Search results for: advanced glycation end-products
1034 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.Keywords: analog circuits, digital circuits, memristors, neuromorphic computing systems
Procedia PDF Downloads 1761033 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security
Authors: Shanshan Zhu, Mohammad Nasim
Abstract:
Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection
Procedia PDF Downloads 441032 Actual Nursing Competency among Nurses in Hospital in Vietnam
Authors: Do Thi Ha, Khanitta Nuntaboot
Abstract:
Background: Competency of nurses is vital to safe nursing practice as well as essential component to drive quality of nursing services. There exists little up to date information concerning actual competency among Vietnamese nurses. Purposes: The purpose of this study is to identify the actual nursing competency among nurses in clinical settings in Vietnam. Methods: A qualitative study, ethnographic method, comprised of the participant-observation, in-depth interview, and focus group discussion with multidisciplinary groups of nurses employing in Cho Ray hospital, Vietnam, managers/administrators, nurse teachers, medical doctors, other health care providers, patients and family members which derived from purposeful sampling technique. Content analysis was used for data analysis. Results: Five essential themes of nursing competencies among nurses were identified include (1) knowledge, (2) skills, (3) attitude and value-based nursing practice, (4) legal and ethical competencies, and (5) transcultural competencies. Basic and advanced knowledge were identified as further two dimensions of knowledge. There were five sub themes identified as further dimensions of skills include technical skills, communication skills, organizing and management skills, teamwork and interrelationship, and critical thinking skills. Conclusions: The findings from this study provide valuable information and understanding of the actual competency among nurses in clinical settings in Vietnam. It is expected that this understanding would assist in developing a guide to nursing education and training, nursing practice and relevant policy regulation used for promoting nursing competency among nurses.Keywords: ethnographic method, nursing competency, qualitative design, Vietnam
Procedia PDF Downloads 2861031 An Extensible Software Infrastructure for Computer Aided Custom Monitoring of Patients in Smart Homes
Authors: Ritwik Dutta, Marylin Wolf
Abstract:
This paper describes the trade-offs and the design from scratch of a self-contained, easy-to-use health dashboard software system that provides customizable data tracking for patients in smart homes. The system is made up of different software modules and comprises a front-end and a back-end component. Built with HTML, CSS, and JavaScript, the front-end allows adding users, logging into the system, selecting metrics, and specifying health goals. The back-end consists of a NoSQL Mongo database, a Python script, and a SimpleHTTPServer written in Python. The database stores user profiles and health data in JSON format. The Python script makes use of the PyMongo driver library to query the database and displays formatted data as a daily snapshot of user health metrics against target goals. Any number of standard and custom metrics can be added to the system, and corresponding health data can be fed automatically, via sensor APIs or manually, as text or picture data files. A real-time METAR request API permits correlating weather data with patient health, and an advanced query system is implemented to allow trend analysis of selected health metrics over custom time intervals. Available on the GitHub repository system, the project is free to use for academic purposes of learning and experimenting, or practical purposes by building on it.Keywords: flask, Java, JavaScript, health monitoring, long-term care, Mongo, Python, smart home, software engineering, webserver
Procedia PDF Downloads 3911030 Interpretation and Prediction of Geotechnical Soil Parameters Using Ensemble Machine Learning
Authors: Goudjil kamel, Boukhatem Ghania, Jlailia Djihene
Abstract:
This paper delves into the development of a sophisticated desktop application designed to calculate soil bearing capacity and predict limit pressure. Drawing from an extensive review of existing methodologies, the study meticulously examines various approaches employed in soil bearing capacity calculations, elucidating their theoretical foundations and practical applications. Furthermore, the study explores the burgeoning intersection of artificial intelligence (AI) and geotechnical engineering, underscoring the transformative potential of AI- driven solutions in enhancing predictive accuracy and efficiency.Central to the research is the utilization of cutting-edge machine learning techniques, including Artificial Neural Networks (ANN), XGBoost, and Random Forest, for predictive modeling. Through comprehensive experimentation and rigorous analysis, the efficacy and performance of each method are rigorously evaluated, with XGBoost emerging as the preeminent algorithm, showcasing superior predictive capabilities compared to its counterparts. The study culminates in a nuanced understanding of the intricate dynamics at play in geotechnical analysis, offering valuable insights into optimizing soil bearing capacity calculations and limit pressure predictions. By harnessing the power of advanced computational techniques and AI-driven algorithms, the paper presents a paradigm shift in the realm of geotechnical engineering, promising enhanced precision and reliability in civil engineering projects.Keywords: limit pressure of soil, xgboost, random forest, bearing capacity
