Search results for: multidisciplinary optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3627

Search results for: multidisciplinary optimization

2307 Optimal Harmonic Filters Design of Taiwan High Speed Rail Traction System

Authors: Ying-Pin Chang

Abstract:

This paper presents a method for combining a particle swarm optimization with nonlinear time-varying evolution and orthogonal arrays (PSO-NTVEOA) in the planning of harmonic filters for the high speed railway traction system with specially connected transformers in unbalanced three-phase power systems. The objective is to minimize the cost of the filter, the filters loss, the total harmonic distortion of currents and voltages at each bus simultaneously. An orthogonal array is first conducted to obtain the initial solution set. The set is then treated as the initial training sample. Next, the PSO-NTVEOA method parameters are determined by using matrix experiments with an orthogonal array, in which a minimal number of experiments would have an effect that approximates the full factorial experiments. This PSO-NTVEOA method is then applied to design optimal harmonic filters in Taiwan High Speed Rail (THSR) traction system, where both rectifiers and inverters with IGBT are used. From the results of the illustrative examples, the feasibility of the PSO-NTVEOA to design an optimal passive harmonic filter of THSR system is verified and the design approach can greatly reduce the harmonic distortion. Three design schemes are compared that V-V connection suppressing the 3rd order harmonic, and Scott and Le Blanc connection for the harmonic improvement is better than the V-V connection.

Keywords: harmonic filters, particle swarm optimization, nonlinear time-varying evolution, orthogonal arrays, specially connected transformers

Procedia PDF Downloads 392
2306 Optimization Of Biogas Production Using Co-digestion Feedstocks Via Anaerobic Technologhy

Authors: E Tolufase

Abstract:

The demand, high costs and health implications of using energy derived from hydrocarbon compound have necessitated the continuous search for alternative source of energy. The World energy market is facing some challenges viz: depletion of fossil fuel reserves, population explosion, lack of energy security, economic and urbanization growth and also, in Nigeria some rural areas still depend largely on wood, charcoal, kerosene, petrol among others, as the sources of their energy. To overcome these short falls in energy supply and demand, as well as taking into consideration the risks from global climate change due to effect of greenhouse gas emissions and other pollutants from fossil fuels’ combustion, brought a lot of attention on efficiently harnessing the renewable energy sources. A very promising among the renewable energy resources for a clean energy technology for power production, vehicle and domestic usage is biogas. Therefore, optimization of biogas yield and quality is imperative. Hence, this study investigated yield and quality of biogas using low cost bio-digester and combination of various feed stocks referred to as co-digestion. Batch/Discontinuous Bio-digester type was used because it was cheap, easy, plausible and appropriate for different substrates used to get the desired results. Three substrates were used; cow dung, chicken droppings and lemon grass digested in five separate 21 litre digesters, A, B, C, D, and E and the gas collection system was designed using locally available materials. For single digestion we had; cow dung, chicken droppings, lemon grass, in Bio-digesters A, B, and C respectively, the co-digested three substrates in different mixed ratio 7:1:2 in digester D and E in ratio 5:3:2. The respective feed-stocks materials were collected locally, digested and analyzed in accordance with standard procedures. They were pre-fermented for a period of 10 days before being introduced into the digesters. They were digested for a retention period of 28 days, the physiochemical parameters namely; pressure, temperature, pH, volume of the gas collector system and volume of biogas produced were all closely monitored and recorded daily. The values of pH and temperature ranged 6.0 - 8.0, and 220C- 350C respectively. For the single substrate, bio-digester A(Cow dung only) produced biogas of total volume 0.1607m3(average volume of 0.0054m3 daily),while B (Chicken droppings ) produced 0.1722m3 (average of 0.0057m3 daily) and C (lemon grass) produced 0.1035m3 (average of 0.0035m3 daily). For the co-digested substrates in bio-digester D the total biogas produced was 0.2007m³ (average volume of 0.0067m³ daily) and bio-digester E produced 0.1991m³ (average volume of 0.0066m³ daily) It’s obvious from the results, that combining different substrates gave higher yields than when a singular feed stock was used and also mixing ratio played some roles in the yield improvement. Bio-digesters D and E contained the same substrates but mixed with different ratios, but higher yield was noticed in D with mixing ratio of 7:1:2 than in E with ratio 5:3:2.Therefore, co-digestion of substrates and mixing proportions are important factors for biogas production optimization.

