Search results for: functional composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4854

Search results for: functional composite

3534 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 408
3533 Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: Chromium(III) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 506
3532 Identification and Force Control of a Two Chambers Pneumatic Soft Actuator

Authors: Najib K. Dankadai, Ahmad 'Athif Mohd Faudzi, Khairuddin Osman, Muhammad Rusydi Muhammad Razif, IIi Najaa Aimi Mohd Nordin

Abstract:

Researches in soft actuators are now growing rapidly because of their adequacy to be applied in sectors like medical, agriculture, biological and welfare. This paper presents system identification (SI) and control of the force generated by a two chambers pneumatic soft actuator (PSA). A force mathematical model for the actuator was identified experimentally using data acquisition card and MATLAB SI toolbox. Two control techniques; a predictive functional control (PFC) and conventional proportional integral and derivative (PID) schemes are proposed and compared based on the identified model for the soft actuator flexible mechanism. Results of this study showed that both of the proposed controllers ensure accurate tracking when the closed loop system was tested with the step, sinusoidal and multi step reference input through MATLAB simulation although the PFC provides a better response than the PID.

Keywords: predictive functional control (PFC), proportional integral and derivative (PID), soft actuator, system identification

Procedia PDF Downloads 325
3531 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 142
3530 Removal of Per- and Polyfluoroalkyl Substances (PFASs) Contaminants from the Aqueous Phase Using Chitosan Beads

Authors: Rahim Shahrokhi, Junboum Park

Abstract:

Per- and Polyfluoroalkyl Substances (PFASs) are environmentally persistent halogenated hydrocarbons that have been widely used in many industrial and commercial applications. Recently, contaminating the soil and groundwater due to the ubiquity of PFAS in environments has raised great concern. Adsorption technology is one of the most promising methods for PFAS removal. Chitosan is a biopolymer substance with abundant amine and hydroxyl functional groups, which render it a good adsorbent. This study has tried to enhance the adsorption capacity of chitosan by grafting more amine functional groups on its surface for the removal of two long (PFOA and PFOS) and two short-chain (PFBA, PFBS) PFAS substances from the aqueous phase. A series of batch adsorption tests have been performed to evaluate the adsorption capacity of the used sorbent. Also, the sorbent was analyzed by SEM, FT-IR, zeta potential, and XRD tests. The results demonstrated that both chitosan beads have good potential for adsorbing short and long-chain PFAS from the aqueous phase.

Keywords: PFAS, chitosan beads, adsorption, grafted chitosan

Procedia PDF Downloads 64
3529 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 226
3528 Collaboration between Dietician and Occupational Therapist, Promotes Independent Functional Eating in Tube Weaning Process of Mechanical Ventilated Patients

Authors: Inbal Zuriely, Yonit Weiss, Hilla Zaharoni, Hadas Lewkowicz, Tatiana Vander, Tarif Bader

Abstract:

early active movement, along with adjusting optimal nutrition, prevents aggravation of muscle degeneracy and functional decline. Eating is a basic activity of daily life, which reflects the patient's independence. When eating and feeding are experienced successfully, they lead to a sense of pleasure and satisfaction. However, when they are experienced as a difficulty, they might evoke feelings of helplessness and frustration. This stresses the essential process of gradual weaning off the enteral feeding tube. the work describes the collaboration of a dietitian, determining the nutritional needs of patients undergoing enteral tube weaning as part of the rehabilitation process, with the suited treatment of an occupational therapist. Occupational therapy intervention regarding eating capabilities focuses on improving the required motor and cognitive components, along with environmental adjustments and aids, imparting eating strategies and training to patients and their families. The project was conducted in the long-term, ventilated patients’ department at the Herzfeld Rehabilitation Geriatric Medical Center on patients undergoing enteral tube weaning with the staff’s assistance. Establishing continuous collaboration between the dietician and the occupational therapist, starting from the beginning of the feeding-tube weaning process: 1.The dietician updates the occupational therapist about the start of the process and the approved diet. 2.The occupational therapist performs cognitive, motor, and functional assessments and treatments regarding the patient’s eating capabilities and recommends the required adjustments for independent eating according to the FIM (Functional Independence Measure) scale. 3.The occupational therapist closely follows up on the patient’s degree of independence in eating and provides a repeated update to the dietician. 4.The dietician accordingly guides the ward staff on whether and how to feed the patient or allow independent eating. The project aimed to promote patients toward independent feeding, which leads to a sense of empowerment, enjoyment of the eating experience, and progress of functional ability, along with performing active movements that will motivate mobilization. From the beginning of 2022, 26 patients participated in the project. 79% of all patients who started the weaning process from tube feeding achieved different levels of independence in feeding (independence levels ranged from supervision (FIM-5) to complete independence (FIM-7). The integration of occupational therapy and dietary treatment is based on a patient-centered approach while considering the patient’s personal needs, preferences, and goals. This interdisciplinary partnership is essential for meeting the complex needs of prolonged mechanically ventilated patients and promotes independent functioning and quality of life.