Procedia PDF Downloads 251029 TimeTune: Personalized Study Plans Generation with Google Calendar Integration
Authors: Chevon Fernando, Banuka Athuraliya
Abstract:
The purpose of this research is to provide a solution to the students’ time management, which usually becomes an issue because students must study and manage their personal commitments. "TimeTune," an AI-based study planner that provides an opportunity to maneuver study timeframes by incorporating modern machine learning algorithms with calendar applications, is unveiled as the ideal solution. The research is focused on the development of LSTM models that connect to the Google Calendar API in the process of developing learning paths that would be fit for a unique student's daily life experience and study history. A key finding of this research is the success in building the LSTM model to predict optimal study times, which, integrating with the real-time data of Google Calendar, will generate the timetables automatically in a personalized and customized manner. The methodology encompasses Agile development practices and Object-Oriented Analysis and Design (OOAD) principles, focusing on user-centric design and iterative development. By adopting this method, students can significantly reduce the tension associated with poor study habits and time management. In conclusion, "TimeTune" displays an advanced step in personalized education technology. The fact that its application of ML algorithms and calendar integration is quite innovative is slowly and steadily revolutionizing the lives of students. The excellence of maintaining a balanced academic and personal life is stress reduction, which the applications promise to provide for students when it comes to managing their studies.Keywords: personalized learning, study planner, time management, calendar integration
Procedia PDF Downloads 491028 Photocatalytic Degradation of Nd₂O₃@SiO₂ Core-Shell Nanocomposites Under UV Irradiation Against Methylene Blue and Rhodamine B Dyes
Abstract:
Over the past years, industrial dyes have emerged as a significant threat to aquatic life, extensively detected in drinking water and groundwater, thus contributing to water pollution due to their improper and excessive use. To address this issue, the utilization of core-shell structures has been prioritized as it demonstrates remarkable efficiency in utilizing light energy for catalytic reactions and exhibiting excellent photocatalytic activity despite the availability of various photocatalysts. This work focuses on the photocatalytic degradation of Nd₂O₃@SiO₂ CSNs under UV light irradiation against MB and RhB dyes. Different characterization techniques, including XRD, FTIR, and TEM analyses, were employed to reveal the material's structure, functional groups, and morphological features. VSM and XPS analyses confirmed the soft, paramagnetic nature and chemical states with respective atomic percentages, respectively. Optical band gaps, determined using the Tauc plot model, indicated 4.24 eV and 4.13 eV for Nd₂O₃ NPs and Nd₂O₃@SiO₂ CSNs, respectively. The reduced bandgap energy of Nd₂O₃@SiO₂ CSNs enhances light absorption in the UV range, potentially leading to improved photocatalytic efficiency. The Nd₂O₃@SiO₂ CSNs exhibited greater degradation efficiency, reaching 95% and 96% against MB and RhB dyes, while Nd₂O₃ NPs showed 90% and 92%, respectively. The enhanced efficiency of Nd₂O₃@SiO₂ CSNs can be attributed to the larger specific surface area provided by the SiO₂ shell, as confirmed by surface area analysis using the BET surface area analyzer through N₂ adsorption-desorption.Keywords: core shell nanocomposites, rare earth oxides, photocatalysis, advanced oxidation process
Procedia PDF Downloads 721027 The Pricing-Out Phenomenon in the U.S. Housing Market
Authors: Francesco Berald, Yunhui Zhao
Abstract:
The COVID-19 pandemic further extended the multi-year housing boom in advanced economies and emerging markets alike against massive monetary easing during the pandemic. In this paper, we analyze the pricing-out phenomenon in the U.S. residential housing market due to higher house prices associated with monetary easing. We first set up a stylized general equilibrium model and show that although monetary easing decreases the mortgage payment burden, it would raise house prices and lower housing affordability for first-time homebuyers (through the initial housing wealth channel and the liquidity constraint channel that increases repeat buyers’ housing demand), and increase housing wealth inequality between first-time and repeat homebuyers. We then use the U.S. household-level data to quantify the effect of the house price change on housing affordability relative to that of the interest rate change. We find evidence of the pricing-out effect for all homebuyers; moreover, we find that the pricing-out effect is stronger for first-time homebuyers than for repeat homebuyers. The paper highlights the importance of accounting for general equilibrium effects and distributional implications of monetary policy while assessing housing affordability. It also calls for complementing monetary easing with well-targeted policy measures that can boost housing affordability, particularly for first-time and lower-income households. Such measures are also needed during aggressive monetary tightening, given that the fall in house prices may be insufficient or too slow to fully offset the immediate adverse impact of higher rates on housing affordability.Keywords: pricing-out, U.S. housing market, housing affordability, distributional effects, monetary policy
Procedia PDF Downloads 371026 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates
Authors: Bongs Lainjo
Abstract:
Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum
