Search results for: heavy metal toxicity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4346

Search results for: heavy metal toxicity

3026 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study

Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq

Abstract:

Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.

Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study

Procedia PDF Downloads 321
3025 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 191
3024 Studying the Influence of Stir Cast Parameters on Properties of Al6061/Al2O3 Composite

Authors: Anuj Suhag, Rahul Dayal

Abstract:

Aluminum matrix composites (AMCs) refer to the class of metal matrix composites that are lightweight but high performance aluminum centric material systems. The reinforcement in AMCs could be in the form of continuous/discontinuous fibers, whisker or particulates, in volume fractions. Properties of AMCs can be altered to the requirements of different industrial applications by suitable combinations of matrix, reinforcement and processing route. This work focuses on the fabrication of aluminum alloy (Al6061) matrix composites (AMCs) reinforced with 5 and 3 wt% Al2O3 particulates of 45µm using stir casting route. The aim of the present work is to investigate the effects of process parameters, determined by design of experiments, on microhardness, microstructure, Charpy impact strength, surface roughness and tensile properties of the AMC.

Keywords: aluminium matrix composite, Charpy impact strength test, composite materials, matrix, metal matrix composite, surface roughness, reinforcement

Procedia PDF Downloads 654
3023 Assessment of Environmental Impact of Rain Water and Industrial Water Leakage in the Libyan Iron and Steel Company in the Sea Water

Authors: Mohamed Alzarug Aburugba, Rashid Mohamed Eltanashi

Abstract:

Rainwater is considered an essential water resource, as it contributes to filling the deficit in water resources, especially in countries that suffer from a scarcity of natural water sources. One of the important issues facing the Water and Gas Services Department at the Libyan Iron and Steel Company is the large loss of quantities of industrial water, both direct and indirect cooling water (DCW, ICW), produced within the company due to leaks in the cooling systems of the factories of the Libyan Iron and Steel Company. These amounts of polluted industrial water leakage are mixed with rainwater collected by stormwater stations (6 stations) in LISCO, which is pumped to the sea through pumps with a very high flow rate, and thus, this will carry a lot of waste, heavy metals, and oils to the sea, which negatively affects marine environmental resources. This paper assesses the environmental impact of the quantities of rainwater and mixed industrial water in stormwater stations in the Libyan Iron and Steel Company and methods of mitigation, treating pollutants and reusing them as industrial water in the production processes of the steel industry.

Keywords: rainwater, mitigation, impact, sewage, heavy metals, assessment, pollution, environment, natural resources, industrial water.

Procedia PDF Downloads 62
3022 Preparation of CuAlO2 Thin Films on Si or Sapphire Substrate by Sol-Gel Method Using Metal Acetate or Nitrate

Authors: Takashi Ehara, Takayoshi Nakanishi, Kohei Sasaki, Marina Abe, Hiroshi Abe, Kiyoaki Abe, Ryo Iizaka, Takuya Sato

Abstract:

CuAlO2 thin films are prepared on Si or sapphire substrate by sol-gel method using two kinds of sols. One is combination of Cu acetate and Al acetate basic, and the other is Cu nitrate and Al nitrate. In the case of acetate sol, XRD peaks of CuAlO2 observed at annealing temperature of 800-950 ºC on both Si and sapphire substrates. In contrast, in the case of the films prepared using nitrate on Si substrate, XRD peaks of CuAlO2 have been observed only at the annealing temperature of 800-850 ºC. At annealing temperature of 850ºC, peaks of other species have been observed beside the CuAlO2 peaks, then, the CuAlO2 peaks disappeared at annealing temperature of 900 °C with increasing in intensity of the other peaks. Intensity of the other peaks decreased at annealing temperature of 950 ºC with appearance of broad SiO2 peak. In the present, we ascribe these peaks as metal silicide.

Keywords: CuAlO2, silicide, thin Films, transparent conducting oxide

Procedia PDF Downloads 394
3021 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 158
3020 Micro-Study of Dissimilar Welded Materials

Authors: Ezzeddin Anawa, Abdol-Ghane Olabi

Abstract:

The dissimilar joint between aluminum /titanium alloys (Al 6082 and Ti G2) alloys were successfully achieved by CO2 laser welding with a single pass and without filler material using the overlap joint design. Laser welding parameters ranges combinations were experimentally determined using Taguchi approach with the objective of producing welded joint with acceptable welding profile and high quality of mechanical properties. In this study a joining of dissimilar Al 6082 / Ti G2 was result in three distinct regions fusion area (FA), heat-affected zone (HAZ), and the unaffected base metal (BM) in the weldment. These regions are studied in terms of its microstructural characteristics and microhardness which are directly affecting the welding quality. The weld metal was mainly composed of martensite alpha prime. In two different metals in the two different sides of joint HAZ, grain growth was detected. The microhardness of the joint distribution also has shown microhardness increasing in the HAZ of two base metals and a varying microhardness in fusion zone.

