Search results for: magnetic pulse
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1955

Search results for: magnetic pulse

635 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 128
634 Statistical Analysis Approach for the e-Glassy Mortar And Radiation Shielding Behaviors Using Anova

Authors: Abadou Yacine, Faid Hayette

Abstract:

Significant investigations were performed on the use and impact on physical properties along with the mechanical strength of the recycled and reused E-glass waste powder. However, it has been modelled how recycled display e-waste glass may affect the characteristics and qualities of dune sand mortar. To be involved in this field, an investigation has been done with the substitution of dune sand for recycled E-glass waste and constant water-cement ratios. The linear relationship between the dune sand mortar and E-glass mortar mix % contributes to the model's reliability. The experimental data was exposed to regression analysis using JMP Statistics software. The regression model with one predictor presented the general form of the equation for the prediction of the five properties' characteristics of dune sand mortar from the substitution ratio of E-waste glass and curing age. The results illustrate that curing a long-term process produced an E-glass waste mortar specimen with the highest compressive strength of 68 MPa in the laboratory environment. Anova analysis indicated that the curing at long-term has the utmost importance on the sorptivity level and ultrasonic pulse velocity loss. Furthermore, the E-glass waste powder percentage has the utmost importance on the compressive strength and improvement in dynamic elasticity modulus. Besides, a significant enhancement of radiation-shielding applications.

Keywords: ANOVA analysis, E-glass waste, durability and sustainability, radiation-shielding

Procedia PDF Downloads 59
633 Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density

Authors: Suyong Kim

Abstract:

Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density.

Keywords: motor, BLDC, spoke, ferrite

Procedia PDF Downloads 573
632 Revolving Ferrofluid Flow in Porous Medium with Rotating Disk

Authors: Paras Ram, Vikas Kumar

Abstract:

The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling.

Keywords: ferrofluid, magnetic field, porous medium, rotating disk, Neuringer-Rosensweig Model

Procedia PDF Downloads 421
631 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator

Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj

Abstract:

This paper aims to analysis the behaviour of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Current-voltage curves are particularly analysed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.

Keywords: electrostatic precipitator, current-voltage characteristics, least squares method, electric field, magnetic field

Procedia PDF Downloads 431
630 Magnetohydrodynamic (MHD) Effects on Micropolar-Newtonian Fluid Flow through a Composite Porous Channel

Authors: Satya Deo, Deepak Kumar Maurya

Abstract:

The present study investigates the ow of a Newtonian fluid sandwiched between two rectangular porous channels filled with micropolar fluid in the presence of a uniform magnetic field applied in a direction perpendicular to that of the fluid motion. The governing equations of micropolar fluid are modified by Nowacki's approach. For respective porous channels, expressions for velocity vectors, microrotations, stresses (shear and couple) are obtained analytically. Continuity of velocities, continuities of micro rotations and continuity of stresses are used at the porous interfaces; conditions of no-slip and no spin are applied at the impervious boundaries of the composite channel. Numerical values of flow rate, wall shear stresses and couple stresses at the porous interfaces are calculated for different values of various parameters. Graphs of the ow rate and fluid velocity are plotted and their behaviors are discussed.

Keywords: couple stress, flow rate, Hartmann number, micropolar fluids

Procedia PDF Downloads 242
629 Magnetic Study on Ybₐ₂Cu₃O₇₋δ Nanoparticles Doped by Ferromagnetic Nanoparticles of Y₃Fe₅O₁₂

Authors: Samir Khene

Abstract:

Present and future industrial uses of high critical temperature superconductors require high critical temperatures TC and strong current densities JC. These two aims constitute the two motivations of scientific research in this domain. The most significant feature of any superconductor, from the viewpoint of uses, is the maximum electrical transport current density that this superconductor is capable of withstanding without loss of energy. In this work, vortices pinning in conventional and high-TC superconductors will be studied. Our experiments on vortices pinning in single crystals and nanoparticles of YBₐ₂Cu₃O₇₋δ and La₁.₈₅ Sr₀.₁₅CuO will be presented. It will be given special attention to the study of the YBₐ₂Cu₃O₇₋δ nanoparticles doped by ferromagnetic nanoparticles of Y₃Fe₅O₁₂. The ferromagnetism and superconductivity coexistence in this compound will be demonstrated, and the influence of these ferromagnetic nanoparticles on the variations of the critical current density JC in YBₐ₂Cu₃O7₇₋δ nanoparticles as a function of applied field H and temperature T will be studied.