Keywords: dietary, mechanical ventilation, occupational therapy, tube feeding weaning

Procedia PDF Downloads 78
3527 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training

Procedia PDF Downloads 90
3526 Parallels between Training Parameters of High-Performance Athletes Determining the Long-Term Adaptation of the Body in Various Sports: Case Study on Different Types of Training and Their Gender Conditioning

Authors: Gheorghe Braniste

Abstract:

Gender gap has always been in dispute when comparing records and has been a major factor influencing best performances in various sports. Consequently, our study registers the evolution of the difference between men's and women’s best performances within either cyclic or acyclic sports, considering the fact that the training sessions of high performance athletes prove both similarities and differences in long-term adaptation of their body to stress and effort in breaking limits and records. Firstly, for a correct interpretation of the data and tables included in this paper, we must point out that the intense muscular activity has a considerable impact on the structural organization of the organs and systems of the performer's body through the mechanism of motor-visceral reflexes, forming a high working capacity suitable for intense muscular activity. The opportunity to obtaine high sports results during the official competitions is due, on the one hand, to the genetic characteristics of the athlete's body, and on the other hand, to the fact that playing professional sports leaves its mark on the vital morphological and functional parameters. The aim of our research is to study the landmarking differences between male and female athletes and their physical development, together with their growing capacity to stand up to the functional training during the competitive period of their annual training cycle. In order to evaluate the physical development of the athletes, the data of the anthropometric screenings obtained at the Olympic Training Center of the selected teams of the Republic of Moldova were interpreted and rated. During the study of physical development in terms of body height and weight, vital capacity, thoracic excursion, maximum force (Fmax), dynamometry of the hand and back, a further evaluation of the physical development indices that allow an evaluation of complex physical development were registered. The interdependence of the results obtained in performance sports with the morphological and functional particularities of the athletes' body is firmly determined and cannot be disputed. Nevertheless, registered data proved that with the increase of the training capacity, the morphological and functional abilities of the female body increase and, in some respects, approach and even slightly surpass the men in certain sports.

Keywords: physical development, indices, parameters, active body weight, morphological maturity, physical performance

Procedia PDF Downloads 120
3525 Effect of Functional Group Position in Co-Formers and Solvent on Cocrystal Polymorphism/Stoichiomorphism: A Case Study

Authors: Luguang Qi, Chuang Xie

Abstract:

In recent years, there has been an increase in the number of reports on cocrystal polymorphism and stoichiomorphism. However, the research on the factors that influence these phenomena is limited. Herein, picolinamide (PAM), nicotinamide (NAM), and isonicotinamide (INA) were selected as co-formers to form multicomponent solids with 4-chloro-3-sulfamoylbenzoic acid (CSBA). Six new cocrystal forms of CSBA were discovered, and their crystal structures were determined. It was found that PAM and NAM can only form one cocrystal with CSBA, while INA can form up to four cocrystals, including both cocrystal polymorphism and stoichiomorphism. Molecular electrostatic potential analysis and crystal structure analysis showed that the functional group position of PAM limited the diversity of cocrystal synthons, while the lattice energy limited the diversity of cocrystal synthons when NAM acted as a co-former. Only INA was not subject to these restrictions when forming cocrystals. Finally, the influence of solvents on cocrystals was illustrated by determining the ternary phase diagrams. The mechanism of two similar solvents, ethyl acetate, and acetone, controlling the crystallization of cocrystal polymorphism was analyzed by molecular simulations.

Keywords: cocrystal polymorphism, cocrystal stoichiomorphism, phase diagram, molecular simulation

Procedia PDF Downloads 74
3524 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 145
3523 Calculation of Electronic Structures of Nickel in Interaction with Hydrogen by Density Functional Theoretical (DFT) Method

Authors: Choukri Lekbir, Mira Mokhtari

Abstract:

Hydrogen-Materials interaction and mechanisms can be modeled at nano scale by quantum methods. In this work, the effect of hydrogen on the electronic properties of a cluster material model «nickel» has been studied by using of density functional theoretical (DFT) method. Two types of clusters are optimized: Nickel and hydrogen-nickel system. In the case of nickel clusters (n = 1-6) without presence of hydrogen, three types of electronic structures (neutral, cationic and anionic), have been optimized according to three basis sets calculations (B3LYP/LANL2DZ, PW91PW91/DGDZVP2, PBE/DGDZVP2). The comparison of binding energies and bond lengths of the three structures of nickel clusters (neutral, cationic and anionic) obtained by those basis sets, shows that the results of neutral and anionic nickel clusters are in good agreement with the experimental results. In the case of neutral and anionic nickel clusters, comparing energies and bond lengths obtained by the three bases, shows that the basis set PBE/DGDZVP2 is most suitable to experimental results. In the case of anionic nickel clusters (n = 1-6) with presence of hydrogen, the optimization of the hydrogen-nickel (anionic) structures by using of the basis set PBE/DGDZVP2, shows that the binding energies and bond lengths increase compared to those obtained in the case of anionic nickel clusters without the presence of hydrogen, that reveals the armor effect exerted by hydrogen on the electronic structure of nickel, which due to the storing of hydrogen energy within nickel clusters structures. The comparison between the bond lengths for both clusters shows the expansion effect of clusters geometry which due to hydrogen presence.

