Search results for: fast Fourier transform
2110 Encryption Image via Mutual Singular Value Decomposition
Authors: Adil Al-Rammahi
Abstract:
Image or document encryption is needed through e- government data base. Really in this paper we introduce two matrices images, one is the public, and the second is the secret (original). The analyses of each matrix is achieved using the transformation of singular values decomposition. So each matrix is transformed or analyzed to three matrices say row orthogonal basis, column orthogonal basis, and spectral diagonal basis. Product of the two row basis is calculated. Similarly the product of the two column basis is achieved. Finally we transform or save the files of public, row product and column product. In decryption stage, the original image is deduced by mutual method of the three public files.Keywords: image cryptography, singular values decomposition
Procedia PDF Downloads 4362109 Implementation of Achterbahn-128 for Images Encryption and Decryption
Authors: Aissa Belmeguenai, Khaled Mansouri
Abstract:
In this work, an efficient implementation of Achterbahn-128 for images encryption and decryption was introduced. The implementation for this simulated project is written by MATLAB.7.5. At first two different original images are used for validate the proposed design. Then our developed program was used to transform the original images data into image digits file. Finally, we used our implemented program to encrypt and decrypt images data. Several tests are done for proving the design performance including visual tests and security analysis; we discuss the security analysis of the proposed image encryption scheme including some important ones like key sensitivity analysis, key space analysis, and statistical attacks.Keywords: Achterbahn-128, stream cipher, image encryption, security analysis
Procedia PDF Downloads 5322108 Passive Solar Distiller with Low Cost of Implementation, Operation and Maintenance
Authors: Valentina Alessandra Carvalho do Vale, Elmo Thiago Lins Cöuras Ford, Rudson de Sousa Lima
Abstract:
Around the planet Earth, access to clean water is a problem whose importance has increased due to population growth and its misuse. Thus, projects that seek to transform water sources improper (salty and brackish) in drinking water sources are current issues. However, this transformation generally requires a high cost of implementation, operation and maintenance. In this context, the aim of this work is the development of a passive solar distiller for brackish water, made from recycled and durable materials such as aluminum, cement, glass and PVC basins. The results reveal factors that influence the performance and viability of the expansion project.Keywords: solar distiller, passive distiller, distiller with pyramidal roof, ecologically correct
Procedia PDF Downloads 4142107 Ceiba Speciosa Nanocellulose Obtained from a Sustainable Method as a Potential Reinforcement for Polymeric Composites
Authors: Heloise Sasso Teixeira, Talita Szlapak Franco, Thais Helena Sydenstricker Flores-Sahagun, Milton Vazquez Lepe, Graciela Bolzon Muñiz
Abstract:
Due to the need to reduce the consumption of materials produced from non-renewable sources, the search for new raw materials of natural origin is growing. In this regard, lignocellulosic fibers have great potential. Ceiba sp fibers are found in the fruit of the tree of the same name and have characteristics that differ from other natural fibers. Ceiba fibers are very light, have a high cellulose content, and are hydrophobic due to the presence of waxes on their surface. In this study, Ceiba fiber was used as raw material to obtain cellulose nanofibers (CNF), with the potential to be used in polymeric matrices. Due to the characteristics of this fiber, no chemical pretreatment was necessary before the mechanical defibrilation process in a colloidal mill, obtaining sustainable nanocellulose. The CNFs were characterized by Fourier infrared (FTIR), differential scanning calorimetry (DSC), analysis of the rmogravimetic (TGA), scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopy (XPS).Keywords: cellulose nanofibers, nanocellulose, fibers, Brazilian fIbers, lignocellulosic, characterization
Procedia PDF Downloads 1792106 Detection of Intentional Attacks in Images Based on Watermarking
Authors: Hazem Munawer Al-Otum
Abstract:
In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection
Procedia PDF Downloads 2552105 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 832104 Rice Husk Silica as an Alternative Material for Renewable Energy
Authors: Benedict O. Ayomanor, Cookey Iyen, Ifeoma S. Iyen
Abstract:
Rice hull (RH) biomass product gives feasible silica for exact temperature and period. The minimal fabrication price turns its best feasible produce to metallurgical grade silicon (MG-Si). In this work, to avoid ecological worries extending from CO₂ release to oil leakage on water and land, or nuclear left-over pollution, all finally add to the immense topics of ecological squalor; high purity silicon > 98.5% emerge set from rice hull ash (RHA) by solid-liquid removal. The RHA derived was purified by nitric and hydrochloric acid solutions. Leached RHA sieved, washed in distilled water, and desiccated at 1010ºC for 4h. Extra cleansing was achieved by carefully mixing the SiO₂ ash through Mg dust at a proportion of 0.9g SiO₂ to 0.9g Mg, galvanised at 1010ºC to formula magnesium silicide. The solid produced was categorised by X-ray fluorescence (XRF), X-ray diffractometer (XRD), and Fourier transformation infrared (FTIR) spectroscopy. Elemental analysis using XRF found the percentage of silicon in the material is approximately 98.6%, main impurities are Mg (0.95%), Ca (0.09%), Fe (0.3%), K (0.25%), and Al (0.40%).Keywords: siliceous, leached, biomass, solid-liquid extraction