Keywords: microharness , microstructure, laser welding and dissimilar jointed materials.

Procedia PDF Downloads 373
3019 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom

Authors: Witthaya Mekhum, Waleerak Sittisom

Abstract:

This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.

Keywords: occupational health, safety, local wisdom, Rattanakosin

Procedia PDF Downloads 439
3018 Pluripotent Stem Cells as Therapeutic Tools for Limbal Stem Cell Deficiencies and Drug Testing

Authors: Aberdam Edith, Sangari Linda, Petit Isabelle, Aberdam Daniel

Abstract:

Background and Rationale: Transparent avascularised cornea is essential for normal vision and depends on limbal stem cells (LSC) that reside between the cornea and the conjunctiva. Ocular burns or injuries may destroy the limbus, causing limbal stem cell deficiency (LSCD). The cornea becomes vascularised by invaded conjunctival cells, the stroma is scarring, resulting in corneal opacity and loss of vision. Grafted autologous limbus or cultivated autologous LCS can restore the vision, unless the two eyes are affected. Alternative cellular sources have been tested in the last decades, including oral mucosa or hair follicle epithelial cells. However, only partial success has been achieved by the use of these cells since they were not able to uniformly commit into corneal epithelial cells. Human pluripotent stem cells (iPSC) display both unlimited growth capacity and ability to differentiate into any cell type. Our goal was to design a standardized and reproducible protocol to produce transplantable autologous LSC from patients through cell reprogramming technology. Methodology: First, keratinocyte primary culture was established from a small number of plucked hair follicles of healthy donors. The resulting epithelial cells were reprogrammed into induced pluripotent stem cells (iPSCs) and further differentiate into corneal epithelial cells (CEC), according to a robust protocol that recapitulates the main step of corneal embryonic development. qRT-PCR analysis and immunofluorescent staining during the course of differentiation confirm the expression of stage specific markers of corneal embryonic lineage. First appear ectodermal progenitor-specific cytokeratins K8/K18, followed at day 7 by limbal-specific PAX6, TP63 and cytokeratins K5/K14. At day 15, K3/K12+-corneal cells are present. To amplify the iPSC-derived LSC (named COiPSC), intact small epithelial colonies were detached and cultivated in limbal cell-specific medium. In that culture conditions, the COiPSC can be frozen and thaw at any passage, while retaining their corneal characteristics for at least eight passages. To evaluate the potential of COiPSC as an alternative ocular toxicity model, COiPSC were treated at passage P0 to P4 with increasing amounts of SDS and Benzalkonium. Cell proliferation and apoptosis of treated cells was compared to LSC and the SV40-immortalized human corneal epithelial cell line (HCE) routinely used by cosmetological industrials. Of note, HCE are more resistant to toxicity than LSC. At P0, COiPSC were systematically more resistant to chemical toxicity than LSC and even to HCE. Remarkably, this behavior changed with passage since COiPSC at P2 became identical to LSC and thus closer to physiology than HCE. Comparative transcriptome analysis confirmed that COiPSC from P2 are similar to a mixture of LSC and CEC. Finally, by organotypic reconstitution assay, we demonstrated the ability of COiPSC to produce a 3D corneal epithelium on a stromal equivalent made of keratocytes. Conclusion: COiPSC could become valuable for two main applications: (1) an alternative robust tool to perform, in a reproducible and physiological manner, toxicity assays for cosmetic products and pharmacological tests of drugs. (2). COiPSC could become an alternative autologous source for cornea transplantation for LSCD.