Keywords: superconductors, high critical temperature, vortices pinning, nanoparticles, ferromagnetism, coexistence

Procedia PDF Downloads 69
628 Flow Dynamics of Nanofluids in a Horizontal Cylindrical Annulus Using Nonhomogeneous Dynamic Model

Authors: M. J. Uddin, M. M. Rahman

Abstract:

Transient natural convective flow dynamics of nanofluids in a horizontal homocentric annulus using nonhomogeneous dynamic model has been experimented numerically. The simulation is carried out for four different shapes of the inner wall, which is either cylindrical, elliptical, square or triangular. The outer surface of the annulus is maintained at constant low temperature while the inner wall is maintained at a uniform temperature; higher than the outer one. The enclosure is permeated by a uniform magnetic field having variable orientation. The Brownian motion and thermophoretic deposition phenomena of the nanoparticles are taken into account in model construction. The governing nonlinear momentum, energy, and concentration equations are solved numerically using Galerkin weighted residual finite element method. To find the best performer, the local Nusselt number is demonstrated for different shapes of the inner wall. The heat transfer enhancement for different nanofluids for four different shapes of the inner wall is exhibited.

Keywords: nanofluids, annulus, nonhomogeneous dynamic model, heat transfer

Procedia PDF Downloads 170
627 An Energy Efficient Spectrum Shaping Scheme for Substrate Integrated Waveguides Based on Spread Reshaping Code

Authors: Yu Zhao, Rainer Gruenheid, Gerhard Bauch

Abstract:

In the microwave and millimeter-wave transmission region, substrate-integrated waveguide (SIW) is a very promising candidate for the development of circuits and components. It facilitates the transmission at the data rates in excess of 200 Gbit/s. An SIW mimics a rectangular waveguide by approximating the closed sidewalls with a via fence. This structure suppresses the low frequency components and makes the channel of the SIW a bandpass or high pass filter. This channel characteristic impedes the conventional baseband transmission using non-return-to-zero (NRZ) pulse shaping scheme. Therefore, mixers are commonly proposed to be used as carrier modulator and demodulator in order to facilitate a passband transmission. However, carrier modulation is not an energy efficient solution, because modulation and demodulation at high frequencies consume a lot of energy. For the first time to our knowledge, this paper proposes a spectrum shaping scheme of low complexity for the channel of SIW, namely spread reshaping code. It aims at matching the spectrum of the transmit signal to the channel frequency response. It facilitates the transmission through the SIW channel while it avoids using carrier modulation. In some cases, it even does not need equalization. Simulations reveal a good performance of this scheme, such that, as a result, eye opening is achieved without any equalization or modulation for the respective transmission channels.

Keywords: bandpass channel, eye-opening, switching frequency, substrate-integrated waveguide, spectrum shaping scheme, spread reshaping code

Procedia PDF Downloads 160
626 Research on the Strategy of Orbital Avoidance for Optical Remote Sensing Satellite

Authors: Zheng DianXun, Cheng Bo, Lin Hetong

Abstract:

This paper focuses on the orbit avoidance strategies of optical remote sensing satellite. The optical remote sensing satellite, moving along the Sun-synchronous orbit, is equipped with laser warning equipment to alert CCD camera from laser attacks. There are three ways to protect the CCD camera: closing the camera cover, satellite attitude maneuver and satellite orbit avoidance. In order to enhance the safety of optical remote sensing satellite in orbit, this paper explores the strategy of satellite avoidance. The avoidance strategy is expressed as the evasion of pre-determined target points in the orbital coordinates of virtual satellite. The so-called virtual satellite is a passive vehicle which superposes the satellite at the initial stage of avoidance. The target points share the consistent cycle time and the same semi-major axis with the virtual satellite, which ensures the properties of the satellite’s Sun-synchronous orbit remain unchanged. Moreover, to further strengthen the avoidance capability of satellite, it can perform multi-target-points avoid maneuvers. On occasions of fulfilling the satellite orbit tasks, the orbit can be restored back to virtual satellite through orbit maneuvers. Thereinto, the avoid maneuvers adopts pulse guidance. And the fuel consumption is also optimized. The avoidance strategy discussed in this article is applicable to optical remote sensing satellite when it is encountered with hostile attack of space-based laser anti-satellite.