Keywords: binding energies, bond lengths, density functional theoretical, geometry optimization, hydrogen energy, nickel cluster

Procedia PDF Downloads 422
3522 Action Potential of Lateral Geniculate Neurons at Low Threshold Currents: Simulation Study

Authors: Faris Tarlochan, Siva Mahesh Tangutooru

Abstract:

Lateral Geniculate Nucleus (LGN) is the relay center in the visual pathway as it receives most of the input information from retinal ganglion cells (RGC) and sends to visual cortex. Low threshold calcium currents (IT) at the membrane are the unique indicator to characterize this firing functionality of the LGN neurons gained by the RGC input. According to the LGN functional requirements such as functional mapping of RGC to LGN, the morphologies of the LGN neurons were developed. During the neurological disorders like glaucoma, the mapping between RGC and LGN is disconnected and hence stimulating LGN electrically using deep brain electrodes can restore the functionalities of LGN. A computational model was developed for simulating the LGN neurons with three predominant morphologies, each representing different functional mapping of RGC to LGN. The firings of action potentials at LGN neuron due to IT were characterized by varying the stimulation parameters, morphological parameters and orientation. A wide range of stimulation parameters (stimulus amplitude, duration and frequency) represents the various strengths of the electrical stimulation with different morphological parameters (soma size, dendrites size and structure). The orientation (0-1800) of LGN neuron with respect to the stimulating electrode represents the angle at which the extracellular deep brain stimulation towards LGN neuron is performed. A reduced dendrite structure was used in the model using Bush–Sejnowski algorithm to decrease the computational time while conserving its input resistance and total surface area. The major finding is that an input potential of 0.4 V is required to produce the action potential in the LGN neuron which is placed at 100 µm distance from the electrode. From this study, it can be concluded that the neuroprostheses under design would need to consider the capability of inducing at least 0.4V to produce action potentials in LGN.

Keywords: Lateral Geniculate Nucleus, visual cortex, finite element, glaucoma, neuroprostheses

Procedia PDF Downloads 279
3521 Effect of Chromium Behavior on Mechanical and Electrical Properties Of P/M Copper-Chromium Alloy Dispersed with VGCF

Authors: Hisashi Imai, Kuan-Yu Chen, Katsuyoshi Kondoh, Hung-Yin Tsai, Junko Umeda

Abstract:

Microstructural and electrical properties of copper-chromium alloy (Cu-Cr) dispersed with vapor-grown carbon fiber (VGCF) prepared by powder metallurgy (P/M) process have been investigated. Cu-0.7 mass% Cr pre-alloyed powder (Cu-Cr) made by water atomization process was used as raw materials, which contained solid solute Cr elements in Cu matrix. The alloy powder coated with un-bundled VGCF by using oil coating process was consolidated at 1223 K in vacuum by spark plasma sintering, and then extruded at 1073 K. The extruded Cu-Cr alloy (monolithic alloy) had 209.3 MPa YS and 80.4 IACS% conductivity. The extruded Cu-Cr with 0.1 mass% VGCF composites revealed a small decrease of YS compared to the monolithic Cu-Cr alloy. On the other hand, the composite had a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Cr with 0.1 mass% VGCF composite sintered for 5 h showed 182.7 MPa YS and 89.7 IACS% conductivity. In the case of Cu-Cr with VGCFs composites, the Cr concentration was observed around VGCF by SEM-EDS analysis, where Cr23C6 compounds were detected by TEM observation. The amount of Cr solid solution in the matrix of the Cu-Cr composites alloy was about 50% compared to the monolithic Cu-Cr sintered alloy, and resulted in the remarkable increment of the electrical conductivity.

Keywords: powder metallurgy Cu-Cr alloy powder, vapor-grown carbon fiber, electrical conductivity

Procedia PDF Downloads 493
3520 Substitution of Phosphate with Liquid Smoke as a Binder on the Quality of Chicken Nugget

Authors: E. Abustam, M. Yusuf, M. I. Said

Abstract:

One of functional properties of the meat is decrease of water holding capacity (WHC) during rigor mortis. At the time of pre-rigor, WHC is higher than post-rigor. The decline of WHC has implication to the other functional properties such as decreased cooking lost and yields resulting in lower elasticity and compactness of processed meat product. In many cases, the addition of phosphate in the meat will increase the functional properties of the meat such as WHC. Furthermore, liquid smoke has also been known in increasing the WHC of fresh meat. For food safety reasons, liquid smoke in the present study was used as a substitute to phosphate in production of chicken nuggets. This study aimed to know the effect of substitution of phosphate with liquid smoke on the quality of nuggets made from post-rigor chicken thigh and breast. The study was arranged using completely randomized design of factorial pattern 2x3 with three replications. Factor 1 was thigh and breast parts of the chicken, and factor 2 was different levels of liquid smoke in substitution to phosphate (0%, 50%, and 100%). The thigh and breast post-rigor broiler aged 40 days were used as the main raw materials in making nuggets. Auxiliary materials instead of meat were phosphate, liquid smoke at concentration of 10%, tapioca flour, salt, eggs and ice. Variables measured were flexibility, shear force value, cooking loss, elasticity level, and preferences. The results of this study showed that the substitution of phosphate with 100% liquid smoke resulting high quality nuggets. Likewise, the breast part of the meat showed higher quality nuggets than thigh part. This is indicated by high elasticity, low shear force value, low cooking loss, and a high level of preference of the nuggets. It can be concluded that liquid smoke can be used as a binder in making nuggets of chicken post-rigor.