Procedia PDF Downloads 702103 Modern Era Applications of Mathematics and Computer Science
Authors: Ogunrinde Roseline Bosede, Ogunrinde Rowland Rotimi
Abstract:
Just as the development of ideas of early mathematics was essentially motivated by social needs, the invention of the computer was equally inspired by social needs. The early years of the twenty-first century have been remarkable in advances in mathematical and computer sciences. Mathematical and computer sciences work are fast becoming an increasingly integral and essential components of a growing catalogues of areas of interests in biology, business, military, medicine, social sciences, advanced design, advanced materials, climate, banking and finance, and many other fields of disciplines. This paper seeks to highlight the trend and impacts of the duo in the technological advancements being witnessed in our today's world.Keywords: computer, impacts, mathematics, modern society
Procedia PDF Downloads 4002102 The Role of Education (Tarbiyyah) in the Religio-Political Organization
Authors: Muhaimin Bin Sulam, Abdul Mutalib Embong, Azelin Mohamed Noor
Abstract:
This paper presents the reinvention of the role of education (tarbiyyah) in the social influence of organizations focusing on the sustainability of a specific religio-political organization. The objective of the paper is to describe how the position secured by education could transform the organization while maintaining its objective and vision. The study employed the qualitative approach that involves data from conducted interviews. An analysis on the role political leaders play in educating the organization in the context of ideological struggle is also analyzed. The process description also evaluates how education could intellectualize its followers and members which inspires them to submit to their leaders and the organization. This extensive cultivation of religio-political doctrine could offer a new interpretation on politics.Keywords: religiopolitical organization, Malaysia, education (Tarbiyyah), followers, political movement
Procedia PDF Downloads 4832101 Automated Server Configuration Management using Ansible
Authors: Kartik Mahajan
Abstract:
DevOps methodologies streamline software development and operations, promoting collaboration and automation. Traditional server management often relies on manual, repetitive tasks, leading to inefficiencies, potential errors, and increased operational costs. Ansible, as a configuration management tool, presents a compelling solution for automating infrastructure management processes. This review paper explores the implementation and testing of Ansible for server management, specifically focusing on automated user account configuration. By replacing manual procedures with Ansible playbooks, we aim to optimize server management, reduce human error, and potentially mitigate operational expenses. This study offers insights into Ansible’s efficacy within a DevOps context, highlighting its potential to transform server administration practices.Keywords: cloud, Devops, automation, ansible
Procedia PDF Downloads 442100 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 1342099 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 3742098 Modeling of an Insulin Mircopump
Authors: Ahmed Slami, Med El Amine Brixi Nigassa, Nassima Labdelli, Sofiane Soulimane, Arnaud Pothier
Abstract:
Many people suffer from diabetes, a disease marked by abnormal levels of sugar in the blood; 285 million people have diabetes, 6.6% of the world adult population (in 2010), according to the International Diabetes Federation. Insulin medicament is invented to be injected into the body. Generally, the injection requires the patient to do it manually. However, in many cases he will be unable to inject the drug, saw that among the side effects of hyperglycemia is the weakness of the whole body. The researchers designed a medical device that injects insulin too autonomously by using micro-pumps. Many micro-pumps of concepts have been investigated during the last two decades for injecting molecules in blood or in the body. However, all these micro-pumps are intended for slow infusion of drug (injection of few microliters by minute). Now, the challenge is to develop micro-pumps for fast injections (1 microliter in 10 seconds) with accuracy of the order of microliter. Recently, studies have shown that only piezoelectric actuators can achieve this performance, knowing that few systems at the microscopic level were presented. These reasons lead us to design new smart microsystems injection drugs. Therefore, many technological advances are still to achieve the improvement of materials to their uses, while going through their characterization and modeling action mechanisms themselves. Moreover, it remains to study the integration of the piezoelectric micro-pump in the microfluidic platform features to explore and evaluate the performance of these new micro devices. In this work, we propose a new micro-pump model based on piezoelectric actuation with a new design. Here, we use a finite element model with Comsol software. Our device is composed of two pumping chambers, two diaphragms and two actuators (piezoelectric disks). The latter parts will apply a mechanical force on the membrane in a periodic manner. The membrane deformation allows the fluid pumping, the suction and discharge of the liquid. In this study, we present the modeling results as function as device geometry properties, films thickness, and materials properties. Here, we demonstrate that we can achieve fast injection. The results of these simulations will provide quantitative performance of our micro-pumps. Concern the spatial actuation, fluid rate and allows optimization of the fabrication process in terms of materials and integration steps.Keywords: COMSOL software, piezoelectric, micro-pump, microfluidic