Keywords: optical remote sensing satellite, satellite avoidance, virtual satellite, avoid target-point, avoid maneuver

Procedia PDF Downloads 404
625 Retrospective Study for Elective Medical Patients Evacuation of Different Diagnoses Requiring Different Approach in Oxygen Usage

Authors: Branimir Skoric

Abstract:

Over the past two decades, number of international travels rose significantly in the United Kingdom and Worldwide in the shape of business travels and holiday travels as well. The fact that elderly people travel a lot, more than ever before increased the needs for medical evacuations (repatriations) back home if they fell ill abroad or had any kind of accident. This paper concerns medical evacuations of patients on the way back home to the United Kingdom (United Kingdom Residents) and their specific medical needs during short-haul or long-haul commercial scheduled flight and ground transportation to the final destination regardless whether it was hospital or usual place of residence. Particular medical need during medical evacuations is oxygen supply and it can be supplied via portable oxygen concentrator, pulse flow oxygenator or continuous free flow oxygenator depending on the main diagnosis and patient’s comorbidities. In this retrospective study, patients were divided into two groups. One group was consisted of patients suffering from cardio-respiratory diagnoses as primary illness. Another Group consisted of patients suffering from noncardiac illnesses who have other problems including any kind of physical injury. Needs for oxygen and type of supply were carefully considered in regards of duration of the flight, standard airline cabin pressure and results described in this retrospective study.

Keywords: commercial flight, elderly travellers, medical evacuations, oxygen

Procedia PDF Downloads 145
624 Heating Behavior of Ni-Embedded Thermoplastic Polyurethane Adhesive Film by Induction Heating

Authors: DuckHwan Bae, YongSung Kwon, Min Young Shon, SanTaek Oh, GuNi Kim

Abstract:

The heating behavior of nanometer and micrometer sized Nickel particle-imbedded thermoplastic polyurethane adhesive (TPU) under induction heating is examined in present study. The effects of particle size and content, TPU film thickness on heating behaviors were examined. The correlation between heating behavior and magnetic properties of Nickel particles were also studied. From the results, heat generation increased with increase of Nickel content and film thickness. However, in terms of particle sizes, heat generation of Nickel-imbedded TPU film were in order of 70nm>1µm>20 µm>70 µm and this results can explain by increasing ration of eddy heating to hysteresis heating with increase of particle size.

Keywords: induction heating, thermoplastic polyurethane, nickel, composite, hysteresis loss, eddy current loss, curie temperature

Procedia PDF Downloads 362
623 Giant Achievements in Food Processing

Authors: Farnaz Amidi Fazli

Abstract:

After long period of human experience about food processing from raw eating to canning of food in the last century now it is time to use novel technologies which are sometimes completely different from common technologies. It is possible to decontaminate food without using heat or the foods are stored without using cold chain. Pulsed electric field (PEF) processing is a non-thermal method of food preservation that uses short bursts of electricity, PEF can be used for processing liquid and semi-liquid food products. PEF processing offers high quality fresh-like liquid foods with excellent flavor, nutritional value, and shelf-life. High pressure processing (HPP) technology has the potential to fulfill both consumer and scientific requirements. The use of HPP for over 50 years has found applications in non-food industries. For food applications, ‘high pressure’ can be generally considered to be up to 600 MPa for most food products. After years, freezing has its high potential to food preservation due to new and quick freezing methods. Foods which are prepared by this technology have more acceptability and high quality comparing with old fashion slow freezing. Thus, quick freezing has further been adopted as a widespread commercial method for long-term preservation of perishable foods which improved both the health and convenience of everyone in the industrialised countries. Above parameters are achieved by Fluidised-bed freezing systems, freezing by immersion and Hydrofluidisation on the other hand new thawing methods like high-pressure, microwave, ohmic, and acoustic thawing have a key role in quality and adaptability of final product.

