Search results for: deep seated gravitational slope deformation
2360 Inertial Particle Focusing Dynamics in Trapezoid Straight Microchannels: Application to Continuous Particle Filtration
Authors: Reza Moloudi, Steve Oh, Charles Chun Yang, Majid Ebrahimi Warkiani, May Win Naing
Abstract:
Inertial microfluidics has emerged recently as a promising tool for high-throughput manipulation of particles and cells for a wide range of flow cytometric tasks including cell separation/filtration, cell counting, and mechanical phenotyping. Inertial focusing is profoundly reliant on the cross-sectional shape of the channel and its impacts not only on the shear field but also the wall-effect lift force near the wall region. Despite comprehensive experiments and numerical analysis of the lift forces for rectangular and non-rectangular microchannels (half-circular and triangular cross-section), which all possess planes of symmetry, less effort has been made on the 'flow field structure' of trapezoidal straight microchannels and its effects on inertial focusing. On the other hand, a rectilinear channel with trapezoidal cross-sections breaks down all planes of symmetry. In this study, particle focusing dynamics inside trapezoid straight microchannels was first studied systematically for a broad range of channel Re number (20 < Re < 800). The altered axial velocity profile and consequently new shear force arrangement led to a cross-laterally movement of equilibration toward the longer side wall when the rectangular straight channel was changed to a trapezoid; however, the main lateral focusing started to move backward toward the middle and the shorter side wall, depending on particle clogging ratio (K=a/Hmin, a is particle size), channel aspect ratio (AR=W/Hmin, W is channel width, and Hmin is smaller channel height), and slope of slanted wall, as the channel Reynolds number further increased (Re > 50). Increasing the channel aspect ratio (AR) from 2 to 4 and the slope of slanted wall up to Tan(α)≈0.4 (Tan(α)=(Hlonger-sidewall-Hshorter-sidewall)/W) enhanced the off-center lateral focusing position from the middle of channel cross-section, up to ~20 percent of the channel width. It was found that the focusing point was spoiled near the slanted wall due to the dissymmetry; it mainly focused near the bottom wall or fluctuated between the channel center and the bottom wall, depending on the slanted wall and Re (Re < 100, channel aspect ratio 4:1). Eventually, as a proof of principle, a trapezoidal straight microchannel along with a bifurcation was designed and utilized for continuous filtration of a broader range of particle clogging ratio (0.3 < K < 1) exiting through the longer wall outlet with ~99% efficiency (Re < 100) in comparison to the rectangular straight microchannels (W > H, 0.3 ≤ K < 0.5).Keywords: cell/particle sorting, filtration, inertial microfluidics, straight microchannel, trapezoid
Procedia PDF Downloads 2242359 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine
Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland
Abstract:
The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.Keywords: force-velocity, leg-press, power-velocity, profiling, reliability
Procedia PDF Downloads 582358 Optimized Deep Learning-Based Facial Emotion Recognition System
Authors: Erick C. Valverde, Wansu Lim
Abstract:
Facial emotion recognition (FER) system has been recently developed for more advanced computer vision applications. The ability to identify human emotions would enable smart healthcare facility to diagnose mental health illnesses (e.g., depression and stress) as well as better human social interactions with smart technologies. The FER system involves two steps: 1) face detection task and 2) facial emotion recognition task. It classifies the human expression in various categories such as angry, disgust, fear, happy, sad, surprise, and neutral. This system requires intensive research to address issues with human diversity, various unique human expressions, and variety of human facial features due to age differences. These issues generally affect the ability of the FER system to detect human emotions with high accuracy. Early stage of FER systems used simple supervised classification task algorithms like K-nearest neighbors (KNN) and artificial neural networks (ANN). These conventional FER systems have issues with low accuracy due to its inefficiency to extract significant features of several human emotions. To increase the accuracy of FER systems, deep learning (DL)-based methods, like convolutional neural networks (CNN), are proposed. These methods can find more complex features in the human face by means of the deeper connections within its architectures. However, the inference speed and computational costs of a DL-based FER system is often disregarded in exchange for higher accuracy results. To cope with this drawback, an optimized DL-based FER system is proposed in this study.An extreme version of Inception V3, known as Xception model, is leveraged by applying different network optimization methods. Specifically, network pruning and quantization are used to enable lower computational costs and reduce memory usage, respectively. To support low resource requirements, a 68-landmark face detector from Dlib is used in the early step of the FER system.Furthermore, a DL compiler is utilized to incorporate advanced optimization techniques to the Xception model to improve the inference speed of the FER system. In comparison to VGG-Net and ResNet50, the proposed optimized DL-based FER system experimentally demonstrates the objectives of the network optimization methods used. As a result, the proposed approach can be used to create an efficient and real-time FER system.Keywords: deep learning, face detection, facial emotion recognition, network optimization methods
Procedia PDF Downloads 1182357 Geotechnical Engineering Solutions for Adaptation