Procedia PDF Downloads 3422097 Evolution of Multimodulus Algorithm Blind Equalization Based on Recursive Least Square Algorithm
Authors: Sardar Ameer Akram Khan, Shahzad Amin Sheikh
Abstract:
Blind equalization is an important technique amongst equalization family. Multimodulus algorithms based on blind equalization removes the undesirable effects of ISI and cater ups the phase issues, saving the cost of rotator at the receiver end. In this paper a new algorithm combination of recursive least square and Multimodulus algorithm named as RLSMMA is proposed by providing few assumption, fast convergence and minimum Mean Square Error (MSE) is achieved. The excellence of this technique is shown in the simulations presenting MSE plots and the resulting filter results.Keywords: blind equalizations, constant modulus algorithm, multi-modulus algorithm, recursive least square algorithm, quadrature amplitude modulation (QAM)
Procedia PDF Downloads 6442096 Speeding Up Lenia: A Comparative Study Between Existing Implementations and CUDA C++ with OpenGL Interop
Authors: L. Diogo, A. Legrand, J. Nguyen-Cao, J. Rogeau, S. Bornhofen
Abstract:
Lenia is a system of cellular automata with continuous states, space and time, which surprises not only with the emergence of interesting life-like structures but also with its beauty. This paper reports ongoing research on a GPU implementation of Lenia using CUDA C++ and OpenGL Interoperability. We demonstrate how CUDA as a low-level GPU programming paradigm allows optimizing performance and memory usage of the Lenia algorithm. A comparative analysis through experimental runs with existing implementations shows that the CUDA implementation outperforms the others by one order of magnitude or more. Cellular automata hold significant interest due to their ability to model complex phenomena in systems with simple rules and structures. They allow exploring emergent behavior such as self-organization and adaptation, and find applications in various fields, including computer science, physics, biology, and sociology. Unlike classic cellular automata which rely on discrete cells and values, Lenia generalizes the concept of cellular automata to continuous space, time and states, thus providing additional fluidity and richness in emerging phenomena. In the current literature, there are many implementations of Lenia utilizing various programming languages and visualization libraries. However, each implementation also presents certain drawbacks, which serve as motivation for further research and development. In particular, speed is a critical factor when studying Lenia, for several reasons. Rapid simulation allows researchers to observe the emergence of patterns and behaviors in more configurations, on bigger grids and over longer periods without annoying waiting times. Thereby, they enable the exploration and discovery of new species within the Lenia ecosystem more efficiently. Moreover, faster simulations are beneficial when we include additional time-consuming algorithms such as computer vision or machine learning to evolve and optimize specific Lenia configurations. We developed a Lenia implementation for GPU using the C++ and CUDA programming languages, and CUDA/OpenGL Interoperability for immediate rendering. The goal of our experiment is to benchmark this implementation compared to the existing ones in terms of speed, memory usage, configurability and scalability. In our comparison we focus on the most important Lenia implementations, selected for their prominence, accessibility and widespread use in the scientific community. The implementations include MATLAB, JavaScript, ShaderToy GLSL, Jupyter, Rust and R. The list is not exhaustive but provides a broad view of the principal current approaches and their respective strengths and weaknesses. Our comparison primarily considers computational performance and memory efficiency, as these factors are critical for large-scale simulations, but we also investigate the ease of use and configurability. The experimental runs conducted so far demonstrate that the CUDA C++ implementation outperforms the other implementations by one order of magnitude or more. The benefits of using the GPU become apparent especially with larger grids and convolution kernels. However, our research is still ongoing. We are currently exploring the impact of several software design choices and optimization techniques, such as convolution with Fast Fourier Transforms (FFT), various GPU memory management scenarios, and the trade-off between speed and accuracy using single versus double precision floating point arithmetic. The results will give valuable insights into the practice of parallel programming of the Lenia algorithm, and all conclusions will be thoroughly presented in the conference paper. The final version of our CUDA C++ implementation will be published on github and made freely accessible to the Alife community for further development.Keywords: artificial life, cellular automaton, GPU optimization, Lenia, comparative analysis.