Keywords: Limbal stem cell deficiency, iPSC, cornea, limbal stem cells

Procedia PDF Downloads 409
3017 Engineering a Band Gap Opening in Dirac Cones on Graphene/Tellurium Heterostructures

Authors: Beatriz Muñiz Cano, J. Ripoll Sau, D. Pacile, P. M. Sheverdyaeva, P. Moras, J. Camarero, R. Miranda, M. Garnica, M. A. Valbuena

Abstract:

Graphene, in its pristine state, is a semiconductor with a zero band gap and massless Dirac fermions carriers, which conducts electrons like a metal. Nevertheless, the absence of a bandgap makes it impossible to control the material’s electrons, something that is essential to perform on-off switching operations in transistors. Therefore, it is necessary to generate a finite gap in the energy dispersion at the Dirac point. Intense research has been developed to engineer band gaps while preserving the exceptional properties of graphene, and different strategies have been proposed, among them, quantum confinement of 1D nanoribbons or the introduction of super periodic potential in graphene. Besides, in the context of developing new 2D materials and Van der Waals heterostructures, with new exciting emerging properties, as 2D transition metal chalcogenides monolayers, it is fundamental to know any possible interaction between chalcogenide atoms and graphene-supporting substrates. In this work, we report on a combined Scanning Tunneling Microscopy (STM), Low Energy Electron Diffraction (LEED), and Angle-Resolved Photoemission Spectroscopy (ARPES) study on a new superstructure when Te is evaporated (and intercalated) onto graphene over Ir(111). This new superstructure leads to the electronic doping of the Dirac cone while the linear dispersion of massless Dirac fermions is preserved. Very interestingly, our ARPES measurements evidence a large band gap (~400 meV) at the Dirac point of graphene Dirac cones below but close to the Fermi level. We have also observed signatures of the Dirac point binding energy being tuned (upwards or downwards) as a function of Te coverage.

Keywords: angle resolved photoemission spectroscopy, ARPES, graphene, spintronics, spin-orbitronics, 2D materials, transition metal dichalcogenides, TMDCs, TMDs, LEED, STM, quantum materials

Procedia PDF Downloads 78
3016 Uptake of Copper by Dead Biomass of Burkholderia cenocepacia Isolated from a Metal Mine in Pará, Brazil

Authors: Ingrid R. Avanzi, Marcela dos P. G. Baltazar, Louise H. Gracioso, Luciana J. Gimenes, Bruno Karolski, Elen A. Perpetuo, Claudio Auguto Oller do Nascimento

Abstract:

In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process. In this study was developed a natural process using a biological system for the uptake of Copper and possible removal of copper from wastewater by dead biomass of the strain Burkholderia cenocepacia. Dead and live biomass of Burkholderia cenocepacia was used to analyze the equilibrium and kinetics of copper biosorption by this strain in function of the pH. Living biomass exhibited the highest biosorption capacity of copper, 50 mg g−1, which was achieved within 5 hours of contact, at pH 7.0, temperature of 30°C, and agitation speed of 150 rpm. The dead biomass of Burkholderia cenocepacia may be considered an efficiently bioprocess, being fast and low-cost to production of copper and also a probably nano-adsorbent of this metal ion in wastewater in bioremediation process.

Keywords: biosorption, dead biomass, biotechnology, copper recovery

Procedia PDF Downloads 336
3015 An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling

Authors: J. Uka, B. McKay, T. Minton, O. Adole, R. Lewis, S. J. Glanvill, L. Anguilano

Abstract:

Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling.

Keywords: reuse, recycle, aluminium, swarf, oxide layers

Procedia PDF Downloads 131
3014 Temperature-Dependent Structural Characterization of Type-II Dirac Semi-Metal nite₂ From Bulk to Exfoliated Thin Flakes Using Raman Spectroscopy

Authors: Minna Theres James, Nirmal K Sebastian, Shoubhik Mandal, Pramita Mishra, R Ganesan, P S Anil Kumar

Abstract:

We report the temperature-dependent evolution of Raman spectra of type-II Dirac semimetal (DSM) NiTe2 (001) in the form of bulk single crystal and a nanoflake (200 nm thick) for the first time. A physical model that can quantitatively explain the evolution of out of plane A1g and in-plane E1g Raman modes is used. The non-linear variation of peak positions of the Raman modes with temperature is explained by anharmonic three-phonon and four-phonon processes along with thermal expansion of the lattice. We also observe prominent effect of electron-phonon coupling from the variation of FWHM of the peaks with temperature, indicating the metallicity of the samples. Raman mode E1 1g corresponding to an in plane vibration disappears on decreasing the thickness from bulk to nanoflake.