Authors: Johnstone Walubengo Wangusi
Abstract:
Geotechnical engineering is a multidisciplinary field that encompasses the study of soil, rock, and groundwater properties and their interactions with civil engineering structures. This research paper provides an in-depth overview of geotechnical engineering, covering its fundamental principles, applications in civil infrastructure projects, and the challenges faced by practitioners in the field. Through a comprehensive examination of soil mechanics, foundation design, slope stability analysis, and geotechnical site investigation techniques, this paper aims to highlight the importance of geotechnical engineering in ensuring the safety, stability, and sustainability of infrastructure development. Additionally, it discusses emerging trends, innovative technologies, and future directions in geotechnical engineering research and practice.Keywords: sustainable geotechnical engineering solutions, education and training for future generations geotechnical engineers, integration of geotechnical engineering and structural engineering, use of AI in geotechnical engineering modelling
Procedia PDF Downloads 592356 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning
Authors: Kyle Saltmarsh
Abstract:
Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.Keywords: plates, deformation, acoustic features, machine learning
Procedia PDF Downloads 3372355 Influence of Thermal History on the Undrained Shear Strength of the Bentonite-Sand Mixture
Authors: K. Ravi, Sabu Subhash
Abstract:
Densely compacted bentonite or bentonite–sand mixture has been identified as a suitable buffer in the deep geological repository (DGR) for the safe disposal of high-level nuclear waste (HLW) due to its favourable physicochemical and hydro-mechanical properties. The addition of sand to the bentonite enhances the thermal conductivity and compaction properties and reduces the drying shrinkage of the buffer material. The buffer material may undergo cyclic wetting and drying upon ingress of groundwater from the surrounding rock mass and from evaporation due to high temperature (50–210 °C) derived from the waste canister. The cycles of changes in temperature may result in thermal history, and the hydro-mechanical properties of the buffer material may be affected. This paper examines the influence of thermal history on the undrained shear strength of bentonite and bentonite-sand mixture. Bentonite from Rajasthan state and sand from the Assam state of India are used in this study. The undrained shear strength values are obtained by conducting unconfined compressive strength (UCS) tests on cylindrical specimens (dry densities 1.30 and 1.5 Mg/m3) of bentonite and bentonite-sand mixture consisting of 30 % bentonite+ 70 % sand. The specimens are preheated at temperatures varying from 50-150 °C for one, two and four hours in hot air oven. The results indicate that the undrained shear strength is increased by the thermal history of the buffer material. The specimens of bentonite-sand mixture exhibited more increase in strength compared to the pure bentonite specimens. This indicates that the sand content of the mixture plays a vital role in taking the thermal stresses of the bentonite buffer in DGR conditions.Keywords: bentonite, deep geological repository, thermal history, undrained shear strength
Procedia PDF Downloads 3452354 Cognitive Model of Analogy Based on Operation of the Brain Cells: Glial, Axons and Neurons
Authors: Ozgu Hafizoglu
Abstract:
Analogy is an essential tool of human cognition that enables connecting diffuse and diverse systems with attributional, deep structural, casual relations that are essential to learning, to innovation in artificial worlds, and to discovery in science. Cognitive Model of Analogy (CMA) leads and creates information pattern transfer within and between domains and disciplines in science. This paper demonstrates the Cognitive Model of Analogy (CMA) as an evolutionary approach to scientific research. The model puts forward the challenges of deep uncertainty about the future, emphasizing the need for flexibility of the system in order to enable reasoning methodology to adapt to changing conditions. In this paper, the model of analogical reasoning is created based on brain cells, their fractal, and operational forms within the system itself. Visualization techniques are used to show correspondences. Distinct phases of the problem-solving processes are divided thusly: encoding, mapping, inference, and response. The system is revealed relevant to brain activation considering each of these phases with an emphasis on achieving a better visualization of the brain cells: glial cells, axons, axon terminals, and neurons, relative to matching conditions of analogical reasoning and relational information. It’s found that encoding, mapping, inference, and response processes in four-term analogical reasoning are corresponding with the fractal and operational forms of brain cells: glial, axons, and neurons.Keywords: analogy, analogical reasoning, cognitive model, brain and glials
Procedia PDF Downloads 1852353 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 942352 Ductility Spectrum Method for the Design and Verification of Structures
Authors: B. Chikh, L. Moussa, H. Bechtoula, Y. Mehani, A. Zerzour
Abstract:
This study presents a new method, applicable to evaluation and design of structures has been developed and illustrated by comparison with the capacity spectrum method (CSM, ATC-40). This method uses inelastic spectra and gives peak responses consistent with those obtained when using the nonlinear time history analysis. Hereafter, the seismic demands assessment method is called in this paper DSM, Ductility Spectrum Method. It is used to estimate the seismic deformation of Single-Degree-Of-Freedom (SDOF) systems based on DDRS, Ductility Demand Response Spectrum, developed by the author.Keywords: seismic demand, capacity, inelastic spectra, design and structure