Keywords: quick freezing, thawing, high pressure, pulse electric, hydrofluidisation

Procedia PDF Downloads 321
622 Non-Thermal Pulsed Plasma Discharge for Contaminants of Emerging Concern Removal in Water

Authors: Davide Palma, Dimitra Papagiannaki, Marco Minella, Manuel Lai, Rita Binetti, Claire Richard

Abstract:

Modern analytical technologies allow us to detect water contaminants at trace and ultra-trace concentrations highlighting how a large number of organic compounds is not efficiently abated by most wastewater treatment facilities relying on biological processes; we usually refer to these micropollutants as contaminants of emerging concern (CECs). The availability of reliable end effective technologies, able to guarantee the high standards of water quality demanded by legislators worldwide, has therefore become a primary need. In this context, water plasma stands out among developing technologies as it is extremely effective in the abatement of numerous classes of pollutants, cost-effective, and environmentally friendly. In this work, a custom-built non-thermal pulsed plasma discharge generator was used to abate the concentration of selected CECs in the water samples. Samples were treated in a 50 mL pyrex reactor using two different types of plasma discharge occurring at the surface of the treated solution or, underwater, working with positive polarity. The distance between the tips of the electrodes determined where the discharge was formed: underwater when the distance was < 2mm, at the water surface when the distance was > 2 mm. Peak voltage was in the 100-130kV range with typical current values of 20-40 A. The duration of the pulse was 500 ns, and the frequency of discharge could be manually set between 5 and 45 Hz. Treatment of 100 µM diclofenac solution in MilliQ water, with a pulse frequency of 17Hz, revealed that surface discharge was more efficient in the degradation of diclofenac that was no longer detectable after 6 minutes of treatment. Over 30 minutes were required to obtain the same results with underwater discharge. These results are justified by the higher rate of H₂O₂ formation (21.80 µmolL⁻¹min⁻¹ for surface discharge against 1.20 µmolL⁻¹min⁻¹ for underwater discharge), larger discharge volume and UV light emission, high rate of ozone and NOx production (up to 800 and 1400 ppb respectively) observed when working with surface discharge. Then, the surface discharge was used for the treatment of the three selected perfluoroalkyl compounds, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and pefluorooctanesulfonic acid (PFOS) both individually and in mixture, in ultrapure and groundwater matrices with initial concentration of 1 ppb. In both matrices, PFOS exhibited the best degradation reaching complete removal after 30 min of treatment (degradation rate 0.107 min⁻¹ in ultrapure water and 0.0633 min⁻¹ in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 80%, respectively. Total nitrogen (TN) measurements revealed levels up to 45 mgL⁻¹h⁻¹ in water samples treated with surface discharge, while, in analogous samples treated with underwater discharge, TN increase was 5 to 10 times lower. These results can be explained by the significant NOx concentrations (over 1400 ppb) measured above functioning reactor operating with superficial discharge; rapid NOx hydrolysis led to nitrates accumulation in the solution explaining the observed evolution of TN values. Ionic chromatography measures confirmed that the vast majority of TN was under the form of nitrates. In conclusion, non-thermal pulsed plasma discharge, obtained with a custom-built generator, was proven to effectively degrade diclofenac in water matrices confirming the potential interest of this technology for wastewater treatment. The surface discharge was proven to be more effective in CECs removal due to the high rate of formation of H₂O₂, ozone, reactive radical species, and strong UV light emission. Furthermore, nitrates enriched water obtained after treatment could be an interesting added-value product to be used as fertilizer in agriculture. Acknowledgment: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765860.

Keywords: CECs removal, nitrogen fixation, non-thermal plasma, water treatment

Procedia PDF Downloads 121
621 Catalytic Degradation of Tetracycline in Aqueous Solution by Magnetic Ore Pyrite Nanoparticles

Authors: Allah Bakhsh Javid, Ali Mashayekh-Salehi, Fatemeh Davardoost

Abstract:

This study presents the preparation, characterization and catalytic activity of a novel natural mineral-based catalyst for destructive adsorption of tetracycline (TTC) as water emerging compounds. Degradation potential of raw and calcined magnetite catalyst was evaluated at different experiments situations such as pH, catalyst dose, reaction time and pollutant concentration. Calcined magnetite attained greater catalytic potential than the raw ore in the degradation of tetracycline, around 69% versus 3% at reaction time of 30 min and TTC aqueous solution of 50 mg/L, respectively. Complete removal of TTC could be obtained using 2 g/L calcined nanoparticles at reaction time of 60 min. The removal of TTC increased with the increase in solution temperature. Accordingly, considering its abundance in nature together with its very high catalytic potential, calcined pyrite is a promising and reliable catalytic material for destructive decomposition for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC in water and wastewater.