Keywords: raman spectroscopy, type 2 dirac semimetal, nickel telluride, phonon-phonon coupling, electron phonon coupling, transition metal dichalcogonide

Procedia PDF Downloads 112
3013 Evaluation of Mechanical Properties and Analysis of Rapidly Heat Treated M-42 High Speed Steel

Authors: R. N. Karthik Babu, R. Sarvesh, A. Rajendra Prasad, G. Swaminathan

Abstract:

M42 is a molybdenum-series high-speed alloy steel widely used because of its better hot-hardness and wear resistance. These steels are conventionally heat treated in a salt bath furnace with up to three stages of preheating with predetermined soaking and holding periods. Such methods often involve long periods of processing with a large amount of energy consumed. In this study, the M42 steel samples were heat-treated by rapidly heating the specimens to the austenising temperature of 1260 °C and cooled conventionally by quenching in a neutral salt bath at a temperature of 550 °C with the aid of a hybrid microwave furnace. As metals reflect microwaves, they cannot directly be heated up when placed in a microwave furnace. The technology used herein requires the specimens to be placed in a crucible lined with SiC which is a good absorber of microwaves and the SiC lining heats the metal through radiation which facilitates the volumetric heating of the metal. A sample of similar dimensions was heat treated conventionally and cooled in the same manner. Conventional tempering process was then carried out on both these samples and analysed for various parameters such as micro-hardness, processing time, etc. Microstructure analysis and scanning electron microscopy was also carried out. The objective of the study being that similar or better properties, with substantial time and energy saving and cost cutting are achievable by rapid heat treatment through hybrid microwave furnaces. It is observed that the heat treatment is done with substantial time and energy savings, and also with minute improvement in mechanical properties of the tool steel heat treated.

Keywords: rapid heating, heat treatment, metal processing, microwave heating

Procedia PDF Downloads 285
3012 Formulation and Ex Vivo Evaluation of Solid Lipid Nanoparticles Based Hydrogel for Intranasal Drug Delivery

Authors: Pramod Jagtap, Kisan Jadhav, Neha Dand

Abstract:

Risperidone (RISP) is an antipsychotic agent and has low water solubility and nontargeted delivery results in numerous side effects. Hence, an attempt was made to develop SLNs hydrogel for intranasal delivery of RISP to achieve maximum bioavailability and reduction of side effects. RISP loaded SLNs composed of 1.65% (w/v) lipid mass were produced by high shear homogenization (HSH) coupled ultrasound (US) method using glyceryl monostearate (GMS) or Imwitor 900K (solid lipid). The particles were loaded with 0.2% (w/v) of the RISP & surface-tailored with a 2.02% (w/v) non-ionic surfactant Tween® 80. Optimization was done using 32 factorial design using Design Expert® software. The prepared SLNs dispersion incorporated into Polycarbophil AA1 hydrogel (0.5% w/v). The final gel formulation was evaluated for entrapment efficiency, particle size, rheological properties, X ray diffraction, in vitro diffusion, ex vivo permeation using sheep nasal mucosa and histopathological studies for nasocilliary toxicity. The entrapment efficiency of optimized SLNs was found to be 76 ± 2 %, polydispersity index <0.3., particle size 278 ± 5 nm. This optimized batch was incorporated into hydrogel. The pH was found to be 6.4 ± 0.14. The rheological behaviour of hydrogel formulation revealed no thixotropic behaviour. In histopathology study, there was no nasocilliary toxicity observed in nasal mucosa after ex vivo permeation. X-ray diffraction data shows drug was in amorphous form. Ex vivo permeation study shows controlled release profile of drug.

Keywords: ex vivo, particle size, risperidone, solid lipid nanoparticles

Procedia PDF Downloads 416
3011 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 598
3010 Reliability-based Condition Assessment of Offshore Wind Turbines using SHM data

Authors: Caglayan Hizal, Hasan Emre Demirci, Engin Aktas, Alper Sezer

Abstract:

Offshore wind turbines consist of a long slender tower with a heavy fixed mass on the top of the tower (nacelle), together with a heavy rotating mass (blades and hub). They are always subjected to environmental loads including wind and wave loads in their service life. This study presents a three-stage methodology for reliability-based condition assessment of offshore wind-turbines against the seismic, wave and wind induced effects considering the soil-structure interaction. In this context, failure criterions are considered as serviceability limits of a monopile supporting an Offshore Wind Turbine: (a) allowable horizontal displacement at pile head should not exceed 0.2 m, (b) rotations at pile head should not exceed 0.5°. A Bayesian system identification framework is adapted to the classical reliability analysis procedure. Using this framework, a reliability assessment can be directly implemented to the updated finite element model without performing time-consuming methods. For numerical verification, simulation data of the finite model of a real offshore wind-turbine structure is investigated using the three-stage methodology.