Procedia PDF Downloads 1751025 Human Immune Response to Surgery: The Surrogate Prediction of Postoperative Outcomes
Authors: Husham Bayazed
Abstract:
Immune responses following surgical trauma play a pivotal role in predicting postoperative outcomes from healing and recovery to postoperative complications. Postoperative complications, including infections and protracted recovery, occur in a significant number of about 300 million surgeries performed annually worldwide. Complications cause personal suffering along with a significant economic burden on the healthcare system in any community. The accurate prediction of postoperative complications and patient-targeted interventions for their prevention remain major clinical provocations. Recent Findings: Recent studies are focusing on immune dysregulation mechanisms that occur in response to surgical trauma as a key determinant of postoperative complications. Antecedent studies mainly were plunging into the detection of inflammatory plasma markers, which facilitate in providing important clues regarding their pathogenesis. However, recent Single-cell technologies, such as mass cytometry or single-cell RNA sequencing, have markedly enhanced our ability to understand the immunological basis of postoperative immunological trauma complications and to identify their prognostic biological signatures. Summary: The advent of proteomic technologies has significantly advanced our ability to predict the risk of postoperative complications. Multiomic modeling of patients' immune states holds promise for the discovery of preoperative predictive biomarkers and providing patients and surgeons with information to improve surgical outcomes. However, more studies are required to accurately predict the risk of postoperative complications in individual patients.Keywords: immune dysregulation, postoperative complications, surgical trauma, flow cytometry
Procedia PDF Downloads 871024 Influences of Separation of the Boundary Layer in the Reservoir Pressure in the Shock Tube
Authors: Bruno Coelho Lima, Joao F.A. Martos, Paulo G. P. Toro, Israel S. Rego
Abstract:
The shock tube is a ground-facility widely used in aerospace and aeronautics science and technology for studies on gas dynamic and chemical-physical processes in gases at high-temperature, explosions and dynamic calibration of pressure sensors. A shock tube in its simplest form is comprised of two separate tubes of equal cross-section by a diaphragm. The diaphragm function is to separate the two reservoirs at different pressures. The reservoir containing high pressure is called the Driver, the low pressure reservoir is called Driven. When the diaphragm is broken by pressure difference, a normal shock wave and non-stationary (named Incident Shock Wave) will be formed in the same place of diaphragm and will get around toward the closed end of Driven. When this shock wave reaches the closer end of the Driven section will be completely reflected. Now, the shock wave will interact with the boundary layer that was created by the induced flow by incident shock wave passage. The interaction between boundary layer and shock wave force the separation of the boundary layer. The aim of this paper is to make an analysis of influences of separation of the boundary layer in the reservoir pressure in the shock tube. A comparison among CDF (Computational Fluids Dynamics), experiments test and analytical analysis were performed. For the analytical analysis, some routines in Python was created, in the numerical simulations (Computational Fluids Dynamics) was used the Ansys Fluent, and the experimental tests were used T1 shock tube located in IEAv (Institute of Advanced Studies).Keywords: boundary layer separation, moving shock wave, shock tube, transient simulation
Procedia PDF Downloads 3151023 Quantifying Meaning in Biological Systems
Authors: Richard L. Summers
Abstract:
The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential.Keywords: meaning, information, Lyapunov, living systems
Procedia PDF Downloads 1311022 Transforming Healthcare with Immersive Visualization: An Analysis of Virtual and Holographic Health Information Platforms
Authors: Hossein Miri, Zhou YongQi, Chan Bormei-Suy
Abstract:
The development of advanced technologies and innovative solutions has opened up exciting new possibilities for revolutionizing healthcare systems. One such emerging concept is the use of virtual and holographic health information platforms that aim to provide interactive and personalized medical information to users. This paper provides a review of notable virtual and holographic health information platforms. It begins by highlighting the need for information visualization and 3D representation in healthcare. It then proceeds to provide background knowledge on information visualization and historical developments in 3D visualization technology. Additional domain knowledge concerning holography, holographic computing, and mixed reality is then introduced, followed by highlighting some of their common applications and use cases. After setting the scene and defining the context, the need and importance of virtual and holographic visualization in medicine are discussed. Subsequently, some of the current research areas and applications of digital holography and holographic technology are explored, alongside the importance and role of virtual and holographic visualization in genetics and genomics. An analysis of the key principles and concepts underlying virtual and holographic health information systems is presented, as well as their potential implications for healthcare are pointed out. The paper concludes by examining the most notable existing mixed-reality applications and systems that help doctors visualize diagnostic and genetic data and assist in patient education and communication. This paper is intended to be a valuable resource for researchers, developers, and healthcare professionals who are interested in the use of virtual and holographic technologies to improve healthcare.Keywords: virtual, holographic, health information platform, personalized interactive medical information