Keywords: liquid smoke, nugget quality, phosphate, post-rigor

Procedia PDF Downloads 241
3519 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites

Authors: Vimanyu Chadha, Ranganath M. Singari

Abstract:

Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.

Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method

Procedia PDF Downloads 258
3518 Evaluation of the UV Stability of Unidirectional Crossply Ultrahigh-Molecular-Weight-Polyethylene Composite

Authors: Jonmichael Weaver, David Miller

Abstract:

Dyneema is an ultra-high molecular weight polyethylene (UHMWPE) fiber created by DSM. This fiber has many applications due to the high tensile strength, low weight, and inability to absorb water. DSM manufactures a non-woven unidirectional cross-ply [0,90]2 lamina, using the Dyneema fiber. Using this lamina system, various thickness panels are created for a 40% lighter weight alternative to Kevlar for the same ballistics protection. Environmental effects on the ply/laminate system alter the material properties, resulting in diminished ultimate performance. Understanding the specific environmental parameters and characterizing the resulting material property degradation is essential for determining the safety and reliability of Dyneema in service. Two laminas were contrasted for their response to accelerated aging by UV, humidity, and temperature cycling. Both lamina contain the same fiber, SK-99, but differ in matrix composition, Dyneema HB-210 employs a polyurethane (PUR) based matrix, and HB-212 contains a rubber-based matrix. Each system was inspected using a scanning electron microscope (SEM) and evaluated by dynamic mechanical analysis (DMA) to characterize the material property changes alongside the corresponding composite damage and matrix failure mode over the aging parameters. Overall, resulting in the HB-212 degrading faster compared with the HB-210.

Keywords: dyneema, accelerated aging, polymers, ballistics protection, armor, DSM, kevlar, composites

Procedia PDF Downloads 149
3517 Efficiency of Virtual Reality Exercises with Nintendo Wii System on Balance and Independence in Motor Functions in Hemiparetic Patients: A Randomized Controlled Study

Authors: Ayça Utkan Karasu, Elif Balevi Batur, Gülçin Kaymak Karataş

Abstract:

The aim of this study was to examine the efficiency of virtual reality exercises with Nintendo Wii system on balance and independence in motor functions. This randomized controlled assessor-blinded study included 23 stroke inpatients with hemiparesis all within 12 months poststroke. Patients were randomly assigned to control group (n=11) or experimental group (n=12) via block randomization method. Control group participated in a conventional balance rehabilitation programme. Study group received a four-week balance training programme five times per week with a session duration of 20 minutes in addition to the conventional balance rehabilitation programme. Balance was assessed by the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index. Also, displacement of centre of pressure sway and centre of pressure displacement during weight shifting was calculated by Emed-SX system. Independence in motor functions was assessed by The Functional Independence Measure (FIM) ambulation and FIM transfer subscales. The outcome measures were evaluated at baseline, 4th week (posttreatment), 8th week (follow-up). Repeated measures analysis of variance was performed for each of the outcome measure. Significant group time interaction was detected in the scores of the Berg’s balance scale, the functional reach test, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed anteroposterior center of pressure sway distance, center of pressure displacement during weight shifting to effected side, unaffected side and total centre of pressure displacement during weight shifting (p < 0.05). Time effect was statistically significant in the scores of the Berg’s balance scale, the functional reach test, the timed up and go test, the postural assessment scale for stroke, the static balance index, eyes open anteroposterior and mediolateral center of pressure sway distance, eyes closed mediolateral center of pressure sway distance, the center of pressure displacement during weight shifting to effected side, the functional independence measure ambulation and transfer scores (p < 0.05). Virtual reality exercises with Nintendo Wii system combined with a conventional balance rehabilitation programme enhances balance performance and independence in motor functions in stroke patients.

Keywords: balance, hemiplegia, stroke rehabilitation, virtual reality

Procedia PDF Downloads 221
3516 Comparative Sustainability Performance Analysis of Australian Companies Using Composite Measures

Authors: Ramona Zharfpeykan, Paul Rouse

Abstract:

Organizational sustainability is important to both organizations themselves and their stakeholders. Despite its increasing popularity and increasing numbers of organizations reporting sustainability, research on evaluating and comparing the sustainability performance of companies is limited. The aim of this study was to develop models to measure sustainability performance for both cross-sectional and longitudinal comparisons across companies in the same or different industries. A secondary aim was to see if sustainability reports can be used to evaluate sustainability performance. The study used both a content analysis of Australian sustainability reports in mining and metals and financial services for 2011-2014 and a survey of Australian and New Zealand organizations. Two methods ranging from a composite index using uniform weights to data envelopment analysis (DEA) were employed to analyze the data and develop the models. The results show strong statistically significant relationships between the developed models, which suggests that each model provides a consistent, systematic and reasonably robust analysis. The results of the models show that for both industries, companies that had sustainability scores above or below the industry average stayed almost the same during the study period. These indices and models can be used by companies to evaluate their sustainability performance and compare it with previous years, or with other companies in the same or different industries. These methods can also be used by various stakeholders and sustainability ranking companies such as the Global Reporting Initiative (GRI).