Keywords: Offshore wind turbines, SHM, reliability assessment, soil-structure interaction

Procedia PDF Downloads 527
3009 Corrosion Protection of Structural Steel by Surfactant Containing Reagents

Authors: D. Erdenechimeg, T. Bujinlkham, N. Erdenepurev

Abstract:

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Keywords: corrosion, linear polarization resistance, coating, surfactant

Procedia PDF Downloads 98
3008 Using Mobile Phones for M-Learning in Higher Education: A Comparative Study

Authors: Islam Elsayed Hussein Ali, Stefan M. Wagner

Abstract:

Smartphone and tablet computers, as well as other ultra portable devices, have already gained enough critical mass to be considered mainstream devices, being present in the daily lives of millions of higher education students. Many universities throughout the world have already adopted or are planning to adopt mobile technologies in many of their courses as a better way to connect students with the subjects they are studying. These new mobile platforms allow students to access content anywhere/anytime to immerse himself/herself into that content (alone or interacting with teachers or colleagues via web communication forms) and to interact with that content in ways that were not previously possible. This paper plans to provide a thorough overview of the possibilities and consequences of m-learning in higher education environments as a gateway to ubiquitous learning – perhaps the ultimate form of learner engagement, since it allows the student to learn, access and interact with important content in any way or at any time or place he might want so the objective of the study is to examine how the usage of mobile phones for m-learning differs between heavy and light mobile phone users at TU Braunschweig. Heavy mobile phone users are hypothesized to have access to/subscribe to one type of mobile content than light mobile phone users, to have less frequent access to, subscribe to or purchase mobile content within the last year than light mobile phone users, and to pay less money for mobile learning, its content and mobile games than light mobile phone users.

Keywords: mobile learning, technologies, applications, higher education

Procedia PDF Downloads 414
3007 Comparative Evaluation of High Pure Mn3O4 Preparation Technique between the Conventional Process from Electrolytic Manganese and a Sustainable Approach Directly from Low-Grade Rhodochrosite

Authors: Fang Lian, Zefang Chenli, Laijun Ma, Lei Mao

Abstract:

Up to now, electrolytic process is a popular way to prepare Mn and MnO2 (EMD) with high purity. However, the conventional preparation process of manganese oxide such as Mn3O4 with high purity from electrolytic manganese metal is characterized by long production-cycle, high-pollution discharge and high energy consumption especially initially from low-grade rhodochrosite, the main resources for exploitation and applications in China. Moreover, Mn3O4 prepared from electrolytic manganese shows large particles, single morphology beyond the control and weak chemical activity. On the other hand, hydrometallurgical method combined with thermal decomposition, hydrothermal synthesis and sol-gel processes has been widely studied because of its high efficiency, low consumption and low cost. But the key problem in direct preparation of manganese oxide series from low-grade rhodochrosite is to remove completely the multiple impurities such as iron, silicon, calcium and magnesium. It is urgent to develop a sustainable approach to high pure manganese oxide series with character of short process, high efficiency, environmentally friendly and economical benefit. In our work, the preparation technique of high pure Mn3O4 directly from low-grade rhodochrosite ore (13.86%) was studied and improved intensively, including the effective leaching process and the short purifying process. Based on the same ion effect, the repeated leaching of rhodochrosite with sulfuric acid is proposed to improve the solubility of Mn2+ and inhibit the dissolution of the impurities Ca2+ and Mg2+. Moreover, the repeated leaching process could make full use of sulfuric acid and lower the cost of the raw material. With the aid of theoretical calculation, Ba(OH)2 was chosen to adjust the pH value of manganese sulfate solution and BaF2 to remove Ca2+ and Mg2+ completely in the process of purifying. Herein, the recovery ratio of manganese and removal ratio of the impurity were evaluated via chemical titration and ICP analysis, respectively. Comparison between conventional preparation technique from electrolytic manganese and a sustainable approach directly from low-grade rhodochrosite have also been done herein. The results demonstrate that the extraction ratio and the recovery ratio of manganese reached 94.3% and 92.7%, respectively. The heavy metal impurities has been decreased to less than 1ppm, and the content of calcium, magnesium and sodium has been decreased to less than 20ppm, which meet standards of high pure reagent for energy and electronic materials. In compare with conventional technique from electrolytic manganese, the power consumption has been reduced to ≤2000 kWh/t(product) in our short-process approach. Moreover, comprehensive recovery rate of manganese increases significantly, and the wastewater generated from our short-process approach contains low content of ammonia/ nitrogen about 500 mg/t(product) and no toxic emissions. Our study contributes to the sustainable application of low-grade manganese ore. Acknowledgements: The authors are grateful to the National Science and Technology Support Program of China (No.2015BAB01B02) for financial support to the work.