Procedia PDF Downloads 412095 Status Report of the Express Delivery Industry in China
Authors: Ying Bo Xie, Hisa Yuki Kurokawa
Abstract:
Due to the fast development, China's express delivery industry has involved in a dilemma that the service quality are keeping decreasing while the construction rate of delivery network cannot meet the customers’ demand. In order to get out of this dilemma and enjoy a succession development rate, it is necessary to understand the current situation of China's express delivery industry. Firstly, the evolution of China's express delivery industry was systematical presented. Secondly, according to the number of companies and the amount of parcels they has dealt each year, the merits and faults of tow kind of operating pattern was analyzed. Finally, based on the characteristics of these express companies, the problems of China's express delivery industry was divided into several types and the countermeasures were given out respectively.Keywords: China, express delivery industry, status, problem
Procedia PDF Downloads 3632094 Forced Vibration of a Fiber Metal Laminated Beam Containing a Delamination
Authors: Sh. Mirhosseini, Y. Haghighatfar, M. Sedighi
Abstract:
Forced vibration problem of a delaminated beam made of fiber metal laminates is studied in this paper. Firstly, a delamination is considered to divide the beam into four sections. The classic beam theory is assumed to dominate each section. The layers on two sides of the delamination are constrained to have the same deflection. This hypothesis approves the conditions of compatibility as well. Consequently, dynamic response of the beam is obtained by the means of differential transform method (DTM). In order to verify the correctness of the results, a model is constructed using commercial software ABAQUS 6.14. A linear spring with constant stiffness takes the effect of contact between delaminated layers into account. The attained semi-analytical outcomes are in great agreement with finite element analysis.Keywords: delamination, forced vibration, finite element modelling, natural frequency
Procedia PDF Downloads 3012093 New Features for Copy-Move Image Forgery Detection
Authors: Michael Zimba
Abstract:
A novel set of features for copy-move image forgery, CMIF, detection method is proposed. The proposed set presents a new approach which relies on electrostatic field theory, EFT. Solely for the purpose of reducing the dimension of a suspicious image, firstly performs discrete wavelet transform, DWT, of the suspicious image and extracts only the approximation subband. The extracted subband is then bijectively mapped onto a virtual electrostatic field where concepts of EFT are utilised to extract robust features. The extracted features are shown to be invariant to additive noise, JPEG compression, and affine transformation. The proposed features can also be used in general object matching.Keywords: virtual electrostatic field, features, affine transformation, copy-move image forgery
Procedia PDF Downloads 5432092 Fabrication and Analysis of Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS)
Authors: Deepika Sharma, Bal Krishan
Abstract:
In this paper, the structure of N-channel VDMOS was designed and analyzed using Silvaco TCAD tools by varying N+ source doping concentration, P-Body doping concentration, gate oxide thickness and the diffuse time. VDMOS is considered to be ideal power switches due to its high input impedance and fast switching speed. The performance of the device was analyzed from the Ids vs Vgs curve. The electrical characteristics such as threshold voltage, gate oxide thickness and breakdown voltage for the proposed device structures were extarcted. Effect of epitaxial layer on various parameters is also observed.Keywords: on-resistance, threshold voltage, epitaxial layer, breakdown voltage
Procedia PDF Downloads 3272091 Detection of Parkinsonian Freezing of Gait
Authors: Sang-Hoon Park, Yeji Ho, Gwang-Moon Eom
Abstract:
Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods.Keywords: freezing of gait, detection, Parkinson's disease, time-domain method
Procedia PDF Downloads 4442090 3D Text Toys: Creative Approach to Experiential and Immersive Learning for World Literacy
Authors: Azyz Sharafy
Abstract:
3D Text Toys is an innovative and creative approach that utilizes 3D text objects to enhance creativity, literacy, and basic learning in an enjoyable and gamified manner. By using 3D Text Toys, children can develop their creativity, visually learn words and texts, and apply their artistic talents within their creative abilities. This process incorporates haptic engagement with 2D and 3D texts, word building, and mechanical construction of everyday objects, thereby facilitating better word and text retention. The concept involves constructing visual objects made entirely out of 3D text/words, where each component of the object represents a word or text element. For instance, a bird can be recreated using words or text shaped like its wings, beak, legs, head, and body, resulting in a 3D representation of the bird purely composed of text. This can serve as an art piece or a learning tool in the form of a 3D text toy. These 3D text objects or toys can be crafted using natural materials such as leaves, twigs, strings, or ropes, or they can be made from various physical materials using traditional crafting tools. Digital versions of these objects can be created using 2D or 3D software on devices like phones, laptops, iPads, or computers. To transform digital designs into physical objects, computerized machines such as CNC routers, laser cutters, and 3D printers can be utilized. Once the parts are printed or cut out, students can assemble the 3D texts by gluing them together, resulting in natural or everyday 3D text objects. These objects can be painted to create artistic pieces or text toys, and the addition of wheels can transform them into moving toys. One of the significant advantages of this visual and creative object-based learning process is that students not only learn words but also derive enjoyment from the process of creating, painting, and playing with these objects. The ownership and creation process further enhances comprehension and word retention. Moreover, for individuals with learning disabilities such as dyslexia, ADD (Attention Deficit Disorder), or other learning difficulties, the visual and haptic approach of 3D Text Toys can serve as an additional creative and personalized learning aid. The application of 3D Text Toys extends to both the English language and any other global written language. The adaptation and creative application may vary depending on the country, space, and native written language. Furthermore, the implementation of this visual and haptic learning tool can be tailored to teach foreign languages based on age level and comprehension requirements. In summary, this creative, haptic, and visual approach has the potential to serve as a global literacy tool.Keywords: 3D text toys, creative, artistic, visual learning for world literacy
Procedia PDF Downloads 642089 A Finite Memory Residual Generation Filter for Fault Detection
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, a residual generation filter with finite memory structure is proposed for fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite observations and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noise-free systems. Finally, to illustrate the capability of the proposed residual generation filter, numerical examples are performed for the discretized DC motor system having the multiple sensor faults.Keywords: residual generation filter, finite memory structure, kalman filter, fast detection
Procedia PDF Downloads 6982088 Winter Wheat Yield Forecasting Using Sentinel-2 Imagery at the Early Stages
Authors: Chunhua Liao, Jinfei Wang, Bo Shan, Yang Song, Yongjun He, Taifeng Dong
Abstract:
Winter wheat is one of the main crops in Canada. Forecasting of within-field variability of yield in winter wheat at the early stages is essential for precision farming. However, the crop yield modelling based on high spatial resolution satellite data is generally affected by the lack of continuous satellite observations, resulting in reducing the generalization ability of the models and increasing the difficulty of crop yield forecasting at the early stages. In this study, the correlations between Sentinel-2 data (vegetation indices and reflectance) and yield data collected by combine harvester were investigated and a generalized multivariate linear regression (MLR) model was built and tested with data acquired in different years. It was found that the four-band reflectance (blue, green, red, near-infrared) performed better than their vegetation indices (NDVI, EVI, WDRVI and OSAVI) in wheat yield prediction. The optimum phenological stage for wheat yield prediction with highest accuracy was at the growing stages from the end of the flowering to the beginning of the filling stage. The best MLR model was therefore built to predict wheat yield before harvest using Sentinel-2 data acquired at the end of the flowering stage. Further, to improve the ability of the yield prediction at the early stages, three simple unsupervised domain adaptation (DA) methods were adopted to transform the reflectance data at the early stages to the optimum phenological stage. The winter wheat yield prediction using multiple vegetation indices showed higher accuracy than using single vegetation index. The optimum stage for winter wheat yield forecasting varied with different fields when using vegetation indices, while it was consistent when using multispectral reflectance and the optimum stage for winter wheat yield prediction was at the