Keywords: data envelopment analysis, sustainability, sustainability performance measurement system, sustainability performance index, global reporting initiative

Procedia PDF Downloads 181
3515 Evidence-Based in Telemonitoring of Users with Pacemakers at Five Years after Implant: The Poniente Study

Authors: Antonio Lopez-Villegas, Daniel Catalan-Matamoros, Remedios Lopez-Liria

Abstract:

Objectives: The purpose of this study was to analyze clinical data, health-related quality of life (HRQoL) and functional capacity of patients using a telemonitoring follow-up system (TM) compared to patients followed-up through standard outpatient visits (HM) 5 years after the implantation of a pacemaker. Methods: This is a controlled, non-randomised, nonblinded clinical trial, with data collection carried out at 5 years after the pacemakers implant. The study was developed at Hospital de Poniente (Almeria, Spain), between October 2012 and November 2013. The same clinical outcomes were analyzed in both follow-up groups. Health-Related Quality of Life and Functional Capacity was assessed through EuroQol-5D (EQ-5D) questionnaire and Duke Activity Status Index (DASI) respectively. Sociodemographic characteristics and clinical data were also analyzed. Results: 5 years after pacemaker implant, 55 of 82 initial patients finished the study. Users with pacemakers were assigned to either a conventional follow-up group at hospital (HM=34, 50 initials) or a telemonitoring system group (TM=21, 32 initials). No significant differences were found between both groups according to sociodemographic characteristics, clinical data, Health-Related Quality of Life and Functional Capacity according to medical record and EQ5D and DASI questionnaires. In addition, conventional follow-up visits to hospital were reduced in 44,84% (p < 0,001) in the telemonitoring group in relation to hospital monitoring group. Conclusion: Results obtained in this study suggest that the telemonitoring of users with pacemakers is an equivalent option to conventional follow-up at hospital, in terms of Health-Related Quality of Life and Functional Capacity. Furthermore, it allows for the early detection of cardiovascular and pacemakers-related problem events and significantly reduces the number of in-hospital visits. Trial registration: ClinicalTrials.gov NCT02234245. The PONIENTE study has been funded by the General Secretariat for Research, Development and Innovation, Regional Government of Andalusia (Spain), project reference number PI/0256/2017, under the research call 'Development and Innovation Projects in the Field of Biomedicine and Health Sciences', 2017.

Keywords: cardiovascular diseases, health-related quality of life, pacemakers follow-up, remote monitoring, telemedicine

Procedia PDF Downloads 126
3514 Functional Snacks Bars: A Healthy Alternative to a Poor Diet Quality

Authors: Daniela Istrati, Camelia Vizireanu, Camelia Grozavu, Rodica Mihaela Dinica

Abstract:

In last years, eating habits have changed, and snacking has become more common. Snacking habits, including eating whole fruit, vegetables and crackers, were found to contribute to better overall diet quality, while consuming snacks such as cookies, pastries, sweets, milk desserts and soft drinks was associated with poorer diet quality. The nutritional quality of the snack is very important and choosing nutritious foods as snacks can be beneficial for our health. For this reason, the development of functional snacks bars represents a necessity for this niche market. The aim of this work was to develop some formulations of energizing snack bars with high dietary fibers and antioxidant activity. Snack bars contain both fruits with antioxidant activity and components (cereals and seeds) rich in carbohydrates and polyunsaturated fats that provide energy during sports activities, physical and mental stress. Three types of samples were prepared and stored in refrigerated conditions at 40°C for 30 days. The first sample (S1) contains wheat germs, raw pumpkin seeds, toasted oat flakes, flaxseeds flour, cinnamon honey, raw sunflower seeds, sea buckthorn, amaranth flour, cinnamon and olive oil. The second sample (S2) has the same composition as the first, less flour and cinnamon flour and the honey used was ginger, honey. The third sample (S3) is like the first less amaranth flour and the honey used was buckthorn sea honey. The physicochemical, antioxidant activity, polyphenolic and flavonoid content and sensorial characteristics of the samples were investigated. Results showed that snacks bars had important level of extracted phenolics, flavonoids, fibers, proteins, carbohydrates and fats. Therefore, snack bars may be a convenient functional food, offering an important source of flavonoids and polyphenols, a healthy alternative to a poor diet quality, with balanced nutritional and sensory characteristics that recommend it in the diet of all consumers concerned with maintaining health. Acknowledgment: This study has been founded by the Francophone University Agency, Project Réseau régional dans le domaine de la santé, la nutrition et la sécurité alimentaire (SaIN), No. at Dunarea de Jos University of Galati 21899/ 06.09.2017