Keywords: anaerobic, batch, biogas, biodigester, digestion, fermentation, optimization

Procedia PDF Downloads 27
2305 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 40
2304 Fluid-Structure Interaction Study of Fluid Flow past Marine Turbine Blade Designed by Using Blade Element Theory and Momentum Theory

Authors: Abu Afree Andalib, M. Mezbah Uddin, M. Rafiur Rahman, M. Abir Hossain, Rajia Sultana Kamol

Abstract:

This paper deals with the analysis of flow past the marine turbine blade which is designed by using the blade element theory and momentum theory for the purpose of using in the field of renewable energy. The designed blade is analyzed for various parameters using FSI module of Ansys. Computational Fluid Dynamics is used for the study of fluid flow past the blade and other fluidic phenomena such as lift, drag, pressure differentials, energy dissipation in water. Finite Element Analysis (FEA) module of Ansys was used to analyze the structural parameter such as stress and stress density, localization point, deflection, force propagation. Fine mesh is considered in every case for more accuracy in the result according to computational machine power. The relevance of design, search and optimization with respect to complex fluid flow and structural modeling is considered and analyzed. The relevancy of design and optimization with respect to complex fluid for minimum drag force using Ansys Adjoint Solver module is analyzed as well. The graphical comparison of the above-mentioned parameter using CFD and FEA and subsequently FSI technique is illustrated and found the significant conformity between both the results.

Keywords: blade element theory, computational fluid dynamics, finite element analysis, fluid-structure interaction, momentum theory

Procedia PDF Downloads 301
2303 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 369
2302 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite

Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar

Abstract:

This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts Grey Relational Analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.

Keywords: metal matrix composite, drilling, optimization, step drill, surface roughness, burr height, hole diameter error

Procedia PDF Downloads 319
2301 Relay-Augmented Bottleneck Throughput Maximization for Correlated Data Routing: A Game Theoretic Perspective

Authors: Isra Elfatih Salih Edrees, Mehmet Serdar Ufuk Türeli

Abstract:

In this paper, an energy-aware method is presented, integrating energy-efficient relay-augmented techniques for correlated data routing with the goal of optimizing bottleneck throughput in wireless sensor networks. The system tackles the dual challenge of throughput optimization while considering sensor network energy consumption. A unique routing metric has been developed to enable throughput maximization while minimizing energy consumption by utilizing data correlation patterns. The paper introduces a game theoretic framework to address the NP-complete optimization problem inherent in throughput-maximizing correlation-aware routing with energy limitations. By creating an algorithm that blends energy-aware route selection strategies with the best reaction dynamics, this framework provides a local solution. The suggested technique considerably raises the bottleneck throughput for each source in the network while reducing energy consumption by choosing the best routes that strike a compromise between throughput enhancement and energy efficiency. Extensive numerical analyses verify the efficiency of the method. The outcomes demonstrate the significant decrease in energy consumption attained by the energy-efficient relay-augmented bottleneck throughput maximization technique, in addition to confirming the anticipated throughput benefits.

Keywords: correlated data aggregation, energy efficiency, game theory, relay-augmented routing, throughput maximization, wireless sensor networks

Procedia PDF Downloads 82
2300 Dogs Chest Homogeneous Phantom for Image Optimization

Authors: Maris Eugênia Dela Rosa, Ana Luiza Menegatti Pavan, Marcela De Oliveira, Diana Rodrigues De Pina, Luis Carlos Vulcano

Abstract:

In medical veterinary as well as in human medicine, radiological study is essential for a safe diagnosis in clinical practice. Thus, the quality of radiographic image is crucial. In last year’s there has been an increasing substitution of image acquisition screen-film systems for computed radiology equipment (CR) without technical charts adequacy. Furthermore, to carry out a radiographic examination in veterinary patient is required human assistance for restraint this, which can compromise image quality by generating dose increasing to the animal, for Occupationally Exposed and also the increased cost to the institution. The image optimization procedure and construction of radiographic techniques are performed with the use of homogeneous phantoms. In this study, we sought to develop a homogeneous phantom of canine chest to be applied to the optimization of these images for the CR system. In carrying out the simulator was created a database with retrospectives chest images of computed tomography (CT) of the Veterinary Hospital of the Faculty of Veterinary Medicine and Animal Science - UNESP (FMVZ / Botucatu). Images were divided into four groups according to the animal weight employing classification by sizes proposed by Hoskins & Goldston. The thickness of biological tissues were quantified in a 80 animals, separated in groups of 20 animals according to their weights: (S) Small - equal to or less than 9.0 kg, (M) Medium - between 9.0 and 23.0 kg, (L) Large – between 23.1 and 40.0kg and (G) Giant – over 40.1 kg. Mean weight for group (S) was 6.5±2.0 kg, (M) 15.0±5.0 kg, (L) 32.0±5.5 kg and (G) 50.0 ±12.0 kg. An algorithm was developed in Matlab in order to classify and quantify biological tissues present in CT images and convert them in simulator materials. To classify tissues presents, the membership functions were created from the retrospective CT scans according to the type of tissue (adipose, muscle, bone trabecular or cortical and lung tissue). After conversion of the biologic tissue thickness in equivalent material thicknesses (acrylic simulating soft tissues, bone tissues simulated by aluminum and air to the lung) were obtained four different homogeneous phantoms, with (S) 5 cm of acrylic, 0,14 cm of aluminum and 1,8 cm of air; (M) 8,7 cm of acrylic, 0,2 cm of aluminum and 2,4 cm of air; (L) 10,6 cm of acrylic, 0,27 cm of aluminum and 3,1 cm of air and (G) 14,8 cm of acrylic, 0,33 cm of aluminum and 3,8 cm of air. The developed canine homogeneous phantom is a practical tool, which will be employed in future, works to optimize veterinary X-ray procedures.

Keywords: radiation protection, phantom, veterinary radiology, computed radiography

Procedia PDF Downloads 417
2299 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation

Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis

Abstract:

This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.

Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation

Procedia PDF Downloads 166
2298 The Role of Metaheuristic Approaches in Engineering Problems

Authors: Ferzat Anka

Abstract:

Many types of problems can be solved using traditional analytical methods. However, these methods take a long time and cause inefficient use of resources. In particular, different approaches may be required in solving complex and global engineering problems that we frequently encounter in real life. The bigger and more complex a problem, the harder it is to solve. Such problems are called Nondeterministic Polynomial time (NP-hard) in the literature. The main reasons for recommending different metaheuristic algorithms for various problems are the use of simple concepts, the use of simple mathematical equations and structures, the use of non-derivative mechanisms, the avoidance of local optima, and their fast convergence. They are also flexible, as they can be applied to different problems without very specific modifications. Thanks to these features, it can be easily embedded even in many hardware devices. Accordingly, this approach can also be used in trend application areas such as IoT, big data, and parallel structures. Indeed, the metaheuristic approaches are algorithms that return near-optimal results for solving large-scale optimization problems. This study is focused on the new metaheuristic method that has been merged with the chaotic approach. It is based on the chaos theorem and helps relevant algorithms to improve the diversity of the population and fast convergence. This approach is based on Chimp Optimization Algorithm (ChOA), that is a recently introduced metaheuristic algorithm inspired by nature. This algorithm identified four types of chimpanzee groups: attacker, barrier, chaser, and driver, and proposed a suitable mathematical model for them based on the various intelligence and sexual motivations of chimpanzees. However, this algorithm is not more successful in the convergence rate and escaping of the local optimum trap in solving high-dimensional problems. Although it and some of its variants use some strategies to overcome these problems, it is observed that it is not sufficient. Therefore, in this study, a newly expanded variant is described. In the algorithm called Ex-ChOA, hybrid models are proposed for position updates of search agents, and a dynamic switching mechanism is provided for transition phases. This flexible structure solves the slow convergence problem of ChOA and improves its accuracy in multidimensional problems. Therefore, it tries to achieve success in solving global, complex, and constrained problems. The main contribution of this study is 1) It improves the accuracy and solves the slow convergence problem of the ChOA. 2) It proposes new hybrid movement strategy models for position updates of search agents. 3) It provides success in solving global, complex, and constrained problems. 4) It provides a dynamic switching mechanism between phases. The performance of the Ex-ChOA algorithm is analyzed on a total of 8 benchmark functions, as well as a total of 2 classical and constrained engineering problems. The proposed algorithm is compared with the ChoA, and several well-known variants (Weighted-ChoA, Enhanced-ChoA) are used. In addition, an Improved algorithm from the Grey Wolf Optimizer (I-GWO) method is chosen for comparison since the working model is similar. The obtained results depict that the proposed algorithm performs better or equivalently to the compared algorithms.