Procedia PDF Downloads 3962351 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral
Authors: Suguru Miyauchi, Toshiyuki Hayase
Abstract:
Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.Keywords: finite element method, level set method, mass transfer, membrane permeability
Procedia PDF Downloads 2502350 A Comparative Study on Deep Learning Models for Pneumonia Detection
Authors: Hichem Sassi
Abstract:
Pneumonia, being a respiratory infection, has garnered global attention due to its rapid transmission and relatively high mortality rates. Timely detection and treatment play a crucial role in significantly reducing mortality associated with pneumonia. Presently, X-ray diagnosis stands out as a reasonably effective method. However, the manual scrutiny of a patient's X-ray chest radiograph by a proficient practitioner usually requires 5 to 15 minutes. In situations where cases are concentrated, this places immense pressure on clinicians for timely diagnosis. Relying solely on the visual acumen of imaging doctors proves to be inefficient, particularly given the low speed of manual analysis. Therefore, the integration of artificial intelligence into the clinical image diagnosis of pneumonia becomes imperative. Additionally, AI recognition is notably rapid, with convolutional neural networks (CNNs) demonstrating superior performance compared to human counterparts in image identification tasks. To conduct our study, we utilized a dataset comprising chest X-ray images obtained from Kaggle, encompassing a total of 5216 training images and 624 test images, categorized into two classes: normal and pneumonia. Employing five mainstream network algorithms, we undertook a comprehensive analysis to classify these diseases within the dataset, subsequently comparing the results. The integration of artificial intelligence, particularly through improved network architectures, stands as a transformative step towards more efficient and accurate clinical diagnoses across various medical domains.Keywords: deep learning, computer vision, pneumonia, models, comparative study
Procedia PDF Downloads 642349 A Key Parameter in Ocean Thermal Energy Conversion Plant Design and Operation
Authors: Yongjian Gu
Abstract:
Ocean thermal energy is one of the ocean energy sources. It is a renewable, sustainable, and green energy source. Ocean thermal energy conversion (OTEC) applies the ocean temperature gradient between the warmer surface seawater and the cooler deep seawater to run a heat engine and produce a useful power output. Unfortunately, the ocean temperature gradient is not big. Even in the tropical and equatorial regions, the surface water temperature can only reach up to 28oC and the deep water temperature can be as low as 4oC. The thermal efficiency of the OTEC plants, therefore, is low. In order to improve the plant thermal efficiency by using the limited ocean temperature gradient, some OTEC plants use the method of adding more equipment for better heat recovery, such as heat exchangers, pumps, etc. Obviously, the method will increase the plant's complexity and cost. The more important impact of the method is the additional equipment needs to consume power too, which may have an adverse effect on the plant net power output, in turn, the plant thermal efficiency. In the paper, the author first describes varied OTEC plants and the practice of using the method of adding more equipment for improving the plant's thermal efficiency. Then the author proposes a parameter, plant back works ratio ϕ, for measuring if the added equipment is appropriate for the plant thermal efficiency improvement. Finally, in the paper, the author presents examples to illustrate the application of the back work ratio ϕ as a key parameter in the OTEC plant design and operation.Keywords: ocean thermal energy, ocean thermal energy conversion (OTEC), OTEC plant, plant back work ratio ϕ
Procedia PDF Downloads 1962348 A TgCNN-Based Surrogate Model for Subsurface Oil-Water Phase Flow under Multi-Well Conditions
Authors: Jian Li
Abstract:
The uncertainty quantification and inversion problems of subsurface oil-water phase flow usually require extensive repeated forward calculations for new runs with changed conditions. To reduce the computational time, various forms of surrogate models have been built. Related research shows that deep learning has emerged as an effective surrogate model, while most surrogate models with deep learning are purely data-driven, which always leads to poor robustness and abnormal results. To guarantee the model more consistent with the physical laws, a coupled theory-guided convolutional neural network (TgCNN) based surrogate model is built to facilitate computation efficiency under the premise of satisfactory accuracy. The model is a convolutional neural network based on multi-well reservoir simulation. The core notion of this proposed method is to bridge two separate blocks on top of an overall network. They underlie the TgCNN model in a coupled form, which reflects the coupling nature of pressure and water saturation in the two-phase flow equation. The model is driven by not only labeled data but also scientific theories, including governing equations, stochastic parameterization, boundary, and initial conditions, well conditions, and expert knowledge. The results show that the TgCNN-based surrogate model exhibits satisfactory accuracy and efficiency in subsurface oil-water phase flow under multi-well conditions.Keywords: coupled theory-guided convolutional neural network, multi-well conditions, surrogate model, subsurface oil-water phase
Procedia PDF Downloads 862347 A Comprehensive Review of Artificial Intelligence Applications in Sustainable Building
Authors: Yazan Al-Kofahi, Jamal Alqawasmi.