Keywords: antioxidant activity, functional food, sea buckthorn, snack bars

Procedia PDF Downloads 171
3513 Semi-Automated Tracking of Vibrissal Movements in Free-Moving Rodents Captured by High-Speed Videos

Authors: Hyun June Kim, Tailong Shi, Seden Akdagli, Sam Most, Yuling Yan

Abstract:

Quantitative analysis of mouse whisker movement can be used to study functional recovery and regeneration of facial nerve after an injury. However, it is challenging to accurately track mouse whisker movements, and most whisker tracking methods require manual intervention, e.g. fixing the head of the mouse during a study. Here we describe a semi-automated image processing method that is applied to high-speed video recordings of free-moving mice to track whisker movements. We first track the head movement of a mouse by delineating the lower head contour frame-by-frame to locate and determine the orientation of its head. Then, a region of interest is identified for each frame, with subsequent application of the Hough transform to track individual whisker movements on each side of the head. Our approach is used to examine the functional recovery of damaged facial nerves in mice over a course of 21 days.

Keywords: mystacial macrovibrissae, whisker tracking, head tracking, facial nerve recovery

Procedia PDF Downloads 590
3512 Effect of Nano/Micro Alumina Matrix on Alumina-Cubic Boron Nitride Composites Consolidated by Spark Plasma Sintering

Authors: A. S. Hakeem, B. Ahmed, M. Ehsan, A. Ibrahim, H. M. Irshad, T. Laoui

Abstract:

Alumina (Al2O3) - cubic boron nitride (cBN) ceramic composites were sintered by spark plasma sintering (SPS) using α-Al2O3 particle sizes; 150 µm, 150 nm and cBN particle size of 42 µm. Alumina-cBN composites containing 10, 20 and 30wt% cBN with and without Ni coated were sintering at an elevated temperature of 1400°C at a constant uniaxial pressure of 50 MPa. The effect of matrix particle size, cBN and Ni content on mechanical properties and thermal properties, i.e., thermal conductivity, diffusivity, expansion, densification, phase transformation, microstructure, hardness and toughness of the Al2O3-cBN/(Ni) composites under specific sintering conditions were investigated. The highest relative densification of 150 nm-Al2O3 containing 30wt% cBN (Ni coated) composite was 99% at TSPS = 1400°C. In case of 150 µm- Al2O3 compositions, the phase transformation of cBN to hBN were observed, and the relative densification decreased. Thermal conductivity depicts maximum value in case of 150 nm- Al2O3-30wt% cBN-Ni composition. The Vickers hardness of this composition at TSPS = 1400°C also showed the highest value of 29 GPa.

Keywords: alumina composite, cubic boron nitride, mechanical properties, phase transformation, Spark plasma sintering

Procedia PDF Downloads 342
3511 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 268
3510 Numerical Simulation of Encased Composite Column Bases Subjected to Cyclic Loading

Authors: Eman Ismail, Adnan Masri

Abstract:

Energy dissipation in ductile moment frames occurs mainly through plastic hinge rotations in its members (beams and columns). Generally, plastic hinge locations are pre-determined and limited to the beam ends, where columns are designed to remain elastic in order to avoid premature instability (aka story mechanisms) with the exception of column bases, where a base is 'fixed' in order to provide higher stiffness and stability and to form a plastic hinge. Plastic hinging at steel column bases in ductile moment frames using conventional base connection details is accompanied by several complications (thicker and heavily stiffened connections, larger embedment depths, thicker foundation to accommodate anchor rod embedment, etc.). An encased composite base connection is proposed where a segment of the column beginning at the base up to a certain point along its height is encased in reinforced concrete with headed shear studs welded to the column flanges used to connect the column to the concrete encasement. When the connection is flexurally loaded, stresses are transferred to a reinforced concrete encasement through the headed shear studs, and thereby transferred to the foundation by reinforced concrete mechanics, and axial column forces are transferred through the base-plate assembly. Horizontal base reactions are expected to be transferred by the direct bearing of the outer and inner faces of the flanges; however, investigation of this mechanism is not within the scope of this research. The inelastic and cyclic behavior of the connection will be investigated where it will be subjected to reversed cyclic loading, and rotational ductility will be observed in cases of yielding mechanisms where yielding occurs as flexural yielding in the beam-column, shear yielding in headed studs, and flexural yielding of the reinforced concrete encasement. The findings of this research show that the connection is capable of achieving satisfactory levels of ductility in certain conditions given proper detailing and proportioning of elements.