Keywords: optimization, metaheuristic, chimp optimization algorithm, engineering constrained problems

Procedia PDF Downloads 77
2297 Research on Public Space Optimization Strategies for Existing Settlements Based on Intergenerational Friendliness

Authors: Huanhuan Qiang, Sijia Jin

Abstract:

Population aging has become a global trend, and China has entered an aging society, implementing an active aging system focused on home and community-based care. However, most urban communities where elderly people live face issues such as monotonous planning, unappealing landscapes, and inadequate aging infrastructure, which do not meet the requirements for active aging. Intergenerational friendliness and mutual assistance are key components in China's active aging policy framework. Therefore, residential development should prioritize enhancing intergenerational friendliness. Residential and public spaces are central to community life and well-being, offering new and challenging venues to improve relationships among residents of different ages. They are crucial for developing intergenerational communities with diverse generations and non-blood relationships. This paper takes the Maigaoqiao community in Nanjing, China, as a case study, examining intergenerational interactions in public spaces. Based on Maslow's hierarchy of needs and using time geography analysis, it identifies the spatiotemporal behavior characteristics of intergenerational groups in outdoor activities. Then construct an intergenerational-friendly evaluation system and an IPA quadrant model for public spaces in residential areas. Lastly, it explores optimization strategies for public spaces to promote intergenerational friendly interactions, focusing on five aspects: accessibility, safety, functionality, a sense of belonging, and interactivity.

Keywords: intergenerational friendliness, demand theory, spatiotemporal behavior, IPA analysis, existing residential public space

Procedia PDF Downloads 4
2296 Structural Damage Detection via Incomplete Model Data Using Output Data Only

Authors: Ahmed Noor Al-qayyim, Barlas Özden Çağlayan

Abstract:

Structural failure is caused mainly by damage that often occurs on structures. Many researchers focus on obtaining very efficient tools to detect the damage in structures in the early state. In the past decades, a subject that has received considerable attention in literature is the damage detection as determined by variations in the dynamic characteristics or response of structures. This study presents a new damage identification technique. The technique detects the damage location for the incomplete structure system using output data only. The method indicates the damage based on the free vibration test data by using “Two Points - Condensation (TPC) technique”. This method creates a set of matrices by reducing the structural system to two degrees of freedom systems. The current stiffness matrices are obtained from optimization of the equation of motion using the measured test data. The current stiffness matrices are compared with original (undamaged) stiffness matrices. High percentage changes in matrices’ coefficients lead to the location of the damage. TPC technique is applied to the experimental data of a simply supported steel beam model structure after inducing thickness change in one element. Where two cases are considered, the method detects the damage and determines its location accurately in both cases. In addition, the results illustrate that these changes in stiffness matrix can be a useful tool for continuous monitoring of structural safety using ambient vibration data. Furthermore, its efficiency proves that this technique can also be used for big structures.

Keywords: damage detection, optimization, signals processing, structural health monitoring, two points–condensation

Procedia PDF Downloads 365
2295 First Order Moment Bounds on DMRL and IMRL Classes of Life Distributions

Authors: Debasis Sengupta, Sudipta Das

Abstract:

The class of life distributions with decreasing mean residual life (DMRL) is well known in the field of reliability modeling. It contains the IFR class of distributions and is contained in the NBUE class of distributions. While upper and lower bounds of the reliability distribution function of aging classes such as IFR, IFRA, NBU, NBUE, and HNBUE have discussed in the literature for a long time, there is no analogous result available for the DMRL class. We obtain the upper and lower bounds for the reliability function of the DMRL class in terms of first order finite moment. The lower bound is obtained by showing that for any fixed time, the minimization of the reliability function over the class of all DMRL distributions with a fixed mean is equivalent to its minimization over a smaller class of distribution with a special form. Optimization over this restricted set can be made algebraically. Likewise, the maximization of the reliability function over the class of all DMRL distributions with a fixed mean turns out to be a parametric optimization problem over the class of DMRL distributions of a special form. The constructive proofs also establish that both the upper and lower bounds are sharp. Further, the DMRL upper bound coincides with the HNBUE upper bound and the lower bound coincides with the IFR lower bound. We also prove that a pair of sharp upper and lower bounds for the reliability function when the distribution is increasing mean residual life (IMRL) with a fixed mean. This result is proved in a similar way. These inequalities fill a long-standing void in the literature of the life distribution modeling.

