Search results for: social network size
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18732

Search results for: social network size

17412 Survey of the Elimination of Red Acid Dye by Wood Dust

Authors: N. Ouslimani, T. Abadlia, M. Fadel

Abstract:

This work focused on the elimination of acid textile dye (red bermacide acid dye BN-CL-200), widely used for dyeing wool and polyamide fibers, by adsorption on a natural material, wood sawdust, in the static mode by keeping under continuous stirring, a specific mass of the adsorbent, with a dye solution of known concentration. The influence of various parameters is studied like the influence of particle size, mass, pH and time. The best results were obtained with 0.4 mm grain size, mass of 3g, Temperature of 20 °C, pH 2 and Time contact of 120 min.

Keywords: acid dye, environment, wood sawdust, wastewater

Procedia PDF Downloads 443
17411 The Effect of Magnetite Particle Size on Methane Production by Fresh and Degassed Anaerobic Sludge

Authors: E. Al-Essa, R. Bello-Mendoza, D. G. Wareham

Abstract:

Anaerobic batch experiments were conducted to investigate the effect of magnetite-supplementation (7 mM) on methane production from digested sludge undergoing two different microbial growth phases, namely fresh sludge (exponential growth phase) and degassed sludge (endogenous decay phase). Three different particle sizes were assessed: small (50 - 150 nm), medium (168 – 490 nm) and large (800 nm - 4.5 µm) particles. Results show that, in the case of the fresh sludge, magnetite significantly enhanced the methane production rate (up to 32%) and reduced the lag phase (by 15% - 41%) as compared to the control, regardless of the particle size used. However, the cumulative methane produced at the end of the incubation was comparable in all treatment and control bottles. In the case of the degassed sludge, only the medium-sized magnetite particles increased significantly the methane production rate (12% higher) as compared to the control. Small and large particles had little effect on the methane production rate but did result in an extended lag phase which led to significantly lower cumulative methane production at the end of the incubation period. These results suggest that magnetite produces a clear and positive effect on methane production only when an active and balanced microbial community is present in the anaerobic digester. It is concluded that, (i) the effect of magnetite particle size on increasing the methane production rate and reducing lag phase duration is strongly influenced by the initial metabolic state of the microbial consortium, and (ii) the particle size would positively affect the methane production if it is provided within the nanometer size range.

Keywords: anaerobic digestion, iron oxide, methanogenesis, nanoparticle

Procedia PDF Downloads 140
17410 A Contemporary Advertising Strategy on Social Networking Sites

Authors: M. S. Aparna, Pushparaj Shetty D.

Abstract:

Nowadays social networking sites have become so popular that the producers or the sellers look for these sites as one of the best options to target the right audience to market their products. There are several tools available to monitor or analyze the social networks. Our task is to identify the right community web pages and find out the behavior analysis of the members by using these tools and formulate an appropriate strategy to market the products or services to achieve the set goals. The advertising becomes more effective when the information of the product/ services come from a known source. The strategy explores great buying influence in the audience on referral marketing. Our methodology proceeds with critical budget analysis and promotes viral influence propagation. In this context, we encompass the vital bits of budget evaluation such as the number of optimal seed nodes or primary influential users activated onset, an estimate coverage spread of nodes and maximum influence propagating distance from an initial seed to an end node. Our proposal for Buyer Prediction mathematical model arises from the urge to perform complex analysis when the probability density estimates of reliable factors are not known or difficult to calculate. Order Statistics and Buyer Prediction mapping function guarantee the selection of optimal influential users at each level. We exercise an efficient tactics of practicing community pages and user behavior to determine the product enthusiasts on social networks. Our approach is promising and should be an elementary choice when there is little or no prior knowledge on the distribution of potential buyers on social networks. In this strategy, product news propagates to influential users on or surrounding networks. By applying the same technique, a user can search friends who are capable to advise better or give referrals, if a product interests him.