Abstract:
In this study, a comprehensive literature review (SLR) was conducted, with the main goal of assessing the existing literature about how artificial intelligence (AI), machine learning (ML), deep learning (DL) models are used in sustainable architecture applications and issues including thermal comfort satisfaction, energy efficiency, cost prediction and many others issues. For this reason, the search strategy was initiated by using different databases, including Scopus, Springer and Google Scholar. The inclusion criteria were used by two research strings related to DL, ML and sustainable architecture. Moreover, the timeframe for the inclusion of the papers was open, even though most of the papers were conducted in the previous four years. As a paper filtration strategy, conferences and books were excluded from database search results. Using these inclusion and exclusion criteria, the search was conducted, and a sample of 59 papers was selected as the final included papers in the analysis. The data extraction phase was basically to extract the needed data from these papers, which were analyzed and correlated. The results of this SLR showed that there are many applications of ML and DL in Sustainable buildings, and that this topic is currently trendy. It was found that most of the papers focused their discussions on addressing Environmental Sustainability issues and factors using machine learning predictive models, with a particular emphasis on the use of Decision Tree algorithms. Moreover, it was found that the Random Forest repressor demonstrates strong performance across all feature selection groups in terms of cost prediction of the building as a machine-learning predictive model.Keywords: machine learning, deep learning, artificial intelligence, sustainable building
Procedia PDF Downloads 672346 Deep Learning for Qualitative and Quantitative Grain Quality Analysis Using Hyperspectral Imaging
Authors: Ole-Christian Galbo Engstrøm, Erik Schou Dreier, Birthe Møller Jespersen, Kim Steenstrup Pedersen
Abstract:
Grain quality analysis is a multi-parameterized problem that includes a variety of qualitative and quantitative parameters such as grain type classification, damage type classification, and nutrient regression. Currently, these parameters require human inspection, a multitude of instruments employing a variety of sensor technologies, and predictive model types or destructive and slow chemical analysis. This paper investigates the feasibility of applying near-infrared hyperspectral imaging (NIR-HSI) to grain quality analysis. For this study two datasets of NIR hyperspectral images in the wavelength range of 900 nm - 1700 nm have been used. Both datasets contain images of sparsely and densely packed grain kernels. The first dataset contains ~87,000 image crops of bulk wheat samples from 63 harvests where protein value has been determined by the FOSS Infratec NOVA which is the golden industry standard for protein content estimation in bulk samples of cereal grain. The second dataset consists of ~28,000 image crops of bulk grain kernels from seven different wheat varieties and a single rye variety. In the first dataset, protein regression analysis is the problem to solve while variety classification analysis is the problem to solve in the second dataset. Deep convolutional neural networks (CNNs) have the potential to utilize spatio-spectral correlations within a hyperspectral image to simultaneously estimate the qualitative and quantitative parameters. CNNs can autonomously derive meaningful representations of the input data reducing the need for advanced preprocessing techniques required for classical chemometric model types such as artificial neural networks (ANNs) and partial least-squares regression (PLS-R). A comparison between different CNN architectures utilizing 2D and 3D convolution is conducted. These results are compared to the performance of ANNs and PLS-R. Additionally, a variety of preprocessing techniques from image analysis and chemometrics are tested. These include centering, scaling, standard normal variate (SNV), Savitzky-Golay (SG) filtering, and detrending. The results indicate that the combination of NIR-HSI and CNNs has the potential to be the foundation for an automatic system unifying qualitative and quantitative grain quality analysis within a single sensor technology and predictive model type.Keywords: deep learning, grain analysis, hyperspectral imaging, preprocessing techniques
Procedia PDF Downloads 992345 Development and Evaluation of Removable Shear Link with Perforated Web
Authors: Daniel Y. Abebe, Jaehyouk Choi
Abstract:
The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed.Keywords: eccentrically braced frame, removable shear link, perforated web, non-linear FE analysis
Procedia PDF Downloads 3632344 Instant Data-Driven Robotics Fabrication of Light-Transmitting Ceramics: A Responsive Computational Modeling Workflow
Authors: Shunyi Yang, Jingjing Yan, Siyu Dong, Xiangguo Cui
Abstract:
Current architectural façade design practices incorporate various daylighting and solar radiation analysis methods. These emphasize the impact of geometry on façade design. There is scope to extend this knowledge into methods that address material translucency, porosity, and form. Such approaches can also achieve these conditions through adaptive robotic manufacturing approaches that exploit material dynamics within the design, and alleviate fabrication waste from molds, ultimately accelerating the autonomous manufacturing system. Besides analyzing the environmental solar radiant in building facade design, there is also a vacancy research area of how lighting effects can be precisely controlled by engaging the instant real-time data-driven robot control and manipulating the material properties. Ceramics carries a wide range of transmittance and deformation potentials for robotics control with the research of its material property. This paper presents one semi-autonomous system that engages with real-time data-driven robotics control, hardware kit design, environmental building studies, human interaction, and exploratory research and experiments. Our objectives are to investigate the relationship between different clay bodies or ceramics’ physio-material properties and their transmittance; to explore the feedback system of instant lighting data in robotic fabrication to achieve precise lighting effect; to design the sufficient end effector and robot behaviors for different stages of deformation. We experiment with architectural clay, as the material of the façade that is potentially translucent at a certain stage can respond to light. Studying the relationship between form, material properties, and porosity can help create different interior and exterior light effects and provide façade solutions for specific architectural functions. The key idea is to maximize the utilization of in-progress robotics fabrication and ceramics materiality to create a highly integrated autonomous system for lighting facade design and manufacture.Keywords: light transmittance, data-driven fabrication, computational design, computer vision, gamification for manufacturing
Procedia PDF Downloads 1232343 CuFeOx-Based Nano-Rose Electrocatalysts for Oxygen Evolution Reaction
Authors: Hamad Almohamadi, Nabeel H. Alharthi, Abdulrahman Aljabri
Abstract:
In this study, two-dimensional CuFeOx is deposited on nickel foam for the fabrication of electrocatalyst for oxygen evolution reaction (OER). The in-situ hydrothermal synthesis of CuFeOx in presence of aloe vera extract was found to yield unique nano-rose-like morphology which aided to improve the electrochemical surface area of the electrode. The phytochemical assisted synthesis of CuFeOx using 75% aloe vera extract resulted in improved OER electrocatalytic performance by attaining the overpotential of 310 mV for 50 mA cm−2 and 410 mV for 100 mA cm−2. The electrode also sustained robust stability throughout the 50 h of chronopotentiometry studies under alkaline electrolyte conditions, thus proving to be prospective electrode material for efficient OER in electrochemical water splitting.Keywords: water splitting, phytochemicals, oxygen evaluation reaction, Tafel's slope, stability
Procedia PDF Downloads 1162342 An investigation of Leading Edge and Trailing Edge Corrugation for Low Reynolds Number Application
Authors: Syed Hassan Raza Shah, Mohammad Mohammad Ali
Abstract:
The flow over a smoothly profiled airfoil at a low Reynolds number is highly susceptible to separate even at a very low angle of attack. An investigation was made to study the effect of leading-edge and trailing-edge corrugation with the spanwise change in the ridges resulted due to the change in the chord length for an infinite wing. The wind tunnel results using NACA0018 wings revealed that leading and trailing edge corrugation did not have any benefit in terms of aerodynamic efficiency or delayed stall. The leading edge and trailing edge corrugation didn't change the lift curve slope, with the leading edge corrugation wing stalling first in the range of Reynolds number of 50,000 to 125,000.Keywords: leading and trailing edge corrugations, low reynolds number, wind tunnel testing, NACA0018
Procedia PDF Downloads 2912341 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.Keywords: deep learning, artificial neural networks, energy price forecasting, turkey
Procedia PDF Downloads 2922340 Interpretable Deep Learning Models for Medical Condition Identification
Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji
Abstract:
Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.Keywords: deep learning, interpretability, attention, big data, medical conditions
Procedia PDF Downloads 912339 Convolutional Neural Network Based on Random Kernels for Analyzing Visual Imagery
Authors: Ja-Keoung Koo, Kensuke Nakamura, Hyohun Kim, Dongwha Shin, Yeonseok Kim, Ji-Su Ahn, Byung-Woo Hong
Abstract:
The machine learning techniques based on a convolutional neural network (CNN) have been actively developed and successfully applied to a variety of image analysis tasks including reconstruction, noise reduction, resolution enhancement, segmentation, motion estimation, object recognition. The classical visual information processing that ranges from low level tasks to high level ones has been widely developed in the deep learning framework. It is generally considered as a challenging problem to derive visual interpretation from high dimensional imagery data. A CNN is a class of feed-forward artificial neural network that usually consists of deep layers the connections of which are established by a series of non-linear operations. The CNN architecture is known to be shift invariant due to its shared weights and translation invariance characteristics. However, it is often computationally intractable to optimize the network in particular with a large number of convolution layers due to a large number of unknowns to be optimized with respect to the training set that is generally required to be large enough to effectively generalize the model under consideration. It is also necessary to limit the size of convolution kernels due to the computational expense despite of the recent development of effective parallel processing machinery, which leads to the use of the constantly small size of the convolution kernels throughout the deep CNN architecture. However, it is often desired to consider different scales in the analysis of visual features at different layers in the network. Thus, we propose a CNN model where different sizes of the convolution kernels are applied