Keywords: catalytic degradation, tetracycline, pyrite, emerging pollutants

Procedia PDF Downloads 192
620 Electrochemically Reduced Graphene Oxide Modified Boron-Doped Diamond Paste Electrode on Paper-Based Analytical Device for Simultaneous Determination of Norepinephrine and Serotonin

Authors: Siriwan Nantaphol, Robert B. Channon, Takeshi Kondo, Weena Siangproh, Orawon Chailapakul, Charles S. Henry

Abstract:

In this work, we demonstrate a novel electrochemically reduced graphene oxide (ERGO) modified boron-doped diamond paste (BDDP) electrode on paper-based analytical devices (PADs) for simultaneous determination of norepinephrine (NE) and serotonin (5-HT). The BDD paste electrode was easily constructed by filling BDD paste in small channels, which made in transparency film sheets using a CO₂ laser etching 
system. The counter and reference electrodes were fabricated on paper by in-house screen-printing and then combined with BDD paste microelectrode. The electrochemical characterization of the device was investigated by cyclic voltammetry (CV). Differential pulse voltammetry (DPV) was employed for the simultaneous determination of NE and 5-HT. The ERGO-modified BDDP electrode displayed excellent electrocatalytic activities toward the oxidation of NE and 5-HT and strong function for resolving the overlapping voltammetric responses of NE and 5-HT into two well-defined voltammetric peaks. This device was capable of simultaneously detecting NE and 5-HT in wide concentration ranges and with a low limit of detections. In addition, it has the advantages in terms of ease of use, low cost, and disposability.

Keywords: boron-doped diamond paste electrode, electrochemically reduced graphene oxide, norepinephrine, paper-based analytical device, serotonin

Procedia PDF Downloads 259
619 Nondestructive Evaluation of Hidden Delamination in Glass Fiber Composite Using Terahertz Spectroscopy

Authors: Chung-Hyeon Ryu, Do-Hyoung Kim, Hak-Sung Kim

Abstract:

As the use of the composites was increased, the detecting method of hidden damages which have an effect on performance of the composite was important. Terahertz (THz) spectroscopy was assessed as one of the new powerful nondestructive evaluation (NDE) techniques for fiber reinforced composite structures because it has many advantages which can overcome the limitations of conventional NDE techniques such as x-rays or ultrasound. The THz wave offers noninvasive, noncontact and nonionizing methods evaluating composite damages, also it gives a broad range of information about the material properties. In additions, it enables to detect the multiple-delaminations of various nonmetallic materials. In this study, the pulse type THz spectroscopy imaging system was devised and used for detecting and evaluating the hidden delamination in the glass fiber reinforced plastic (GFRP) composite laminates. The interaction between THz and the GFRP composite was analyzed respect to the type of delamination, including their thickness, size and numbers of overlaps among multiple-delaminations in through-thickness direction. Both of transmission and reflection configurations were used for evaluation of hidden delaminations and THz wave propagations through the delaminations were also discussed. From these results, various hidden delaminations inside of the GFRP composite were successfully detected using time-domain THz spectroscopy imaging system and also compared to the results of C-scan inspection. It is expected that THz NDE technique will be widely used to evaluate the reliability of composite structures.

Keywords: terahertz, delamination, glass fiber reinforced plastic composites, terahertz spectroscopy

Procedia PDF Downloads 592
618 Non-AIDS Related Multiple Brain and Orbital Lymphoma Mimicking Meningioma: A Case Report

Authors: Eghosa Morgan, Bourtarbouch Mahjouba, Heida El Ouahabi, Poluyi Edward, Diawarra Seylan

Abstract:

Non-AIDS lymphoma, a type of primary central nervous system (CNS) lymphoma is an uncommon aggressive infiltrative malignant tumour involving several sites in the central nervous system, such as the periventricular region and leptomeninges. In this article, the authors presented a 26-year old man with painless progressive right exophthalmos and scalp swelling with no symptoms and signs of intracranial hypertension and hyperthyroidism. Magnetic resonance imaging (MRI) done revealed isointense masses with brilliant homogenous enhancement on contrast administration resembling a meningioma, with a dura tail – like attachment as seen in meningioma. He had surgery for the right orbital tumour and histopathological diagnosis confirmed our suspicion of lymphoma (B type). Steroid was given in the post-operative period which led to significant regression of the tumours, hence its description as ‘vanishing tumour’. He is presently receiving methotrexate-based chemotherapy and subsequently planned for radiotherapy.