Keywords: viral marketing, social network analysis, community web pages, buyer prediction, influence propagation, budget constraints

Procedia PDF Downloads 262
17409 Empowering Rangatahi: Amplifying Youth Voices on Smartphone and Social Media Use in Aotearoa New Zealand

Authors: Melissa L Gould

Abstract:

The uptick in social media users during the COVID-19 lockdowns has accelerated concerns about cellphone addiction, cyberbullying, and exposure to harmful content, particularly mis- and disinformation and extremist content. The validity of these concerns is synthesized for media technologists to expose the strategies behind social media and search platform technology and explain why they restrict their children from using it. Banning cell phones in schools, increasing age limits on social media accounts, and putting warning labels on social media are some of the solutions proposed to protect young people from smartphones and social media. Largely missing from these conversations are the voices of young people (rangatahi). Instead, their lived experiences are being told and managed by adults. This presentation will outline my research that amplified the voices and lived experiences of young people by positioning them as experts. Using The Social Dilemma as a discussion prompt, the focus groups of rangatahi in Aotearoa, New Zealand, provide a space for young people to articulate their own lived experiences and respond to the dominant narratives on their generation's use of smartphones and social media.

Keywords: social media, smart phones, young people, social dilemma

Procedia PDF Downloads 32
17408 Indigenizing Social Work Practice: Best Practice of Family Service Agency (LK3) State Islamic University (UIN) Syarif Hidayatullah Jakarta

Authors: Siti Napsiyah, Ismet Firdaus, Lisma Dyawati Fuaida, Ellies Sukmawati

Abstract:

This paper examines the existence, role, and challenge of Family Service Agency, in Bahasa Indonesia known as Lembaga Konsultasi Kesejahteraan Keluarga (LK3) of Syarif Hidayatullah State Islamic University (UIN) Jakarta. It has been established since 2012. It is an official agency under the Ministry of Social Affairs of Indonesia. The establishment of LK3 aims to provide psychosocial services for families of students who has psychosocial problem in their life. The study also aims to explore the trend of psychosocial problems of its client (student) for the past three years (2014-2016). The research method of the study is using a qualitative social work research method. A review of selected data of the client of LK3 UIN Syarif Hidayatullah Jakarta around five main issues: Family background, psychosocial mapping, potential resources, student coping mechanism strategy, client strength and network. The study also uses a review of academic performance report as well as an interview and observation. The findings show that the trend of psychosocial problems of the client of LK3 UIN Syarif Hidayatullah Jakarta vary as follow: bad academic performance, low income family, broken home, domestic violence, disability, mental disorder, sexual abuse, and the like. LK3 UIN Syarif Hidayatullah Jakarta has significant roles to provide psychosocial support and services for the survival of the students to deal with their psychosocial problems. Social worker of LK3 performs indigenous social work practice: individual counseling, family counseling, group therapy, home visit, case conference, Islamic Spiritual Approach, and Spiritual Emotional Freedom Technique (SEPT).

Keywords: psychosocial, indigenizing social work, resiliency, coping mechanism

Procedia PDF Downloads 262
17407 Partial M-Sequence Code Families Applied in Spectral Amplitude Coding Fiber-Optic Code-Division Multiple-Access Networks

Authors: Shin-Pin Tseng

Abstract:

Nowadays, numerous spectral amplitude coding (SAC) fiber-optic code-division-multiple-access (FO-CDMA) techniques were appealing due to their capable of providing moderate security and relieving the effects of multiuser interference (MUI). Nonetheless, the performance of the previous network is degraded due to fixed in-phase cross-correlation (IPCC) value. Based on the above problems, a new SAC FO-CDMA network using partial M-sequence (PMS) code is presented in this study. Because the proposed PMS code is originated from M-sequence code, the system using the PMS code could effectively suppress the effects of MUI. In addition, two-code keying (TCK) scheme can applied in the proposed SAC FO-CDMA network and enhance the whole network performance. According to the consideration of system flexibility, simple optical encoders/decoders (codecs) using fiber Bragg gratings (FBGs) were also developed. First, we constructed a diagram of the SAC FO-CDMA network, including (N/2-1) optical transmitters, (N/2-1) optical receivers, and one N×N star coupler for broadcasting transmitted optical signals to arrive at the input port of each optical receiver. Note that the parameter N for the PMS code was the code length. In addition, the proposed SAC network was using superluminescent diodes (SLDs) as light sources, which then can save a lot of system cost compared with the other FO-CDMA methods. For the design of each optical transmitter, it is composed of an SLD, one optical switch, and two optical encoders according to assigned PMS codewords. On the other hand, each optical receivers includes a 1 × 2 splitter, two optical decoders, and one balanced photodiode for mitigating the effect of MUI. In order to simplify the next analysis, the some assumptions were used. First, the unipolarized SLD has flat power spectral density (PSD). Second, the received optical power at the input port of each optical receiver is the same. Third, all photodiodes in the proposed network have the same electrical properties. Fourth, transmitting '1' and '0' has an equal probability. Subsequently, by taking the factors of phase‐induced intensity noise (PIIN) and thermal noise, the corresponding performance was displayed and compared with the performance of the previous SAC FO-CDMA networks. From the numerical result, it shows that the proposed network improved about 25% performance than that using other codes at BER=10-9. This is because the effect of PIIN was effectively mitigated and the received power was enhanced by two times. As a result, the SAC FO-CDMA network using PMS codes has an opportunity to apply in applications of the next-generation optical network.

