jinkai

Procedia PDF Downloads 47
3367 Attitudes to Thinking and Learning in Sustainability Education: Case Basics of Natural Stone Industry in Circular Economy

Authors: Anne-Marie Tuomala

Abstract:

Education for sustainable development (ESD) aims to provide students with the attitudes, values, and behaviors necessary for the contribution to sustainability. The research was implemented as a part of the Horizons Europe research project, where each partner organization had at least one pilot project locally. The pilot in question was an online course about the basics of the natural stone industry in Finland and its sustainability and circular economy aspects. The course was open to all students of applied universities in Finland, and it was implemented twice during the research. The Stone from Finland association participated in the course design, and it was also an expert in the local context and real-life provider. The multiple case-study method was chosen, as it enables purposeful sampling of cases that are tailored to the specific study. It was also assumed that it predicts quite comparable results of two different course implementations of the course with the same topic and content. The Curtin University of Technology’s Attitudes Towards Thinking and Learning Survey was adapted. The results show the importance of the trans-disciplinary nature of sustainability education. In addition, the new industry areas with the general - but also industry-specific sustainability issues - must be introduced to students and encourage them to do critically reflective learning. Surveys that guide them to analyze their own attitudes to thinking and learning may expose students to their weaknesses but also result in forms of more active sustainability interaction.

Keywords: education for sustainable development, learning attitudes, learning of circular economy, virtual learning

Procedia PDF Downloads 43