Keywords: DMRL, IMRL, reliability bounds, hazard functions

Procedia PDF Downloads 397
2294 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 147
2293 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 156
2292 Reducing The Frequency of Flooding Accompanied by Low pH Wastewater In 100/200 Unit of Phosphate Fertilizer 1 Plant by Implementing The 3R Program (Reduce, Reuse and Recycle)

Authors: Pradipta Risang Ratna Sambawa, Driya Herseta, Mahendra Fajri Nugraha

Abstract:

In 2020, PT Petrokimia Gresik implemented a program to increase the ROP (Run Of Pile) production rate at the Phosphate Fertilizer 1 plant, causing an increase in scrubbing water consumption in the 100/200 area unit. This increase in water consumption causes a higher discharge of wastewater, which can further cause local flooding, especially during the rainy season. The 100/200 area of the Phosphate Fertilizer 1 plant is close to the warehouse and is often a passing area for trucks transporting raw materials. This causes the pH in the wastewater to become acidic (the worst point is up to pH 1). The problem of flooding and exposure to acidic wastewater in the 100/200 area of Phosphate Fertilizer Plant 1 was then resolved by PT Petrokimia Gresik through wastewater optimization steps called the 3R program (Reduce, Reuse, and Recycle). The 3R (Reduce, reuse, and recycle) program consists of an air consumption reduction program by considering the liquid/gas ratio in scrubbing unit of 100/200 Phosphate Fertilizer 1 plant, creating a wastewater interconnection line so that wastewater from unit 100/200 can be used as scrubbing water in the Phonska 1, Phonska 2, Phonska 3 and unit 300 Phosphate Fertilizer 1 plant and increasing scrubbing effectiveness through scrubbing effectiveness simulations. Through a series of wastewater optimization programs, PT Petrokimia Gresik has succeeded in reducing NaOH consumption for neutralization up to 2,880 kg/day or equivalent in saving up to 314,359.76 dollars/year and reducing process water consumption up to 600 m3/day or equivalent in saving up to 63,739.62 dollars/year.

Keywords: fertilizer, phosphate fertilizer, wastewater, wastewater treatment, water management

Procedia PDF Downloads 26
2291 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method

Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi

Abstract:

This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.

Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method

Procedia PDF Downloads 394
2290 Superamolecular Chemistry and Packing of FAMEs in the Liquid Phase for Optimization of Combustion and Emission

Authors: Zeev Wiesman, Paula Berman, Nitzan Meiri, Charles Linder

Abstract:

Supramolecular chemistry refers to the domain of chemistry beyond that of molecules and focuses on the chemical systems made up of a discrete number of assembled molecular sub units or components. Biodiesel components self arrangements is closely related/affect their physical properties in combustion systems and emission. Due to technological difficulties, knowledge regarding the molecular packing of FAMEs (biodiesel) in the liquid phase is limited. Spectral tools such as X-ray and NMR are known to provide evidences related to molecular structure organization. Recently, it was reported by our research group that using 1H Time Domain NMR methodology based on relaxation time and self diffusion coefficients, FAMEs clusters with different motilities can be accurately studied in the liquid phase. Head to head dimarization with quasi-smectic clusters organization, based on molecular motion analysis, was clearly demonstrated. These findings about the assembly/packing of the FAME components are directly associated with fluidity/viscosity of the biodiesel. Furthermore, these findings may provide information of micro/nano-particles that are formed in the delivery and injection system of various combustion systems (affected by thermodynamic conditions). Various relevant parameters to combustion such as: distillation/Liquid Gas phase transition, cetane number/ignition delay, shoot, oxidation/NOX emission maybe predicted. These data may open the window for further optimization of FAME/diesel mixture in terms of combustion and emission.

Keywords: supermolecular chemistry, FAMEs, liquid phase, fluidity, LF-NMR

Procedia PDF Downloads 341
2289 Multi-Criteria Decision Making Network Optimization for Green Supply Chains

Authors: Bandar A. Alkhayyal

Abstract:

Modern supply chains are typically linear, transforming virgin raw materials into products for end consumers, who then discard them after use to landfills or incinerators. Nowadays, there are major efforts underway to create a circular economy to reduce non-renewable resource use and waste. One important aspect of these efforts is the development of Green Supply Chain (GSC) systems which enables a reverse flow of used products from consumers back to manufacturers, where they can be refurbished or remanufactured, to both economic and environmental benefit. This paper develops novel multi-objective optimization models to inform GSC system design at multiple levels: (1) strategic planning of facility location and transportation logistics; (2) tactical planning of optimal pricing; and (3) policy planning to account for potential valuation of GSC emissions. First, physical linear programming was applied to evaluate GSC facility placement by determining the quantities of end-of-life products for transport from candidate collection centers to remanufacturing facilities while satisfying cost and capacity criteria. Second, disassembly and remanufacturing processes have received little attention in industrial engineering and process cost modeling literature. The increasing scale of remanufacturing operations, worth nearly $50 billion annually in the United States alone, have made GSC pricing an important subject of research. A non-linear physical programming model for optimization of pricing policy for remanufactured products that maximizes total profit and minimizes product recovery costs were examined and solved. Finally, a deterministic equilibrium model was used to determine the effects of internalizing a cost of GSC greenhouse gas (GHG) emissions into optimization models. Changes in optimal facility use, transportation logistics, and pricing/profit margins were all investigated against a variable cost of carbon, using case study system created based on actual data from sites in the Boston area. As carbon costs increase, the optimal GSC system undergoes several distinct shifts in topology as it seeks new cost-minimal configurations. A comprehensive study of quantitative evaluation and performance of the model has been done using orthogonal arrays. Results were compared to top-down estimates from economic input-output life cycle assessment (EIO-LCA) models, to contrast remanufacturing GHG emission quantities with those from original equipment manufacturing operations. Introducing a carbon cost of $40/t CO2e increases modeled remanufacturing costs by 2.7% but also increases original equipment costs by 2.3%. The assembled work advances the theoretical modeling of optimal GSC systems and presents a rare case study of remanufactured appliances.

Keywords: circular economy, extended producer responsibility, greenhouse gas emissions, industrial ecology, low carbon logistics, green supply chains

Procedia PDF Downloads 160
2288 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 170
2287 Levels of Family Empowerment and Parenting Skills of Parents with Children with Developmental Disabilities Who Are Users of Early Intervention Services

Authors: S. Bagur, S. Verger, B. Mut

Abstract:

Early childhood intervention (ECI) is understood as the set of interventions aimed at the child population with developmental disorders or disabilities from 0 to 6 years of age, the family, and the environment. Under the principles of family-centred practices, the members of the family nucleus are direct agents of intervention. Thus, the multidisciplinary team of professionals should work to improve family empowerment and the level of parenting skills. The aim of the present study is to analyse descriptively and differentially the level of parenting skills and family empowerment of parents using ECI services during the foster care phase. There were 135 families participating in the study. Three questionnaires were completed. The results show that the employment situation, the age of the child receiving an intervention, and the number of children in the family nucleus or the professional carrying out the intervention are variables that have a differential impact on different items of empowerment and parenting skills. The results are discussed and future lines of research are proposed, with the understanding that the initial analysis of the variables of empowerment and parenting skills may be predictors for the improvement of child development and family well-being. In addition, it is proposed to identify and analyse professional training in order to be able to adapt early care practices without depending on the discipline of the professional of reference.

Keywords: developmental disabilities, early childhood intervention, family empowerment, parenting skills

Procedia PDF Downloads 111
2286 Research on the Function Optimization of China-Hungary Economic and Trade Cooperation Zone

Authors: Wenjuan Lu

Abstract:

China and Hungary have risen from a friendly and comprehensive cooperative relationship to a comprehensive strategic partnership in recent years, and the economic and trade relations between the two countries have developed smoothly. As an important country along the ‘Belt and Road’, Hungary and China have strong economic complementarities and have unique advantages in carrying China's industrial transfer and economic transformation and development. The construction of the China-Hungary Economic and Trade Cooperation Zone, which was initiated by the ‘Sino-Hungarian Borsod Industrial Zone’ and the ‘Hungarian Central European Trade and Logistics Cooperation Park’ has promoted infrastructure construction, optimized production capacity, promoted industrial restructuring, and formed brand and agglomeration effects. Enhancing the influence of Chinese companies in the European market has also promoted economic development in Hungary and even in Central and Eastern Europe. However, as the China-Hungary Economic and Trade Cooperation Zone is still in its infancy, there are still shortcomings such as small scale, single function, and no prominent platform. In the future, based on the needs of China's cooperation with ‘17+1’ and China-Hungary cooperation, on the basis of appropriately expanding the scale of economic and trade cooperation zones and appropriately increasing the number of economic and trade cooperation zones, it is better to focus on optimizing and adjusting its functions and highlighting different economic and trade cooperation. The differentiated function of the trade zones strengthens the multi-faceted cooperation of economic and trade cooperation zones and highlights its role as a platform for cooperation in information, capital, and services.