end of flowering stage. The average testing RMSE of the MLR model at the end of the flowering stage was 604.48 kg/ha. Near the booting stage, the average testing RMSE of yield prediction using the best MLR was reduced to 799.18 kg/ha when applying the mean matching domain adaptation approach to transform the data to the target domain (at the end of the flowering) compared to that using the original data based on the models developed at the booting stage directly (“MLR at the early stage”) (RMSE =1140.64 kg/ha). This study demonstrated that the simple mean matching (MM) performed better than other DA methods and it was found that “DA then MLR at the optimum stage” performed better than “MLR directly at the early stages” for winter wheat yield forecasting at the early stages. The results indicated that the DA had a great potential in near real-time crop yield forecasting at the early stages. This study indicated that the simple domain adaptation methods had a great potential in crop yield prediction at the early stages using remote sensing data.Keywords: wheat yield prediction, domain adaptation, Sentinel-2, within-field scale
Procedia PDF Downloads 642087 Investigation of Azol Resistance in Aspergillosis Caused by Gradient Test and Agar Plaque Methods
Authors: Zeynep Yazgan, Gökhan Aygün, Reyhan Çalışkan
Abstract:
Objective: Invasive fungal infections are a serious threat in terms of morbidity and mortality, especially in immunocompromised patients. The most frequently isolated agents are Aspergillus genus fungi, and sensitivity to azoles, which are the first choice in treatment, decreases. In our study, we aimed to investigate the use of the agar plate screening method as a fast, easy, and practical method in determining azole resistance in Aspergillus spp. species. Methods: Our study was conducted with 125 Aspergillus spp. isolates produced from various clinical samples. Aspergillus spp. isolates were identified by conventional methods and azole resistance was determined by gradient test and agar plate screening method. Broth microdilution method was applied to resistant isolates, and CypA-L98H and CypA-M220 mutations in the cyp51A gene were investigated. Results: In our study, 55 A. fumigatus complex (44%), 42 A. flavus (33.6%), 6 A. terreus (5%), 4 A. niger (3%) and 18 Aspergillus spp. (14%) were identified. With the gradient test method, resistance to VOR and POS was detected in 1 (1.8%) of A.fumigatus isolates, and resistance to ITR was detected in 3 (5.45%). With the agar plate method, 1 of the A.fumigatus isolates (1.8%) had VOR, ITR, POS, 1 of the A.terreus isolates (16.7%) had VOR, 1 of the A.niger isolates (25%) had ITR. Resistance to VOR and POS was detected in 2 Aspergillus spp. isolates (11%), and resistance to ITR was detected in 1 (5.6%). Sensitivity and specificity were determined as 100% for VOR and POS in A. fumigatus species, 33.3% and 100% for ITR, respectively, 100% for ITR in A. flavus species, and 100% for ITR and POS in A. terreus species. By broth microdilution method in 7 isolates in which resistance was detected by gradient test and/or agar plate screening method; 1 A.fumigatus resistant to ITR, VOR, POS, 2 A.fumigatus resistant to ITR, 2 Aspergillus spp. ITR, VOR, POS MICs were determined as 2µg/ml and 8µg/ml, 8µg/ml and >32µg/ml, 0.5µg/ml and 4µg/ml, respectively. CypA-L98H mutations were detected in 5 of these isolates, CypA-M220 mutations were detected in 6, and no mutation was detected in 1. CypA-L98H and CypA-M220 mutations were detected in 1 isolate for which resistance was not detected. Conclusion: The need for rapid antifungal susceptibility screening tests is increasing in the treatment of aspergillosis. Although the sensitivity of the agar plate method was determined to be 33.3% for A.fumigatus ITR in our study, its sensitivity and specificity were determined to be 100% for ITR, VOR, and POS in other species. The low sensitivity value detected for A.fumigatus showed that agar plate drug concentrations should be updated in accordance with the latest regulations of EUCAST guidelines. The CypA-L98H and CypA-M220 mutations detected in our study suggested that the distribution of azole resistance-related mutations in different regions in our country should be investigated. In conclusion, it is thought that the agar plate method, which can be easily applied to detect azole resistance, is a fast and practical method in routine use and can contribute to both the determination of effective treatment strategies and the generation of epidemiological data.Keywords: Aspergillus, agar plate, azole resistance, cyp51A, cypA-L98H, cypA-M220
Procedia PDF Downloads 712086 Detection and Tracking Approach Using an Automotive Radar to Increase Active Pedestrian Safety
Authors: Michael Heuer, Ayoub Al-Hamadi, Alexander Rain, Marc-Michael Meinecke
Abstract:
Vulnerable road users, e.g. pedestrians, have a high impact on fatal accident numbers. To reduce these statistics, car manufactures are intensively developing suitable safety systems. Hereby, fast and reliable environment recognition is a major challenge. In this paper we describe a tracking approach that is only based on a 24 GHz radar sensor. While common radar signal processing loses much information, we make use of a track-before-detect filter to incorporate raw measurements. It is explained how the Range-Doppler spectrum can help to indicated pedestrians and stabilize tracking even in occultation scenarios compared to sensors in series.Keywords: radar, pedestrian detection, active safety, sensor
Procedia PDF Downloads 5292085 Design and Development of Motorized Placer for Balloon Uterine Stents in Gynecology
Authors: Metehan Mutlu, Meltem Elitas
Abstract:
This study aims to provide an automated method for placing the balloon uterine stents after hysteroscopy adhesiolysis. Currently, there are no automatized tools to place the balloon uterine stent; therefore, surgeons into the endometrial cavity manually fit it. However, it is very hard to pass the balloon stent through the cervical canal, which is roughly 10mm after the surgery. Our method aims to provide an effective and practical way of placing the stent, by automating the procedure through our designed device. Furthermore, our device does the required tasks fast compared to traditional methods, reduces the narcosis time, and decreases the bacterial contamination risks.Keywords: balloon uterine stent, endometrial cavity, hysteroscopy, motorized-tool
Procedia PDF Downloads 2762084 Performance of Hybrid Image Fusion: Implementation of Dual-Tree Complex Wavelet Transform Technique
Authors: Manoj Gupta, Nirmendra Singh Bhadauria
Abstract:
Most of the applications in image processing require high spatial and high spectral resolution in a single image. For example satellite image system, the traffic monitoring system, and long range sensor fusion system all use image processing. However, most of the available equipment is not capable of providing this type of data. The sensor in the surveillance system can only cover the view of a small area for a particular focus, yet the demanding application of this system requires a view with a high coverage of the field. Image fusion provides the possibility of combining different sources of information. In this paper, we have decomposed the image using DTCWT and then fused using average and hybrid of (maxima and average) pixel level techniques and then compared quality of both the images using PSNR.Keywords: image fusion, DWT, DT-CWT, PSNR, average image fusion, hybrid image fusion
Procedia PDF Downloads 6062083 Vibrational Spectra and Nonlinear Optical Investigations of a Chalcone Derivative (2e)-3-[4-(Methylsulfanyl) Phenyl]-1-(3-Bromophenyl) Prop-2-En-1-One
Authors: Amit Kumar, Archana Gupta, Poonam Tandon, E. D. D’Silva
Abstract:
Nonlinear optical (NLO) materials are the key materials for the fast processing of information and optical data storage applications. In the last decade, materials showing nonlinear optical properties have been the object of increasing attention by both experimental and computational points of view. Chalcones are one of the most important classes of cross conjugated NLO chromophores that are reported to exhibit good SHG efficiency, ultra fast optical nonlinearities and are easily crystallizable. The basic structure of chalcones is based on the π-conjugated system in which two aromatic rings are connected by a three-carbon α, β-unsaturated carbonyl system. Due to the overlap of π orbitals, delocalization of electronic charge distribution leads to a high mobility of the electron density. On a molecular scale, the extent of charge transfer across the NLO chromophore determines the level of SHG output. Hence, the functionalization of both ends of the π-bond system with appropriate electron donor and acceptor groups can enhance the asymmetric electronic distribution in either or both ground and excited states, leading to an increased optical nonlinearity. In this research, the experimental and theoretical study on the structure and vibrations of (2E)-3-[4-(methylsulfanyl) phenyl]-1-(3-bromophenyl) prop-2-en-1-one (3Br4MSP) is presented. The FT-IR and FT-Raman spectra of the NLO material in the solid phase have been recorded. Density functional theory (DFT) calculations at B3LYP with 6-311++G(d,p) basis set were carried out to study the equilibrium geometry, vibrational wavenumbers, infrared absorbance and Raman scattering activities. The interpretation of vibrational features (normal mode assignments, for instance) has an invaluable aid from DFT calculations that provide a quantum-mechanical description of the electronic energies and forces involved. Perturbation theory allows one to obtain the vibrational normal modes by estimating the derivatives of the Kohn−Sham energy with respect to atomic displacements. The molecular hyperpolarizability β plays a chief role in the NLO properties, and a systematical study on β has been carried out. Furthermore, the first order hyperpolarizability (β) and the related properties such as dipole moment (μ) and polarizability (α) of the title molecule are evaluated by Finite Field (FF) approach. The electronic α and β of the studied molecule are 41.907×10-24 and 79.035×10-24 e.s.u. respectively, indicating that 3Br4MSP can be used as a good nonlinear optical material.Keywords: DFT, MEP, NLO, vibrational spectra