at each layer based on the random projection. We apply random filters with varying sizes and associate the filter responses with scalar weights that correspond to the standard deviation of the random filters. We are allowed to use large number of random filters with the cost of one scalar unknown for each filter. The computational cost in the back-propagation procedure does not increase with the larger size of the filters even though the additional computational cost is required in the computation of convolution in the feed-forward procedure. The use of random kernels with varying sizes allows to effectively analyze image features at multiple scales leading to a better generalization. The robustness and effectiveness of the proposed CNN based on random kernels are demonstrated by numerical experiments where the quantitative comparison of the well-known CNN architectures and our models that simply replace the convolution kernels with the random filters is performed. The experimental results indicate that our model achieves better performance with less number of unknown weights. The proposed algorithm has a high potential in the application of a variety of visual tasks based on the CNN framework. Acknowledgement—This work was supported by the MISP (Ministry of Science and ICT), Korea, under the National Program for Excellence in SW (20170001000011001) supervised by IITP, and NRF-2014R1A2A1A11051941, NRF2017R1A2B4006023.Keywords: deep learning, convolutional neural network, random kernel, random projection, dimensionality reduction, object recognition
Procedia PDF Downloads 2902338 Wave Powered Airlift PUMP for Primarily Artificial Upwelling
Authors: Bruno Cossu, Elio Carlo
Abstract:
The invention (patent pending) relates to the field of devices aimed to harness wave energy (WEC) especially for artificial upwelling, forced downwelling, production of compressed air. In its basic form, the pump consists of a hydro-pneumatic machine, driven by wave energy, characterised by the fact that it has no moving mechanical parts, and is made up of only two structural components: an hollow body, which is open at the bottom to the sea and partially immersed in sea water, and a tube, both joined together to form a single body. The shape of the hollow body is like a mushroom whose cap and stem are hollow; the stem is open at both ends and the lower part of its surface is crossed by holes; the tube is external and coaxial to the stem and is joined to it so as to form a single body. This shape of the hollow body and the type of connection to the tube allows the pump to operate simultaneously as an air compressor (OWC) on the cap side, and as an airlift on the stem side. The pump can be implemented in four versions, each of which provides different variants and methods of implementation: 1) firstly, for the artificial upwelling of cold, deep ocean water; 2) secondly, for the lifting and transfer of these waters to the place of use (above all, fish farming plants), even if kilometres away; 3) thirdly, for the forced downwelling of surface sea water; 4) fourthly, for the forced downwelling of surface water, its oxygenation, and the simultaneous production of compressed air. The transfer of the deep water or the downwelling of the raised surface water (as for pump versions indicated in points 2 and 3 above), is obtained by making the water raised by the airlift flow into the upper inlet of another pipe, internal or adjoined to the airlift; the downwelling of raised surface water, oxygenation, and the simultaneous production of compressed air (as for the pump version indicated in point 4), is obtained by installing a venturi tube on the upper end of the pipe, whose restricted section is connected to the external atmosphere, so that it also operates like a hydraulic air compressor (trompe). Furthermore, by combining one or more pumps for the upwelling of cold, deep water, with one or more pumps for the downwelling of the warm surface water, the system can be used in an Ocean Thermal Energy Conversion plant to supply the cold and the warm water required for the operation of the same, thus allowing to use, without increased costs, in addition to the mechanical energy of the waves, for the purposes indicated in points 1 to 4, the thermal one of the marine water treated in the process.Keywords: air lifted upwelling, fish farming plant, hydraulic air compressor, wave energy converter
Procedia PDF Downloads 1482337 Challenges of Design, Cost and Surveying in Dams
Authors: Ali Mohammadi
Abstract:
The construction of Embankment dams is considered one of the most challenging construction projects, for which several main reasons can be mentioned. Excavation and embankment must be done in a large area, and its design is based on preliminary studies, but at the time of construction, it is possible that excavation does not match with the stability or slope of the rock, or the design is incomplete, and corrections should be made in order to be able to carry out excavation and embankment. Also, the progress of the work depends on the main factors, the lack of each of which can slow down the construction of the dams, and lead to an increase in costs, and control of excavations and embankments and calculations of their volumes are done in this collection. In the following, we will investigate three Embankment dams in Iran that faced these challenges and how they overcame these challenges. KHODA AFARIN on the Aras River between the two countries of IRAN and AZARBAIJAN, SIAH BISHEH PUMPED STORAGE on CHALUS River and GOTVAND on KARUN River are among the most important dams built in Iran.Keywords: section, data transfer, tunnel, free station
Procedia PDF Downloads 732336 Experimental Study of a Solar Still with Four Glass Cover
Authors: Zakaria Haddad, Azzedine Nahoui, Mohamed Salmi, Ali Djagham