Keywords: leaching, high purity, low-grade rhodochrosite, manganese oxide, purifying process, recovery ratio

Procedia PDF Downloads 247
3006 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 96
3005 Double Gaussian Distribution of Nonhomogeneous Barrier Height in Metal/n-type GaN Schottky Contacts

Authors: M. Mamor

Abstract:

GaN-based compounds have attracted much interest in the fabrication of high-power, high speed and high-frequency electronic devices. Other examples of GaN-based applications are blue and ultraviolet (UV) light-emitting diodes (LEDs). All these devices require high-quality ohmic and Schottky contacts. Gaining an understanding of the electrical characteristics of metal/GaN contacts is of fundamental and technological importance for developing GaN-based devices. In this work, the barrier characteristics of Pt and Pd Schottky contacts on n-type GaN were studied using temperature-dependent forward current-voltage (I-V) measurements over a wide temperature range 80–400 K. Our results show that the barrier height and ideality factor, extracted from the forward I-V characteristics based on thermionic emission (TE) model, exhibit an abnormal dependence with temperature; i.e., by increasing temperature, the barrier height increases whereas the ideality factor decreases. This abnormal behavior has been explained based on the TE model by considering the presence of double Gaussian distribution (GD) of nonhomogeneous barrier height at the metal/GaN interface. However, in the high-temperature range (160-400 K), the extracted value for the effective Richardson constant A* based on the barrier inhomogeneity (BHi) model is found in fair agreement with the theoretically predicted value of about 26.9 A.cm-2 K-2 for n-type GaN. This result indicates that in this temperature range, the conduction current transport is dominated by the thermionic emission mode. On the other hand, in the lower temperature range (80-160 K), the corresponding effective Richardson constant value according to the BHi model is lower than the theoretical value, suggesting the presence of other current transport, such as tunneling-assisted mode at lower temperatures.

Keywords: Schottky diodes, inhomogeneous barrier height, GaN semiconductors, Schottky barrier heights

Procedia PDF Downloads 54
3004 Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom

Authors: Walaa H. Salama, Azza M. Abdel-Aty, Afaf S. Fahmy

Abstract:

Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy.

Keywords: antioxidant activity, neutralization, phospholipase A₂ enzyme, snake venom

Procedia PDF Downloads 181
3003 Determination of Pesticides Residues in Tissue of Two Freshwater Fish Species by Modified QuEChERS Method

Authors: Iwona Cieślik, Władysław Migdał, Kinga Topolska, Ewa Cieślik

Abstract:

The consumption of fish is recommended as a means of preventing serious diseases, especially cardiovascular problems. Fish is known to be a valuable source of protein (rich in essential amino acids), unsaturated fatty acids, fat-soluble vitamins, macro- and microelements. However, it can also contain several contaminants (e.g. pesticides, heavy metals) that may pose considerable risks for humans. Among others, pesticide are of special concern. Their widespread use has resulted in the contamination of environmental compartments, including water. The occurrence of pesticides in the environment is a serious problem, due to their potential toxicity. Therefore, a systematic monitoring is needed. The aim of the study was to determine the organochlorine and organophosphate pesticide residues in fish muscle tissues of the pike (Esox lucius, L.) and the rainbow trout (Oncorhynchus mykkis, Walbaum) by a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, using Gas Chromatography Quadrupole Mass Spectrometry (GC/Q-MS), working in selected-ion monitoring (SIM) mode. The analysis of α-HCH, β-HCH, lindane, diazinon, disulfoton, δ-HCH, methyl parathion, heptachlor, malathion, aldrin, parathion, heptachlor epoxide, γ-chlordane, endosulfan, α-chlordane, o,p'-DDE, dieldrin, endrin, 4,4'-DDD, ethion, endrin aldehyde, endosulfan sulfate, 4,4'-DDT, and metoxychlor was performed in the samples collected in the Carp Valley (Malopolska region, Poland). The age of the pike (n=6) was 3 years and its weight was 2-3 kg, while the age of the rainbow trout (n=6) was 0.5 year and its weight was 0.5-1.0 kg. Detectable pesticide (HCH isomers, endosulfan isomers, DDT and its metabolites as well as metoxychlor) residues were present in fish samples. However, all these compounds were below the limit of quantification (LOQ). The other examined pesticide residues were below the limit of detection (LOD). Therefore, the levels of contamination were - in all cases - below the default Maximum Residue Levels (MRLs), established by Regulation (EC) No 396/2005 of the European Parliament and of the Council. The monitoring of pesticide residues content in fish is required to minimize potential adverse effects on the environment and human exposure to these contaminants.