Keywords: spectral amplitude coding, SAC, fiber-optic code-division multiple-access, FO-CDMA, partial M-sequence, PMS code, fiber Bragg grating, FBG

Procedia PDF Downloads 384
17406 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients

Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund

Abstract:

This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.

Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients

Procedia PDF Downloads 155
17405 The Idea of Making of Corporate Social Responsibility Compulsory in India

Authors: Jagannath Mohanty, Shiv Nath Sinha

Abstract:

India is the first country in the world, where spending on Corporate Social Responsibily (CSR) has been made mandatory. Predominantly Indian enterprises have been philanthrophic for hundreds of years, where giving back to the society is the religious duty of the rich. Therefore Indian businesses have been voluntarily spending on CSR activities, while several businesses kept spending on non business activities a significant number of entrepreneurs abstained from social spending, leading Government of India to take the lesgislative route by mandating 2% spend of net profit on CSR activities failing which companeis will be dealt legally. While the legislation on suface appers progressive and pro social, yet the consequences of making a rather volutary action a legally binding act is yet to be seen. This paper examines the possible social impact of the legislation and potential response of the corporate to a legislation of this kind.

Keywords: corporate social responsibility (CSR), companies act 2013, corporate citizenship, social spending

Procedia PDF Downloads 381
17404 Forecasting the Temperature at a Weather Station Using Deep Neural Networks

Authors: Debneil Saha Roy

Abstract:

Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast hori­zon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.

Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron

Procedia PDF Downloads 177
17403 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?

Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang

Abstract:

Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.

Keywords: creativity, default mode network, neural activation, SCAMPER

Procedia PDF Downloads 100
17402 Design of an Improved Distributed Framework for Intrusion Detection System Based on Artificial Immune System and Neural Network

Authors: Yulin Rao, Zhixuan Li, Burra Venkata Durga Kumar

Abstract:

Intrusion detection refers to monitoring the actions of internal and external intruders on the system and detecting the behaviours that violate security policies in real-time. In intrusion detection, there has been much discussion about the application of neural network technology and artificial immune system (AIS). However, many solutions use static methods (signature-based and stateful protocol analysis) or centralized intrusion detection systems (CIDS), which are unsuitable for real-time intrusion detection systems that need to process large amounts of data and detect unknown intrusions. This article proposes a framework for a distributed intrusion detection system (DIDS) with multi-agents based on the concept of AIS and neural network technology to detect anomalies and intrusions. In this framework, multiple agents are assigned to each host and work together, improving the system's detection efficiency and robustness. The trainer agent in the central server of the framework uses the artificial neural network (ANN) rather than the negative selection algorithm of AIS to generate mature detectors. Mature detectors can distinguish between self-files and non-self-files after learning. Our analyzer agents use genetic algorithms to generate memory cell detectors. This kind of detector will effectively reduce false positive and false negative errors and act quickly on known intrusions.

Keywords: artificial immune system, distributed artificial intelligence, multi-agent, intrusion detection system, neural network

Procedia PDF Downloads 109
17401 Towards a Goal-Question-Metric Based Approach to Assess Social Sustainability of Software Systems

Authors: Rahma Amri, Narjès Bellamine Ben Saoud

Abstract:

Sustainable development or sustainability is one of the most urgent issues in actual debate in almost domains. Particularly the significant way the software pervades our live should make it in the center of sustainability concerns. The social aspects of sustainability haven’t been well studied in the context of software systems and still immature research field that needs more interest among researchers’ community. This paper presents a Goal-Question-Metric based approach to assess social sustainability of software systems. The approach is based on a generic social sustainability model taken from Social sciences.