Abstract:
Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still.Keywords: drinking water, four glass cover, production, solar distillation
Procedia PDF Downloads 1372335 Magnetic Navigation in Underwater Networks
Authors: Kumar Divyendra
Abstract:
Underwater Sensor Networks (UWSNs) have wide applications in areas such as water quality monitoring, marine wildlife management etc. A typical UWSN system consists of a set of sensors deployed randomly underwater which communicate with each other using acoustic links. RF communication doesn't work underwater, and GPS too isn't available underwater. Additionally Automated Underwater Vehicles (AUVs) are deployed to collect data from some special nodes called Cluster Heads (CHs). These CHs aggregate data from their neighboring nodes and forward them to the AUVs using optical links when an AUV is in range. This helps reduce the number of hops covered by data packets and helps conserve energy. We consider the three-dimensional model of the UWSN. Nodes are initially deployed randomly underwater. They attach themselves to the surface using a rod and can only move upwards or downwards using a pump and bladder mechanism. We use graph theory concepts to maximize the coverage volume while every node maintaining connectivity with at least one surface node. We treat the surface nodes as landmarks and each node finds out its hop distance from every surface node. We treat these hop-distances as coordinates and use them for AUV navigation. An AUV intending to move closer to a node with given coordinates moves hop by hop through nodes that are closest to it in terms of these coordinates. In absence of GPS, multiple different approaches like Inertial Navigation System (INS), Doppler Velocity Log (DVL), computer vision-based navigation, etc., have been proposed. These systems have their own drawbacks. INS accumulates error with time, vision techniques require prior information about the environment. We propose a method that makes use of the earth's magnetic field values for navigation and combines it with other methods that simultaneously increase the coverage volume under the UWSN. The AUVs are fitted with magnetometers that measure the magnetic intensity (I), horizontal inclination (H), and Declination (D). The International Geomagnetic Reference Field (IGRF) is a mathematical model of the earth's magnetic field, which provides the field values for the geographical coordinateson earth. Researchers have developed an inverse deep learning model that takes the magnetic field values and predicts the location coordinates. We make use of this model within our work. We combine this with with the hop-by-hop movement described earlier so that the AUVs move in such a sequence that the deep learning predictor gets trained as quickly and precisely as possible We run simulations in MATLAB to prove the effectiveness of our model with respect to other methods described in the literature.Keywords: clustering, deep learning, network backbone, parallel computing
Procedia PDF Downloads 982334 Mapping and Mitigation Strategy for Flash Flood Hazards: A Case Study of Bishoftu City
Authors: Berhanu Keno Terfa
Abstract:
Flash floods are among the most dangerous natural disasters that pose a significant threat to human existence. They occur frequently and can cause extensive damage to homes, infrastructure, and ecosystems while also claiming lives. Although flash floods can happen anywhere in the world, their impact is particularly severe in developing countries due to limited financial resources, inadequate drainage systems, substandard housing options, lack of early warning systems, and insufficient preparedness. To address these challenges, a comprehensive study has been undertaken to analyze and map flood inundation using Geographic Information System (GIS) techniques by considering various factors that contribute to flash flood resilience and developing effective mitigation strategies. Key factors considered in the analysis include slope, drainage density, elevation, Curve Number, rainfall patterns, land-use/cover classes, and soil data. These variables were computed using ArcGIS software platforms, and data from the Sentinel-2 satellite image (with a 10-meter resolution) were utilized for land-use/cover classification. Additionally, slope, elevation, and drainage density data were generated from the 12.5-meter resolution of the ALOS Palsar DEM, while other relevant data were obtained from the Ethiopian Meteorological Institute. By integrating and regularizing the collected data through GIS and employing the analytic hierarchy process (AHP) technique, the study successfully delineated flash flood hazard zones (FFHs) and generated a suitable land map for urban agriculture. The FFH model identified four levels of risk in Bishoftu City: very high (2106.4 ha), high (10464.4 ha), moderate (1444.44 ha), and low (0.52 ha), accounting for 15.02%, 74.7%, 10.1%, and 0.004% of the total area, respectively. The results underscore the vulnerability of many residential areas in Bishoftu City, particularly the central areas that have been previously developed. Accurate spatial representation of flood-prone areas and potential agricultural zones is crucial for designing effective flood mitigation and agricultural production plans. The findings of this study emphasize the importance of flood risk mapping in raising public awareness, demonstrating vulnerability, strengthening financial resilience, protecting the environment, and informing policy decisions. Given the susceptibility of Bishoftu City to flash floods, it is recommended that the municipality prioritize urban agriculture adaptation, proper settlement planning, and drainage network design.Keywords: remote sensing, flush flood hazards, Bishoftu, GIS.