Keywords: central nervous system (CNS), meningioma, non-aids lymphoma, orbital

Procedia PDF Downloads 91
617 Simulation Studies of High-Intensity, Nanosecond Pulsed Electric Fields Induced Dynamic Membrane Electroporation

Authors: Jiahui Song

Abstract:

The application of an electric field can cause poration at cell membranes. This includes the outer plasma membrane, as well as the membranes of intracellular organelles. In order to analyze and predict such electroporation effects, it becomes necessary to first evaluate the electric fields and the transmembrane voltages. This information can then be used to assess changes in the pore formation energy that finally yields the pore distributions and their radii based on the Smolchowski equation. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into the pore formation energy equation. These changes make the pore formation energy E(r) self-adjusting in response to pore formation without causing uncontrolled growth and expansion. By using dynamic membrane tension, membrane electroporation in response to a 180kV/cm trapezoidal pulse with a 10 ns on time and 1.5 ns rise- and fall-times is discussed. Poration is predicted to occur at times beyond the peak at around 9.2 ns. Modeling also yields time-dependent distributions of the membrane pore population after multiple pulses. It shows that the pore distribution shifts to larger values of the radius with multiple pulsing. Molecular dynamics (MD) simulations are also carried out for a fixed field of 0.5 V/nm to demonstrate nanopore formation from a microscopic point of view. The result shows that the pore is predicted to be about 0.9 nm in diameter and somewhat narrower at the central point.

Keywords: high-intensity, nanosecond, dynamics, electroporation

Procedia PDF Downloads 159
616 Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive

Authors: Umair Ashraf, Kjetil Uhlen, Sverre Eriksen, Nadeem Jelani

Abstract:

Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed.

Keywords: non-linear load, power electronics, parallel operating generators, pulse width modulation, variable frequency drives, voltage source converters, weak grid

Procedia PDF Downloads 569
615 Simulations of High-Intensity, Thermionic Electron Guns for Electron Beam Thermal Processing Including Effects of Space Charge Compensation

Authors: O. Hinrichs, H. Franz, G. Reiter

Abstract:

Electron guns have a key function in a series of thermal processes, like EB (electron beam) melting, evaporation or welding. These techniques need a high-intensity continuous electron beam that defocuses itself due to high space charge forces. A proper beam transport throughout the magnetic focusing system can be ensured by a space charge compensation via residual gas ions. The different pressure stages in the EB gun cause various degrees of compensation. A numerical model was installed to simulate realistic charge distributions within the beam by using CST-Particle Studio code. We will present current status of beam dynamic simulations. This contribution will focus on the creation of space charge ions and their influence on beam and gun components. Furthermore, the beam transport in the gun will be shown for different beam parameters. The electron source allows to produce beams with currents of 3 A to 15 A and energies of 40 keV to 45 keV.

Keywords: beam dynamic simulation, space charge compensation, thermionic electron source, EB melting, EB thermal processing

Procedia PDF Downloads 338
614 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of solar wind using mathematical models, MHD models, and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulates the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar cycles (sc) 21, 22, 23, and most of 24.

Keywords: artificial neural network, coronal hole area, feed-forward neural network models, solar high speed streams

Procedia PDF Downloads 88
613 Evaluation of Nitrogen Fixation Capabilities of Selected Pea Lines Grown under Different Environmental Conditions in Canadian Prairie

Authors: Chao Yang, Rosalind Bueckert, Jeff Schoenau, Axel Diederichsen, Hossein Zakeri, Tom Warkentin

Abstract:

Pea is a very popular pulse crop that widely grew in Western Canadian prairie. However, the N fixation capabilities of these pea lines were not well evaluated under local environmental conditions. In this study, 2 supernodulating mutants Frisson P64 Sym29, Frisson P88 Sym28 along with their wild parent Frisson, 1 hypernodulating mutant Rondo-nod3 (fix+) along with its wild parent Rondo, 1 non-nodulating mutant Frisson P56 (nod-) and 2 commercial pea cultivar CDC Meadow and CDC Dakota which are widely planted in Western Canada were selected in order to evaluate the capabilities of their BNF, biomass, and yield production in symbiosis with R. leguminosarumbv. viciae, Our results showed different environmental conditions and variation of pea lines could both significantly impact days to flowering (DTF), days to podding (DTP), biomass and yield of tested pea lines (P < 0.0001), suggesting consideration of environmental factors could be important when selecting pea cultivar for local farming under different soil zones in Western Canada. Significant interaction effects between environmental conditions and pea lines were found on pea N fixation as well (P = 0.001), suggesting changes in N fixation capability of the same pea cultivar when grown under different environmental conditions. Our results provide useful information for farming and better opportunity for selection of pea cultivars with higher N-fixing capacity during breeding programs in Western Canada.

Keywords: Canadian prairie, environmental condition, N fixation, pea cultivar

Procedia PDF Downloads 344
612 The Impact of Ramadan Fasting on Blood Pressure: Observational Study and a Meta-Analysis

Authors: Rami Al Jafar, Paul Elliott, Konstantinos K. Tsilidis, Abbas Dehghan

Abstract:

Although Ramadan fasting is a ritual that is practiced every year by millions of Muslims, studies on Ramadan fasting are still scarce. To the best of our knowledge, none of the previous studies comprehensively explored the effect on the metabolic profile. In London Ramadan Fasting Study, blood samples were collected from 81 participants before and 10-14 days after Ramadan. Blood samples were analysed using nuclear magnetic resonance (NMR) spectroscopy which covers 249 metabolites. Mixed-effects models were used to analyse collected data and assess the effect of Ramadan fasting on the metabolic profile. Our observational study involved 85 individuals with a mean age of 45.2 years, and 53.1% of them were males. After Ramadan, forty metabolites were affected significantly by Ramadan fasting. Most of these metabolites were metabolites ratios (24), and the rest were three Glycolysis, three ketone bodies, nine Lipoprotein subclasses and one inflammation marker. This study suggests that Ramadan fasting is significantly associated with changes in the metabolic profile. However, the changes are assumed to be temporary, and the long-term effect of these changes is unknown.

Keywords: metabolic profile, Ramadan fasting, metabolites, intermittent fasting

Procedia PDF Downloads 167
611 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA

Authors: Siti Aishah Hasbullah

Abstract:

Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.

Keywords: gold, screen printed electrode, ruthenium, porcine DNA

Procedia PDF Downloads 309
610 An Attempt on Antimicrobial Studies of Lanthanide Schiff Base Complexes

Authors: Lekha Logu

Abstract:

The coordination behavior of the newly synthesized Schiff base ligands, 4-bromo-2-((p-tolyl imino) methyl) phenol obtained by condensing para-toluidine with 5-bromo salicylaldehyde and N-(3,4-dichloro benzylidene)-4-methylbenzenamine obtained by condensing Para-toluidine with 3,4-dichloro benzaldehyde in ethanolic medium has been explored in this current study. The synthesized Schiff’s base ligands were complexed with lanthanide nitrate salts yielding [LnL(NO3)2(H2O)2]NO3, (Ln=Pr, Sm). Elemental analysis, conductance measurement, and spectral techniques like Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-Vis) and Fourier Transform Infrared (FTIR) have been used to characterize Schiff’s base ligands and their lanthanide metal complexes. An attempt has been made on these complexes for their antimicrobial activity against the gram-positive and gram-negative bacterial species like Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and fungal species like Canadida and Aspergillus.

Keywords: lanthanide complexes, Schiff's base, antimicrobial assay, synthesis, characterization

Procedia PDF Downloads 69
609 Implementation and Comparative Analysis of PET and CT Image Fusion Algorithms

Authors: S. Guruprasad, M. Z. Kurian, H. N. Suma

Abstract:

Medical imaging modalities are becoming life saving components. These modalities are very much essential to doctors for proper diagnosis, treatment planning and follow up. Some modalities provide anatomical information such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), X-rays and some provides only functional information such as Positron Emission Tomography (PET). Therefore, single modality image does not give complete information. This paper presents the fusion of structural information in CT and functional information present in PET image. This fused image is very much essential in detecting the stages and location of abnormalities and in particular very much needed in oncology for improved diagnosis and treatment. We have implemented and compared image fusion techniques like pyramid, wavelet, and principal components fusion methods along with hybrid method of DWT and PCA. The performances of the algorithms are evaluated quantitatively and qualitatively. The system is implemented and tested by using MATLAB software. Based on the MSE, PSNR and ENTROPY analysis, PCA and DWT-PCA methods showed best results over all experiments.