Procedia PDF Downloads 2212082 Comparative Study of Static and Dynamic Representations of the Family Structure and Its Clinical Utility
Authors: Marietta Kékes Szabó
Abstract:
The patterns of personality (mal)function and the individuals’ psychosocial environment influence the healthy status collectively and may lie in the background of psychosomatic disorders. Although the patients with their diversified symptoms usually do not have any organic problems, the experienced complaint, the fear of serious illness and the lack of social support often lead to increased anxiety and further enigmatic symptoms. The role of the family system and its atmosphere seem to be very important in this process. More studies explored the characteristics of dysfunctional family organization: inflexible family structure, hidden conflicts that are not spoken about by the family members during their daily interactions, undefined role boundaries, neglect or overprotection of the children by the parents and coalition between generations. However, questionnaires that are used to measure the properties of the family system are able to explore only its unit and cannot pay attention to the dyadic interactions, while the representation of the family structure by a figure placing test gives us a new perspective to better understand the organization of the (sub)system(s). Furthermore, its dynamic form opens new perspectives to explore the family members’ joint representations, which gives us the opportunity to know more about the flexibility of cohesion and hierarchy of the given family system. In this way, the communication among the family members can be also examined. The aim of my study was to collect a great number of information about the organization of psychosomatic families. In our research we used Gehring’s Family System Test (FAST) both in static and dynamic forms to mobilize the family members’ mental representations about their family and to get data in connection with their individual representations as well as cooperation. There were four families in our study, all of them with a young adult person. Two families with healthy participants and two families with asthmatic patient(s) were involved in our research. The family members’ behavior that could be observed during the dynamic situation was recorded on video for further data analysis with Noldus Observer XT 8.0 program software. In accordance with the previous studies, our results show that the family structure of the families with at least one psychosomatic patient is more rigid than it was found in the control group and the certain (typical, ideal, and conflict) dynamic representations reflected mainly the most dominant family member’s individual concept. The behavior analysis also confirmed the intensified role of the dominant person(s) in the family life, thereby influencing the family decisions, the place of the other family members, as well as the atmosphere of the interactions, which could also be grasped well by the applied methods. However, further research is needed to learn more about the phenomenon that can open the door for new therapeutic approaches.Keywords: psychosomatic families, family structure, family system test (FAST), static and dynamic representations, behavior analysis
Procedia PDF Downloads 3912081 Entropy Generation of Unsteady Reactive Hydromagnetic Generalized Couette Fluid Flow of a Two-Step Exothermic Chemical Reaction Through a Channel
Authors: Rasaq Kareem, Jacob Gbadeyan
Abstract:
In this study, analysis of the entropy generation of an unsteady reactive hydromagnetic generalized couette fluid flow of a two-step exothermic chemical reaction through a channel with isothermal wall temperature under the influence of different chemical kinetics namely: Sensitized, Arrhenius and Bimolecular kinetics was investigated. The modelled nonlinear dimensionless equations governing the fluid flow were simplified and solved using the combined Laplace Differential Transform Method (LDTM). The effects of fluid parameters associated with the problem on the fluid temperature, entropy generation rate and Bejan number were discussed and presented through graphs.Keywords: couette, entropy, exothermic, unsteady
Procedia PDF Downloads 515