Procedia PDF Downloads 352333 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format
Authors: Maryam Fallahpoor, Biswajeet Pradhan
Abstract:
Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format
Procedia PDF Downloads 882332 Plotting of an Ideal Logic versus Resource Outflow Graph through Response Analysis on a Strategic Management Case Study Based Questionnaire
Authors: Vinay A. Sharma, Shiva Prasad H. C.
Abstract:
The initial stages of any project are often observed to be in a mixed set of conditions. Setting up the project is a tough task, but taking the initial decisions is rather not complex, as some of the critical factors are yet to be introduced into the scenario. These simple initial decisions potentially shape the timeline and subsequent events that might later be plotted on it. Proceeding towards the solution for a problem is the primary objective in the initial stages. The optimization in the solutions can come later, and hence, the resources deployed towards attaining the solution are higher than what they would have been in the optimized versions. A ‘logic’ that counters the problem is essentially the core of the desired solution. Thus, if the problem is solved, the deployment of resources has led to the required logic being attained. As the project proceeds along, the individuals working on the project face fresh challenges as a team and are better accustomed to their surroundings. The developed, optimized solutions are then considered for implementation, as the individuals are now experienced, and know better of the consequences and causes of possible failure, and thus integrate the adequate tolerances wherever required. Furthermore, as the team graduates in terms of strength, acquires prodigious knowledge, and begins its efficient transfer, the individuals in charge of the project along with the managers focus more on the optimized solutions rather than the traditional ones to minimize the required resources. Hence, as time progresses, the authorities prioritize attainment of the required logic, at a lower amount of dedicated resources. For empirical analysis of the stated theory, leaders and key figures in organizations are surveyed for their ideas on appropriate logic required for tackling a problem. Key-pointers spotted in successfully implemented solutions are noted from the analysis of the responses and a metric for measuring logic is developed. A graph is plotted with the quantifiable logic on the Y-axis, and the dedicated resources for the solutions to various problems on the X-axis. The dedicated resources are plotted over time, and hence the X-axis is also a measure of time. In the initial stages of the project, the graph is rather linear, as the required logic will be attained, but the consumed resources are also high. With time, the authorities begin focusing on optimized solutions, since the logic attained through them is higher, but the resources deployed are comparatively lower. Hence, the difference between consecutive plotted ‘resources’ reduces and as a result, the slope of the graph gradually increases. On an overview, the graph takes a parabolic shape (beginning on the origin), as with each resource investment, ideally, the difference keeps on decreasing, and the logic attained through the solution keeps increasing. Even if the resource investment is higher, the managers and authorities, ideally make sure that the investment is being made on a proportionally high logic for a larger problem, that is, ideally the slope of the graph increases with the plotting of each point.Keywords: decision-making, leadership, logic, strategic management
Procedia PDF Downloads 1082331 Optimisation of the Hydrometeorological-Hydrometric Network: A Case Study in Greece
Authors: E. Baltas, E. Feloni, G. Bariamis
Abstract:
The operation of a network of hydrometeorological-hydrometric stations is basic infrastructure for the management of water resources, as well as, for flood protection. The assessment of water resources potential led to the necessity of adoption management practices including a multi-criteria analysis for the optimum design of the region’s station network. This research work aims at the optimisation of a new/existing network, using GIS methods. The planning of optimum network stations is based on the guidelines of international organizations such as World Meteorological Organization (WMO). The uniform spatial distribution of the stations, the drainage basin for the hydrometric stations and criteria concerning the low terrain slope, the accessibility to the stations and proximity to hydrological interest sites, were taken into consideration for its development. The abovementioned methodology has been implemented for two different areas the Florina municipality and the Argolis area in Greece, and comparison of the results has been conducted.Keywords: GIS, hydrometeorological, hydrometric, network, optimisation
Procedia PDF Downloads 287