Keywords: seismic design, plastic mechanisms steel structure, moment frame, composite construction

Procedia PDF Downloads 127
3509 'Ebru', the Art of Marbling in Fashion Design between the Functional and Beauty Purpose of the Designs

Authors: Nessreen Elmelegy

Abstract:

Fashion is all about being fun, stylish and looking beautiful in your own way, whether it is with clothes, accessories, hairstyles, and even furniture. There are never ending ways and sources when wanting to seek inspiration. Fashion designers can get inspired by anything and everything that encompasses them in their everyday lives. When getting inspired, there are no boundaries or limits to when it comes to exploring one's originality and fashion sense. All designers focus on being unique, original and trendy when taking inspiration and transforming that into fashionable and wearable garments. Ebru is a Turkish art. The actual word 'Ebru' in Turkish means marbling. Marbling is the art which help designers to create innovative and rich and colorful patterns in fashion designs. By using this technique we will have countless unique designs in fashion because each design can never be repeated. It is a traditional Turkish art which is designated as one of the Intangible Cultural Heritage of Humanity by UNESCO in 2014. Ebru art has spread from the East to the West by way of Silk Road and other trade routes. So this research is focused on studying the history and the techniques of Ebru art in fashion as an amazing trend of fashion, which is still stranger to the Egyptian Fashion industry; also how we can benefit from the incorporation of Ebru art as into the garments designs while still maintaining the functional and beauty purpose of the design.

Keywords: Ebru Art, Ebru techniques, fashion inspiration, fashion trends

Procedia PDF Downloads 311
3508 Static Characterization of a Bio-Based Sandwich in a Humid Environment

Authors: Zeineb Kesentini, Abderrahim El Mahi, Jean Luc Rebiere, Rachid El Guerjouma, Moez Beyaoui, Mohamed Haddar

Abstract:

Industries’ attention has been drawn to green and sustainable materials as a result of the present energy deficit and environmental damage. Sandwiches formed of auxetic structures made up of periodic cells are also being investigated by industry. Several tests have emphasized the exceptional properties of these materials. In this study, the sandwich's core is a one-cell auxetic core. Among plant fibers, flax fibers are chosen because of their good mechanical properties comparable to those of glass fibers. Poly (lactic acid) (PLA), as a green material, is available from starch, and its production process requires fewer fossil resources than petroleum-based plastics. A polylactic acid (PLA) reinforced with flax fiber filament was employed in this study. The manufacturing process used to manufacture the test specimens is 3D printing. The major drawback of a 100% bio-based material is its low resistance to moisture absorption. In this study, a sandwich based on PLA / flax with an auxetic core is characterized statically for different periods of immersion in water. Bending tests are carried out on the composite sandwich for three immersion time. Results are compared to those of non immersed specimens. It is found that non aged sandwich has the ultimate bending stiffness.

Keywords: auxetic, bending tests, biobased composite, sandwich structure, 3D printing

Procedia PDF Downloads 153
3507 Mechanical Testing of Composite Materials for Monocoque Design in Formula Student Car

Authors: Erik Vassøy Olsen, Hirpa G. Lemu

Abstract:

Inspired by the Formula-1 competition, IMechE (Institute of Mechanical Engineers) and Formula SAE (Society of Mechanical Engineers) organize annual competitions for University and College students worldwide to compete with a single-seat race car they have designed and built. The design of the chassis or the frame is a key component of the competition because the weight and stiffness properties are directly related with the performance of the car and the safety of the driver. In addition, a reduced weight of the chassis has a direct influence on the design of other components in the car. Among others, it improves the power to weight ratio and the aerodynamic performance. As the power output of the engine or the battery installed in the car is limited to 80 kW, increasing the power to weight ratio demands reduction of the weight of the chassis, which represents the major part of the weight of the car. In order to reduce the weight of the car, ION Racing team from the University of Stavanger, Norway, opted for a monocoque design. To ensure fulfilment of the above-mentioned requirements of the chassis, the monocoque design should provide sufficient torsional stiffness and absorb the impact energy in case of a possible collision. The study reported in this article is based on the requirements for Formula Student competition. As part of this study, diverse mechanical tests were conducted to determine the mechanical properties and performances of the monocoque design. Upon a comprehensive theoretical study of the mechanical properties of sandwich composite materials and the requirements of monocoque design in the competition rules, diverse tests were conducted including 3-point bending test, perimeter shear test and test for absorbed energy. The test panels were homemade and prepared with an equivalent size of the side impact zone of the monocoque, i.e. 275 mm x 500 mm so that the obtained results from the tests can be representative. Different layups of the test panels with identical core material and the same number of layers of carbon fibre were tested and compared. Influence of the core material thickness was also studied. Furthermore, analytical calculations and numerical analysis were conducted to check compliance to the stated rules for Structural Equivalency with steel grade SAE/AISI 1010. The test results were also compared with calculated results with respect to bending and torsional stiffness, energy absorption, buckling, etc. The obtained results demonstrate that the material composition and strength of the composite material selected for the monocoque design has equivalent structural properties as a welded frame and thus comply with the competition requirements. The developed analytical calculation algorithms and relations will be useful for future monocoque designs with different lay-ups and compositions.