Keywords: software assessment approach, social sustainability, goal-question-metric paradigm, software project metrics

Procedia PDF Downloads 394
17400 Novel Marketing Strategy To Increase Sales Revenue For SMEs Through Social Media

Authors: Kruti Dave

Abstract:

Social media marketing is an essential component of 21st-century business. Social media platforms enable small and medium-sized businesses to enhance brand recognition, generate leads and sales. However, the research on social media marketing is still fragmented and focuses on specific topics, such as effective communication techniques. Since the various ways in which social media impacts individuals and companies alike, the authors of this article focus on the origin, impacts, and current state of Social Media, emphasizing their significance as customer empowerment agents. It illustrates their potential and current responsibilities as part of the corporate business strategy and also suggests several methods to engage them as marketing tools. The focus of social media marketing ranges from defenders to explorers, the culture of Social media marketing encompasses the poles of conservatism and modernity, social media marketing frameworks lie between hierarchies and networks, and its management goes from autocracy to anarchy. This research proposes an integrative framework for small and medium-sized businesses through social media, and the influence of the same will be measured. This strategy will help industry experts to understand this new era. We propose an axiom: Social Media is always a function of marketing as a revenue generator.

Keywords: social media, marketing strategy, media marketing, brand awareness, customer engagement, revenue generator, brand recognition

Procedia PDF Downloads 197
17399 Gender Effects in EEG-Based Functional Brain Networks

Authors: Mahdi Jalili

Abstract:

Functional connectivity in the human brain can be represented as a network using electroencephalography (EEG) signals. Network representation of EEG time series can be an efficient vehicle to understand the underlying mechanisms of brain function. Brain functional networks – whose nodes are brain regions and edges correspond to functional links between them – are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which graph theory metrics are sex dependent. To this end, EEGs from 24 healthy female subjects and 21 healthy male subjects were recorded in eyes-closed resting state conditions. The connectivity matrices were extracted using correlation analysis and were further binarized to obtain binary functional networks. Global and local efficiency measures – as graph theory metrics– were computed for the extracted networks. We found that male brains have a significantly greater global efficiency (i.e., global communicability of the network) across all frequency bands for a wide range of cost values in both hemispheres. Furthermore, for a range of cost values, female brains showed significantly greater right-hemispheric local efficiency (i.e., local connectivity) than male brains.

Keywords: EEG, brain, functional networks, network science, graph theory

Procedia PDF Downloads 443
17398 Finite Volume Method in Loop Network in Hydraulic Transient

Authors: Hossain Samani, Mohammad Ehteram

Abstract:

In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations.

Keywords: hydraulic transient, water hammer, interpolation, non-liner interpolation

Procedia PDF Downloads 349
17397 Identification and Optimisation of South Africa's Basic Access Road Network

Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend

Abstract:

Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.

Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method

Procedia PDF Downloads 231
17396 Old Community Spatial Integration: Discussion on the Mechanism of Aging Space System Replacement

Authors: Wan-I Chen, Tsung-I Pai

Abstract:

Future the society aging of population will create the social problem has not had the good mechanism solution in the Asian country, especially in Taiwan. In the future ten year the people in Taiwan must facing the condition which is localization aging social problem. In this situation, how to use the spatial in eco way to development space use to solve the old age spatial demand is the way which might develop in the future Taiwan society. Over the next 10 years, taking care of the aging people will become part of the social problem of aging phenomenon. The research concentrate in the feasibility of spatial substitution, secondary use of spatial might solve out of spatial problem for aging people. In order to prove the space usable, the research required to review the project with the support system and infill system for space experiment, by using network grid way. That defined community level of space elements location relationship, make new definitions of space and return to cooperation. Research to innovation in the the appraisal space causes the possibility, by spatial replacement way solution on spatial insufficient suitable condition. To evaluation community spatial by using the support system and infill system in order to see possibilities of use in replacement inner space and modular architecture into housing. The study is discovering the solution on the Eco way to develop space use to figure out the old age spatial demand.

Keywords: sustainable use, space conversion, integration, replacement


Procedia PDF Downloads 176
17395 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire

Authors: Odile Amoncou, Djedje-Kossu Zahui

Abstract:

The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.

Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications

Procedia PDF Downloads 88
17394 Adapting Tools for Text Monitoring and for Scenario Analysis Related to the Field of Social Disasters

Authors: Svetlana Cojocaru, Mircea Petic, Inga Titchiev

Abstract:

Humanity faces more and more often with different social disasters, which in turn can generate new accidents and catastrophes. To mitigate their consequences, it is important to obtain early possible signals about the events which are or can occur and to prepare the corresponding scenarios that could be applied. Our research is focused on solving two problems in this domain: identifying signals related that an accident occurred or may occur and mitigation of some consequences of disasters. To solve the first problem, methods of selecting and processing texts from global network Internet are developed. Information in Romanian is of special interest for us. In order to obtain the mentioned tools, we should follow several steps, divided into preparatory stage and processing stage. Throughout the first stage, we manually collected over 724 news articles and classified them into 10 categories of social disasters. It constitutes more than 150 thousand words. Using this information, a controlled vocabulary of more than 300 keywords was elaborated, that will help in the process of classification and identification of the texts related to the field of social disasters. To solve the second problem, the formalism of Petri net has been used. We deal with the problem of inhabitants’ evacuation in useful time. The analysis methods such as reachability or coverability tree and invariants technique to determine dynamic properties of the modeled systems will be used. To perform a case study of properties of extended evacuation system by adding time, the analysis modules of PIPE such as Generalized Stochastic Petri Nets (GSPN) Analysis, Simulation, State Space Analysis, and Invariant Analysis have been used. These modules helped us to obtain the average number of persons situated in the rooms and the other quantitative properties and characteristics related to its dynamics.

Keywords: lexicon of disasters, modelling, Petri nets, text annotation, social disasters

Procedia PDF Downloads 197
17393 MEIOSIS: Museum Specimens Shed Light in Biodiversity Shrinkage

Authors: Zografou Konstantina, Anagnostellis Konstantinos, Brokaki Marina, Kaltsouni Eleftheria, Dimaki Maria, Kati Vassiliki

Abstract:

Body size is crucial to ecology, influencing everything from individual reproductive success to the dynamics of communities and ecosystems. Understanding how temperature affects variations in body size is vital for both theoretical and practical purposes, as changes in size can modify trophic interactions by altering predator-prey size ratios and changing the distribution and transfer of biomass, which ultimately impacts food web stability and ecosystem functioning. Notably, a decrease in body size is frequently mentioned as the third "universal" response to climate warming, alongside shifts in distribution and changes in phenology. This trend is backed by ecological theories like the temperature-size rule (TSR) and Bergmann's rule, which have been observed in numerous species, indicating that many species are likely to shrink in size as temperatures rise. However, the thermal responses related to body size are still contradictory, and further exploration is needed. To tackle this challenge, we developed the MEIOSIS project, aimed at providing valuable insights into the relationship between the body size of species, species’ traits, environmental factors, and their response to climate change. We combined a digitized collection of butterflies from the Swiss Federal Institute of Technology in Zürich with our newly digitized butterfly collection from Goulandris Natural History Museum in Greece to analyse trends in time. For a total of 23868 images, the length of the right forewing was measured using ImageJ software. Each forewing was measured from the point at which the wing meets the thorax to the apex of the wing. The forewing length of museum specimens has been shown to have a strong correlation with wing surface area and has been utilized in prior studies as a proxy for overall body size. Temperature data corresponding to the years of collection were also incorporated into the datasets. A second dataset was generated when a custom computer vision tool was implemented for the automated morphological measuring of samples for the digitized collection in Zürich. Using the second dataset, we corrected manual measurements with ImageJ, and a final dataset containing 31922 samples was used for analysis. Setting time as a smoother variable, species identity as a random factor, and the length of right-wing size (a proxy for body size) as the response variable, we ran a global model for a maximum period of 110 years (1900 – 2010). Then, we investigated functional variability between different terrestrial biomes in a second model. Both models confirmed our initial hypothesis and resulted in a decreasing trend in body size over the years. We expect that this first output can be provided as basic data for the next challenge, i.e., to identify the ecological traits that influence species' temperature-size responses, enabling us to predict the direction and intensity of a species' reaction to rising temperatures more accurately.