Keywords: contaminants, fish, pesticides residues, QuEChERS method

Procedia PDF Downloads 217
3002 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 132
3001 Evaluation of Water Chemistry and Quality Characteristics of Işıklı Lake (Denizli, Türkiye)

Authors: Abdullah Ay, Şehnaz Şener

Abstract:

It is of great importance to reveal their current status and conduct research in this direction for the sustainable use and protection of lakes, which are among the most important water resources for meeting water needs and ensuring ecological balance. In this context, the purpose of this study is to determine the hydrogeochemical properties, as well as water quality and usability characteristics of Işıklı Lake within the Lakes Region of Turkey. Işıklı Lake is a tectonic lake located in the Aegean Region of Turkey. The lake has a surface area of approximately 36 km². Temperature (T), electrical conductivity (EC) and hydrogen ion concentration (pH), dissolved oxygen (%, mg/l), Oxidation Reduction Potential (ORP; mV), and amount of dissolved solids in water (TDS; mg/l) of water samples taken from the lake values were determined by in situ analysis. Major ion and heavy metal analyses were carried out under laboratory conditions. Additionally, the relationship between major ion concentrations and TDS values of Işıklı Lake water samples was determined by correlation analysis. According to the results obtained, it is seen that especially Mg, Ca and HCO₃ ions are dominant in the lake water, and it has been determined that the lake water is in the Ca-Mg-HCO₃ water facies. According to statistical analysis, a strong and positive relationship was found between the TDS value and bicarbonate and calcium (R² = 0.61 and 0.7, respectively). However, no significant relationship was detected between the TDS value and other chemical elements. Although the waters are generally in water quality class I, they are in class IV in terms of sulfur and aluminum. It is included in the water quality class. This situation is due to the rock-water interaction in the region. When the analysis results of the lake water were compared with the drinking water limit values specified by TSE-266 (2005) and WHO (2017), it was determined that it was not suitable for drinking water use in terms of Pb, Se, As, and Cr. When the waters were evaluated in terms of pollution, it was determined that 50% of the samples carried pollution loads in terms of Al, As, Fe, NO3, and Cu.

Keywords: Işıklı Lake, water chemistry, water quality, pollution, arsenic, Denizli

Procedia PDF Downloads 21
3000 Diagnostic and Analysis of the Performance of Freight Transportation on Urban Logistics System in the City of Sfax

Authors: Tarak Barhoumi, Younes Boujelbene

Abstract:

Nowadays, the problems of freight transport pose logistical constraints on the urban system in the city. The aim of this article is to gain a better understanding of the interactions between local traffic and interurban traffic on the one hand and between the location system and the transport system on the other hand. Thus, in a simulation and analysis approach cannot be restricted to the only transport system. The proposed approach is based on an assessment of the impact of freight transport, which is closely linked to the diagnostic method, based on two surveys carried out on the territory of the urban community of Sfax. These surveys are based on two main components 'establishment component' first and 'driver component' second. The results propose a reorganization of freight transport in the city of Sfax. First, an orientation of the heavy goods vehicles traffic towards the major axes of transport namely the ring roads (ring road N° 2, ring road N° 4 and ring road N° 11) and the penetrating news of the city. Then, the implementation of a retail goods delivery policy and the strengthening of logistics in the city. The creation of a logistics zone at the ring road N° 11 where various modes of freight transport meet, in order to decongest the roads of heavy goods traffic, reduce the cost of transport and thus improve the competitiveness of the economy regional.