Keywords: image fusion, pyramid, wavelets, principal component analysis

Procedia PDF Downloads 284
608 Navigating the Complexity of Guillain-Barré Syndrome and Miller Fisher Syndrome Overlap Syndrome: A Pediatric Case Report

Authors: Kamal Chafiq, Youssef Hadzine, Adel Elmekkaoui, Othmane Benlenda, Houssam Rajad, Soukaina Wakrim, Hicham Nassik

Abstract:

Guillain-Barré syndrome/Miller Fishe syndrome (GBS/MFS) overlap syndrome is an extremely rare variant of Guillain-Barré syndrome (GBS) in which Miller Fisher syndrome (MFS) coexists with other characteristics of GBS, such as limb weakness, paresthesia, and facial paralysis. We report the clinical case of a 12-year-old patient, with no pathological history, who acutely presents with ophthalmoplegia, areflexia, facial diplegia, and swallowing and phonation disorders, followed by progressive, descending, and symmetrical paresis affecting first the upper limbs and then the lower limbs. An albuminocytological dissociation was found in the cerebrospinal fluid study. Magnetic resonance imaging of the spinal cord showed enhancement and thickening of the cauda equina roots. The patient was treated with immunoglobulins with a favorable clinical outcome.

Keywords: Guillain-Barré syndrome, Miller Fisher syndrome, overlap syndrome, anti-GQ1b antibodies

Procedia PDF Downloads 77
607 Investigation of Mechanical Properties and Wear Behavior of Hot Roller Grades

Authors: Majid Mokhtari, Masoud Bahrami Alamdarlo, Babak Nazari, Hossein Zakerinya, Mehdi Salehi

Abstract:

In this study, microstructure, macro, and microhardness of phases for three grades of cast iron rolls with modified chemical composition using a light microscope (OM) and electron microscopy (SEM) were investigated. The grades were chosen from Chodan Sazan Manufacturing Co. (CSROLL) productions for finishing stands of hot strip mills. The percentage of residual austenite was determined with a ferrite scope magnetic device. Thermal susceptibility testing was also measured. The results show the best oxidation resistance at high temperatures is graphitic high chromium white cast iron alloy. In order to evaluate the final properties of these grades in rolling lines, the results of the Pin on Disk abrasion test showed the superiority of the abrasive behavior of the white chromium graphite cast iron alloy grade sample at the same hardness compared to conventional alloy grades and the enhanced grades.

Keywords: hot roller, wear, behavior, microstructure

Procedia PDF Downloads 241
606 Performance Evaluation of Various Segmentation Techniques on MRI of Brain Tissue

Authors: U.V. Suryawanshi, S.S. Chowhan, U.V Kulkarni

Abstract:

Accuracy of segmentation methods is of great importance in brain image analysis. Tissue classification in Magnetic Resonance brain images (MRI) is an important issue in the analysis of several brain dementias. This paper portraits performance of segmentation techniques that are used on Brain MRI. A large variety of algorithms for segmentation of Brain MRI has been developed. The objective of this paper is to perform a segmentation process on MR images of the human brain, using Fuzzy c-means (FCM), Kernel based Fuzzy c-means clustering (KFCM), Spatial Fuzzy c-means (SFCM) and Improved Fuzzy c-means (IFCM). The review covers imaging modalities, MRI and methods for noise reduction and segmentation approaches. All methods are applied on MRI brain images which are degraded by salt-pepper noise demonstrate that the IFCM algorithm performs more robust to noise than the standard FCM algorithm. We conclude with a discussion on the trend of future research in brain segmentation and changing norms in IFCM for better results.

Keywords: image segmentation, preprocessing, MRI, FCM, KFCM, SFCM, IFCM

Procedia PDF Downloads 332