Keywords: ‘One Belt, One Road’ Initiative, China-Hungary economic and trade cooperation zone, function optimization, Central and Eastern Europe

Procedia PDF Downloads 180
2285 A User-Directed Approach to Optimization via Metaprogramming

Authors: Eashan Hatti

Abstract:

In software development, programmers often must make a choice between high-level programming and high-performance programs. High-level programming encourages the use of complex, pervasive abstractions. However, the use of these abstractions degrades performance-high performance demands that programs be low-level. In a compiler, the optimizer attempts to let the user have both. The optimizer takes high-level, abstract code as an input and produces low-level, performant code as an output. However, there is a problem with having the optimizer be a built-in part of the compiler. Domain-specific abstractions implemented as libraries are common in high-level languages. As a language’s library ecosystem grows, so does the number of abstractions that programmers will use. If these abstractions are to be performant, the optimizer must be extended with new optimizations to target them, or these abstractions must rely on existing general-purpose optimizations. The latter is often not as effective as needed. The former presents too significant of an effort for the compiler developers, as they are the only ones who can extend the language with new optimizations. Thus, the language becomes more high-level, yet the optimizer – and, in turn, program performance – falls behind. Programmers are again confronted with a choice between high-level programming and high-performance programs. To investigate a potential solution to this problem, we developed Peridot, a prototype programming language. Peridot’s main contribution is that it enables library developers to easily extend the language with new optimizations themselves. This allows the optimization workload to be taken off the compiler developers’ hands and given to a much larger set of people who can specialize in each problem domain. Because of this, optimizations can be much more effective while also being much more numerous. To enable this, Peridot supports metaprogramming designed for implementing program transformations. The language is split into two fragments or “levels”, one for metaprogramming, the other for high-level general-purpose programming. The metaprogramming level supports logic programming. Peridot’s key idea is that optimizations are simply implemented as metaprograms. The meta level supports several specific features which make it particularly suited to implementing optimizers. For instance, metaprograms can automatically deduce equalities between the programs they are optimizing via unification, deal with variable binding declaratively via higher-order abstract syntax, and avoid the phase-ordering problem via non-determinism. We have found that this design centered around logic programming makes optimizers concise and easy to write compared to their equivalents in functional or imperative languages. Overall, implementing Peridot has shown that its design is a viable solution to the problem of writing code which is both high-level and performant.

Keywords: optimization, metaprogramming, logic programming, abstraction

Procedia PDF Downloads 88
2284 Survey of Methods for Solutions of Spatial Covariance Structures and Their Limitations

Authors: Joseph Thomas Eghwerido, Julian I. Mbegbu

Abstract:

In modelling environment processes, we apply multidisciplinary knowledge to explain, explore and predict the Earth's response to natural human-induced environmental changes. Thus, the analysis of spatial-time ecological and environmental studies, the spatial parameters of interest are always heterogeneous. This often negates the assumption of stationarity. Hence, the dispersion of the transportation of atmospheric pollutants, landscape or topographic effect, weather patterns depends on a good estimate of spatial covariance. The generalized linear mixed model, although linear in the expected value parameters, its likelihood varies nonlinearly as a function of the covariance parameters. As a consequence, computing estimates for a linear mixed model requires the iterative solution of a system of simultaneous nonlinear equations. In other to predict the variables at unsampled locations, we need to know the estimate of the present sampled variables. The geostatistical methods for solving this spatial problem assume covariance stationarity (locally defined covariance) and uniform in space; which is not apparently valid because spatial processes often exhibit nonstationary covariance. Hence, they have globally defined covariance. We shall consider different existing methods of solutions of spatial covariance of a space-time processes at unsampled locations. This stationary covariance changes with locations for multiple time set with some asymptotic properties.

Keywords: parametric, nonstationary, Kernel, Kriging

Procedia PDF Downloads 255
2283 Referrals to Occupational Therapy Driving Assessors: A Qualitative Study of General Practitioners

Authors: Mary Butler

Abstract:

Background: Screening programmes for older drivers in Europe (though not the UK), and in many states in the US and in Australia are based on medical assessment of fitness to drive. These programmes require physicians (including general practitioners) to carry out an assessment of fitness to drive in their offices. In 2006, New Zealand changed from doing on-road driving tests with all older drivers from the age of 80, to a screening programme that uses medical assessment of fitness to drive only. Aim: This study set out to understand the experience of New Zealand GPs as they manage the process of medical assessment of fitness to drive assessments for older people. In particular, it aimed to establish how GPs understand the role of specialist driving assessment and rehabilitation carried out by occupational therapists. Design and setting: The study used an interpretive descriptive approach to analyze data from ten interviews with GPs in New Zealand. Results: The results indicated that GPs lack understanding about how occupational therapists can assist their patients, and tend to refer only when there is a disagreement with the patient. Conclusion: There are problems with the medical assessment of fitness to drive carried out by GPs, and there is a need for a more comprehensive community approach to driving cessation. Patients, families and the multidisciplinary team all have a role in deciding when driving cessation should occur. Occupational therapists have a particular responsibility for strategic leadership in this area of practice.