Keywords: butterflies, shrinking body size, museum specimens, climate change

Procedia PDF Downloads 10
17392 Effects of Social Stories toward Social Interaction of Students with Autism Spectrum Disorder

Authors: Sawitree Wongkittirungrueang

Abstract:

The objectives of this research were: 1) to study the effect of social stories on social interaction of students with autism. The sample was Pratomsuksa level 5 student with autism, Khon Kaen University Demonstration School, who was diagnosed by the Physician as High Functioning Autism since he was able to read, write, calculate and was studying in inclusive classroom. However, he still had disability in social interaction to participate in social activity group and communication. He could not learn how to develop friendship or create relationship. He had inappropriate behavior in social context. He did not understand complex social situations. In addition, he did seemed not know time and place. He was not able to understand feeling of oneself as well as the others. Consequently, he could not express his emotion appropriately. He did not understand or express his non-verbal language for communicating with friends. He lacked of common interest or emotion with nearby persons. He greeted inappropriately or was not interested in greeting. In addition, he did not have eye contact. He used inadequate language etc. He was elected by Purposive Sampling. His parents were willing to allow them to participate in this study. The research instruments were the lesson plan of social stories, and the picture book of social stories. The instruments used for data collection, were the social interaction evaluation of autistic students. This research was Quasi Experimental Research as One Group Pre-test, Post-test Design. For the Pre-test, the experiment was conducted by social stories. Then, the Post-test was implemented. The statistic used for data analysis, included the Mean, and Standard Deviation. The research findings were shown by Graph. The findings revealed hat the autistic students taught by social stories indicated better social interaction after being taught by social stories.

Keywords: social story, autism spectrum disorder (ASD), autism, social interaction

Procedia PDF Downloads 246
17391 Exploring the Applications of Neural Networks in the Adaptive Learning Environment

Authors: Baladitya Swaika, Rahul Khatry

Abstract:

Computer Adaptive Tests (CATs) is one of the most efficient ways for testing the cognitive abilities of students. CATs are based on Item Response Theory (IRT) which is based on item selection and ability estimation using statistical methods of maximum information selection/selection from posterior and maximum-likelihood (ML)/maximum a posteriori (MAP) estimators respectively. This study aims at combining both classical and Bayesian approaches to IRT to create a dataset which is then fed to a neural network which automates the process of ability estimation and then comparing it to traditional CAT models designed using IRT. This study uses python as the base coding language, pymc for statistical modelling of the IRT and scikit-learn for neural network implementations. On creation of the model and on comparison, it is found that the Neural Network based model performs 7-10% worse than the IRT model for score estimations. Although performing poorly, compared to the IRT model, the neural network model can be beneficially used in back-ends for reducing time complexity as the IRT model would have to re-calculate the ability every-time it gets a request whereas the prediction from a neural network could be done in a single step for an existing trained Regressor. This study also proposes a new kind of framework whereby the neural network model could be used to incorporate feature sets, other than the normal IRT feature set and use a neural network’s capacity of learning unknown functions to give rise to better CAT models. Categorical features like test type, etc. could be learnt and incorporated in IRT functions with the help of techniques like logistic regression and can be used to learn functions and expressed as models which may not be trivial to be expressed via equations. This kind of a framework, when implemented would be highly advantageous in psychometrics and cognitive assessments. This study gives a brief overview as to how neural networks can be used in adaptive testing, not only by reducing time-complexity but also by being able to incorporate newer and better datasets which would eventually lead to higher quality testing.

Keywords: computer adaptive tests, item response theory, machine learning, neural networks

Procedia PDF Downloads 175
17390 Hysteresis Modeling in Iron-Dominated Magnets Based on a Deep Neural Network Approach

Authors: Maria Amodeo, Pasquale Arpaia, Marco Buzio, Vincenzo Di Capua, Francesco Donnarumma

Abstract:

Different deep neural network architectures have been compared and tested to predict magnetic hysteresis in the context of pulsed electromagnets for experimental physics applications. Modelling quasi-static or dynamic major and especially minor hysteresis loops is one of the most challenging topics for computational magnetism. Recent attempts at mathematical prediction in this context using Preisach models could not attain better than percent-level accuracy. Hence, this work explores neural network approaches and shows that the architecture that best fits the measured magnetic field behaviour, including the effects of hysteresis and eddy currents, is the nonlinear autoregressive exogenous neural network (NARX) model. This architecture aims to achieve a relative RMSE of the order of a few 100 ppm for complex magnetic field cycling, including arbitrary sequences of pseudo-random high field and low field cycles. The NARX-based architecture is compared with the state-of-the-art, showing better performance than the classical operator-based and differential models, and is tested on a reference quadrupole magnetic lens used for CERN particle beams, chosen as a case study. The training and test datasets are a representative example of real-world magnet operation; this makes the good result obtained very promising for future applications in this context.