Keywords: composite material, Formula student, ION racing, monocoque design, structural equivalence

Procedia PDF Downloads 503
3506 Melt–Electrospun Polyprophylene Fabrics Functionalized with TiO2 Nanoparticles for Effective Photocatalytic Decolorization

Authors: Z. Karahaliloğlu, C. Hacker, M. Demirbilek, G. Seide, E. B. Denkbaş, T. Gries

Abstract:

Currently, textile industry has played an important role in world’s economy, especially in developing countries. Dyes and pigments used in textile industry are significant pollutants. Most of theirs are azo dyes that have chromophore (-N=N-) in their structure. There are many methods for removal of the dyes from wastewater such as chemical coagulation, flocculation, precipitation and ozonation. But these methods have numerous disadvantages and alternative methods are needed for wastewater decolorization. Titanium-mediated photodegradation has been used generally due to non-toxic, insoluble, inexpensive, and highly reactive properties of titanium dioxide semiconductor (TiO2). Melt electrospinning is an attractive manufacturing process for thin fiber production through electrospinning from PP (Polyprophylene). PP fibers have been widely used in the filtration due to theirs unique properties such as hydrophobicity, good mechanical strength, chemical resistance and low-cost production. In this study, we aimed to investigate the effect of titanium nanoparticle localization and amine modification on the dye degradation. The applicability of the prepared chemical activated composite and pristine fabrics for a novel treatment of dyeing wastewater were evaluated.In this study, a photocatalyzer material was prepared from nTi (titanium dioxide nanoparticles) and PP by a melt-electrospinning technique. The electrospinning parameters of pristine PP and PP/nTi nanocomposite fabrics were optimized. Before functionalization with nTi, the surface of fabrics was activated by a technique using glutaraldehyde (GA) and polyethyleneimine to promote the dye degredation. Pristine PP and PP/nTi nanocomposite melt-electrospun fabrics were characterized using scanning electron microscopy (SEM) and X-Ray Photon Spectroscopy (XPS). Methyl orange (MO) was used as a model compound for the decolorization experiments. Photocatalytic performance of nTi-loaded pristine and nanocomposite melt-electrospun filters was investigated by varying initial dye concentration 10, 20, 40 mg/L). nTi-PP composite fabrics were successfully processed into a uniform, fibrous network of beadless fibers with diameters of 800±0.4 nm. The process parameters were determined as a voltage of 30 kV, a working distance of 5 cm, a temperature of the thermocouple and hotcoil of 260–300 ºC and a flow rate of 0.07 mL/h. SEM results indicated that TiO2 nanoparticles were deposited uniformly on the nanofibers and XPS results confirmed the presence of titanium nanoparticles and generation of amine groups after modification. According to photocatalytic decolarization test results, nTi-loaded GA-treated pristine or nTi-PP nanocomposite fabric filtern have superior properties, especially over 90% decolorization efficiency at GA-treated pristine and nTi-PP composite PP fabrics. In this work, as a photocatalyzer for wastewater treatment, surface functionalized with nTi melt-electrospun fabrics from PP were prepared. Results showed melt-electrospun nTi-loaded GA-tretaed composite or pristine PP fabrics have a great potential for use as a photocatalytic filter to decolorization of wastewater and thus, requires further investigation.

Keywords: titanium oxide nanoparticles, polyprophylene, melt-electrospinning

Procedia PDF Downloads 267
3505 Unlocking the Potential of Phosphatic Wastes: Sustainable Valorization Pathways for Synthesizing Functional Metal-Organic Frameworks and Zeolites

Authors: Ali Mohammed Yimer, Ayalew H. Assen, Youssef Belmabkhout

Abstract:

This study delves into sustainable approaches for valorizing phosphatic wastes, specifically phosphate mining wastes and phosphogypsum, which are byproducts of phosphate industries and pose significant environmental challenges due to their accumulation. We propose a unified strategic synthesis method aimed at converting these wastes into hetero-functional porous materials. Our approach involves isolating the primary components of phosphatic wastes, such as CaO, SiO2 and Al2O3 to fabricate functional porous materials falling into two distinct classes. Firstly, alumina and silica components are extracted or isolated to produce zeolites (including CAN, GIS, SOD, FAU, and LTA), characterized by a Si/Al ratio of less than 5. Secondly, residual calcium is utilized to synthesize calcium-based metal–organic frameworks (Ca-MOFs) employing various organic linkers like Ca-BDC, Ca-BTC and Ca-TCPB (SBMOF-2), thereby providing flexibility in material design. Characterization techniques including XRD, SEM-EDX, FTIR, and TGA-MS affirm successful material assembly, while sorption analyses using N2, CO2, and H2O demonstrate the porosity of the materials. Particularly noteworthy is the water/alcohol separation potential exhibited by the Ca-BTC MOF, owing to its optimal pore aperture size (∼3.4 Å). To enhance replicability and scalability, detailed protocols for each synthesis step and specific conditions for each process are provided, ensuring that the methodology can be easily reproduced and scaled up for industrial applications. This synthetic transformation approach represents a valorization route for converting phosphatic wastes into extended porous structures, promising significant environmental and economic benefits.

Keywords: calcium-based metal-organic frameworks, low-silica zeolites, porous materials, sustainable synthesis, valorization

Procedia PDF Downloads 38