Keywords: assessment, driving, older people, occupational therapy

Procedia PDF Downloads 139
2282 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman

Procedia PDF Downloads 196
2281 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem

Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee

Abstract:

Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.

Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research

Procedia PDF Downloads 336
2280 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 82
2279 Stability Optimization of NABH₄ via PH and H₂O:NABH₄ Ratios for Large Scale Hydrogen Production

Authors: Parth Mehta, Vedasri Bai Khavala, Prabhu Rajagopal, Tiju Thomas

Abstract:

There is an increasing need for alternative clean fuels, and hydrogen (H₂) has long been considered a promising solution with a high calorific value (142MJ/kg). However, the storage of H₂ and expensive processes for its generation have hindered its usage. Sodium borohydride (NaBH₄) can potentially be used as an economically viable means of H₂ storage. Thus far, there have been attempts to optimize the life of NaBH₄ (half-life) in aqueous media by stabilizing it with sodium hydroxide (NaOH) for various pH values. Other reports have shown that H₂ yield and reaction kinetics remained constant for all ratios of H₂O to NaBH₄ > 30:1, without any acidic catalysts. Here we highlight the importance of pH and H₂O: NaBH₄ ratio (80:1, 40:1, 20:1 and 10:1 by weight), for NaBH₄ stabilization (half-life reaction time at room temperature) and corrosion minimization of H₂ reactor components. It is interesting to observe that at any particular pH>10 (e.g., pH = 10, 11 and 12), the H₂O: NaBH₄ ratio does not have the expected linear dependence with stability. On the contrary, high stability was observed at the ratio of 10:1 H₂O: NaBH₄ across all pH>10. When the H₂O: NaBH₄ ratio is increased from 10:1 to 20:1 and beyond (till 80:1), constant stability (% degradation) is observed with respect to time. For practical usage (consumption within 6 hours of making NaBH₄ solution), 15% degradation at pH 11 and NaBH₄: H₂O ratio of 10:1 is recommended. Increasing this ratio demands higher NaOH concentration at the same pH, thus requiring a higher concentration or volume of acid (e.g., HCl) for H₂ generation. The reactions are done with tap water to render the results useful from an industrial standpoint. The observed stability regimes are rationalized based on complexes associated with NaBH₄ when solvated in water, which depend sensitively on both pH and NaBH₄: H₂O ratio.

Keywords: hydrogen, sodium borohydride, stability optimization, H₂O:NaBH₄ ratio

Procedia PDF Downloads 120
2278 Chaotic Sequence Noise Reduction and Chaotic Recognition Rate Improvement Based on Improved Local Geometric Projection

Authors: Rubin Dan, Xingcai Wang, Ziyang Chen

Abstract:

A chaotic time series noise reduction method based on the fusion of the local projection method, wavelet transform, and particle swarm algorithm (referred to as the LW-PSO method) is proposed to address the problem of false recognition due to noise in the recognition process of chaotic time series containing noise. The method first uses phase space reconstruction to recover the original dynamical system characteristics and removes the noise subspace by selecting the neighborhood radius; then it uses wavelet transform to remove D1-D3 high-frequency components to maximize the retention of signal information while least-squares optimization is performed by the particle swarm algorithm. The Lorenz system containing 30% Gaussian white noise is simulated and verified, and the phase space, SNR value, RMSE value, and K value of the 0-1 test method before and after noise reduction of the Schreiber method, local projection method, wavelet transform method, and LW-PSO method are compared and analyzed, which proves that the LW-PSO method has a better noise reduction effect compared with the other three common methods. The method is also applied to the classical system to evaluate the noise reduction effect of the four methods and the original system identification effect, which further verifies the superiority of the LW-PSO method. Finally, it is applied to the Chengdu rainfall chaotic sequence for research, and the results prove that the LW-PSO method can effectively reduce the noise and improve the chaos recognition rate.

Keywords: Schreiber noise reduction, wavelet transform, particle swarm optimization, 0-1 test method, chaotic sequence denoising

Procedia PDF Downloads 199