Keywords: deep neural network, magnetic modelling, measurement and empirical software engineering, NARX

Procedia PDF Downloads 130
17389 A Secure Routing Algorithm for ‎Underwater Wireless Sensor Networks

Authors: Seyed Mahdi Jameii

Abstract:

Underwater wireless sensor networks have been attracting the interest of many ‎researchers lately, and the past three decades have beheld the rapid progress of ‎underwater acoustic communication. One of the major problems in underwater wireless ‎sensor networks is how to transfer data from the moving node to the base stations and ‎choose the optimized route for data transmission. Secure routing in underwater ‎wireless sensor network (UWCNs) is necessary for packet delivery. Some routing ‎protocols are proposed for underwater wireless sensor networks. However, a few ‎researches have been done on secure routing in underwater sensor networks. In this ‎article, a secure routing protocol is provided to resist against wormhole and sybil ‎attacks. The results indicated acceptable performance in terms of increasing the packet ‎delivery ratio with regards to the attacks, increasing network lifetime by creating ‎balance in the network energy consumption, high detection rates against the attacks, ‎and low-end to end delay.‎

Keywords: attacks, routing, security, underwater wireless sensor networks

Procedia PDF Downloads 418
17388 Social Perspectives on Population of People Living Postively; An Indian Scenario, Evidence from Tiruchirappalli

Authors: Uwonkunda Jeanne, J. Godwin Prem Singh, Anjaneyalu Subbiah

Abstract:

HIV/AIDS is known to affect an individual not only physically but also mentally, socially, and financially. It is a syndrome that builds a vacuum in a person affecting his/her life as a whole.

Keywords: People living with HIV, social dysfunction, stigma, and Social support.

Procedia PDF Downloads 508
17387 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 604
17386 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch

Procedia PDF Downloads 189
17385 Scheduling Tasks in Embedded Systems Based on NoC Architecture

Authors: D. Dorota

Abstract:

This paper presents a method to generate and schedule task in the architecture of embedded systems based on the simulated annealing. This method takes into account the attribute of divisibility of tasks. A proposal represents the process in the form of trees. Despite the fact that the architecture of Network-on-Chip (NoC) is an interesting alternative to a bus architecture based on multi-processors systems, it requires a lot of work that ensures the optimization of communication. This paper proposes an effective approach to generate dedicated NoC topology solving communication problems. Network NoC is generated taking into account the energy consumption and resource issues. Ultimately generated is minimal, dedicated NoC topology. The proposed solution is assumed to be a simple router design and the minimum number of lines.

Keywords: Network-on-Chip, NoC-based embedded systems, scheduling task in embedded systems, simulated annealing

Procedia PDF Downloads 377
17384 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 117
17383 Urban Landscape Sustainability Between Past and Present: Toward a Future Vision

Authors: Dina Salem

Abstract:

A variety of definitions and interpretations for sustainable development has been offered since the widely known definition of the World Commission on Environment and Development in 1987, the perspectives have ranged from deep ecology to better life quality for people. Sustainable landscape is widely understood as a key contributor to urban sustainability for the fact that all landscapes has a social, economic, cultural and ecological function for the community’s well-being and urban development, that was evident even before the emergence of sustainability concept. In this paper, the concepts of landscape planning and sustainable development are briefly reviewed; visions for landscape sustainability are demonstrated and classified. Challenges facing sustainable landscape planning are discussed. Finally, the paper investigates how our future urban open space could be sustainable and how does this contribute to urban sustainability, by creating urban landscapes that takes into account the social and cultural values of users of urban open space besides the ecological balance of urban open spaces as an integrated network.

Keywords: urban landscape, urban sustainability, resilience, open spaces

Procedia PDF Downloads 549