Keywords: urban logistics systems, transport freight, diagnostics, evaluation

Procedia PDF Downloads 165
2999 A Study on the Safety Evaluation of Pier According to the Water Level Change by the Monte-Carlo Method

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Donghoon Shin, Kiyoung Kim

Abstract:

Recently, global warming phenomenon has led to natural disasters caused by global environmental changes, and due to abnormal weather events, the frequency and intensity of heavy rain storm typhoons are increasing. Therefore, it is imperative to prepare for future heavy rain storms and typhoons. This study selects arbitrary target bridges and performs numerical analysis to evaluate the safety of bridge piers in the event that the water level changes. The numerical model is based on two-dimensional surface elements. Actual reinforced concrete was simulated by modeling concrete to include reinforcements, and a contact boundary model was applied between the ground and the concrete. The water level applied to the piers was considered at 18 levels between 7.5 m and 16.1 m. The elastic modulus, compressive strength, tensile strength, and yield strength of the reinforced concrete were calculated using 250 random combinations and numerical analysis was carried out for each water level. In the results of analysis, the bridge exceeded the stated limit at 15.0 m. At the maximum water level of 16.1m, the concrete’s failure rate was 35.2%, but the probability that the reinforcement would fail was 61.2%.

Keywords: Monte-Carlo method, pier, water level change, limit state

Procedia PDF Downloads 285
2998 Involvement of BCRP/ABCG2 in Protective Mechanisms of Resveratrol against Methotrexate-Induced Renal Damage in Rats

Authors: Mohamed A. Morsy, Azza A. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

Resveratrol (RES) is a well-known polyphenol antioxidant. We have previously shown that testicular protective effect of RES against the anticancer drug methotrexate (MTX)-induced toxicity involves transporter-mediated mechanisms. Here, we investigated the effect of RES on MTX-induced nephrotoxicity. Rats were administered RES (10 mg/kg/day) for 8 days, with or without a single MTX dose (20 mg/kg i.p.) at day 4 of the experiment. MTX induced nephrotoxicity evident by significantly increase in serum blood urea nitrogen and creatinine compared to control, as well as distortion of kidney microscopic structure. MTX also significantly increased renal nitric oxide level, with induction of inducible nitric oxide synthase expression. MTX also significantly up-regulated fas ligand and caspase 3. Administering RES prior to MTX significantly improved kidney function and microscopic picture, as well as significantly decreased nitrosative and apoptotic markers compared to MTX alone. RES, but not MTX, caused significant increase in expression of breast cancer resistance protein (BCRP), an apical efflux renal transporter that participates in urinary elimination of both MTX and RES. Interestingly, concomitant MTX and RES caused further up-regulation of renal Bcrp compared to RES alone. Using Human BCRP ATPase assay, both RES and MTX exhibited dose-dependent increase in ATPase activity, with Km values of 0.52 ± 0.03 and 30.9 ± 4.2 µM, respectively. Furthermore, combined RES and MTX caused ATPase activity which was significantly less than maximum ATPase activity attained by the positive control; sulfasalazine (12.5 µM). In conclusion, RES exerted nephro-protection against MTX-induced toxicity through anti-nitrosative and anti-apoptotic effects, as well as via up-regulation of renal Bcrp.

Keywords: methotrexate, resveratrol, nephrotoxicity, breast cancer resistance protein

Procedia PDF Downloads 294
2997 Development of Zinc Oxide Coated Carbon Nanoparticles from Pineapples Leaves Using SOL Gel Method for Optimal Adsorption of Copper ion and Reuse in Latent Fingerprint

Authors: Bienvenu Gael Fouda Mbanga, Zikhona Tywabi-Ngeva, Kriveshini Pillay

Abstract:

This work highlighted a new method for preparing Nitrogen carbon nanoparticles fused on zinc oxide nanoparticle nanocomposite (N-CNPs/ZnONPsNC) to remove copper ions (Cu²+) from wastewater by sol-gel method and applying the metal-loaded adsorbent in latent fingerprint application. The N-CNPs/ZnONPsNC showed to be an effective sorbent for optimum Cu²+ sorption at pH 8 and 0.05 g dose. The Langmuir isotherm was found to best fit the process, with a maximum adsorption capacity of 285.71 mg/g, which was higher than most values found in other research for Cu²+ removal. Adsorption was spontaneous and endothermic at 25oC. In addition, the Cu²+-N-CNPs/ZnONPsNC was found to be sensitive and selective for latent fingerprint (LFP) recognition on a range of porous surfaces. As a result, in forensic research, it is an effective distinguishing chemical for latent fingerprint detection.

Keywords: latent fingerprint, nanocomposite, adsorption, copper ions, metal loaded adsorption, adsorbent

Procedia PDF Downloads 83