Procedia PDF Downloads 891021 Numerical Investigation of a Spiral Bladed Tidal Turbine
Authors: Mohammad Fereidoonnezhad, Seán Leen, Stephen Nash, Patrick McGarry
Abstract:
From the perspective of research innovation, the tidal energy industry is still in its early stages. While a very small number of turbines have progressed to utility-scale deployment, blade breakage is commonly reported due to the enormous hydrodynamic loading applied to devices. The aim of this study is the development of computer simulation technologies for the design of next-generation fibre-reinforced composite tidal turbines. This will require significant technical advances in the areas of tidal turbine testing and multi-scale computational modelling. The complex turbine blade profiles are designed to incorporate non-linear distributions of airfoil sections to optimize power output and self-starting capability while reducing power fluctuations. A number of candidate blade geometries are investigated, ranging from spiral geometries to parabolic geometries, with blades arranged in both cylindrical and spherical configurations on a vertical axis turbine. A combined blade element theory (BET-start-up model) is developed in MATLAB to perform computationally efficient parametric design optimisation for a range of turbine blade geometries. Finite element models are developed to identify optimal fibre-reinforced composite designs to increase blade strength and fatigue life. Advanced fluid-structure-interaction models are also carried out to compute blade deflections following design optimisation.Keywords: tidal turbine, composite materials, fluid-structure-interaction, start-up capability
Procedia PDF Downloads 1231020 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System
Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky
Abstract:
A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system
Procedia PDF Downloads 1331019 Efficient Fuzzy Classified Cryptographic Model for Intelligent Encryption Technique towards E-Banking XML Transactions
Authors: Maher Aburrous, Adel Khelifi, Manar Abu Talib
Abstract:
Transactions performed by financial institutions on daily basis require XML encryption on large scale. Encrypting large volume of message fully will result both performance and resource issues. In this paper a novel approach is presented for securing financial XML transactions using classification data mining (DM) algorithms. Our strategy defines the complete process of classifying XML transactions by using set of classification algorithms, classified XML documents processed at later stage using element-wise encryption. Classification algorithms were used to identify the XML transaction rules and factors in order to classify the message content fetching important elements within. We have implemented four classification algorithms to fetch the importance level value within each XML document. Classified content is processed using element-wise encryption for selected parts with "High", "Medium" or “Low” importance level values. Element-wise encryption is performed using AES symmetric encryption algorithm and proposed modified algorithm for AES to overcome the problem of computational overhead, in which substitute byte, shift row will remain as in the original AES while mix column operation is replaced by 128 permutation operation followed by add round key operation. An implementation has been conducted using data set fetched from e-banking service to present system functionality and efficiency. Results from our implementation showed a clear improvement in processing time encrypting XML documents.Keywords: XML transaction, encryption, Advanced Encryption Standard (AES), XML classification, e-banking security, fuzzy classification, cryptography, intelligent encryption
Procedia PDF Downloads 4121018 Distributed Cost-Based Scheduling in Cloud Computing Environment
Authors: Rupali, Anil Kumar Jaiswal
Abstract:
Cloud computing can be defined as one of the prominent technologies that lets a user change, configure and access the services online. it can be said that this is a prototype of computing that helps in saving cost and time of a user practically the use of cloud computing can be found in various fields like education, health, banking etc. Cloud computing is an internet dependent technology thus it is the major responsibility of Cloud Service Providers(CSPs) to care of data stored by user at data centers. Scheduling in cloud computing environment plays a vital role as to achieve maximum utilization and user satisfaction cloud providers need to schedule resources effectively. Job scheduling for cloud computing is analyzed in the following work. To complete, recreate the task calculation, and conveyed scheduling methods CloudSim3.0.3 is utilized. This research work discusses the job scheduling for circulated processing condition also by exploring on this issue we find it works with minimum time and less cost. In this work two load balancing techniques have been employed: ‘Throttled stack adjustment policy’ and ‘Active VM load balancing policy’ with two brokerage services ‘Advanced Response Time’ and ‘Reconfigure Dynamically’ to evaluate the VM_Cost, DC_Cost, Response Time, and Data Processing Time. The proposed techniques are compared with Round Robin scheduling policy.Keywords: physical machines, virtual machines, support for repetition, self-healing, highly scalable programming model
Procedia PDF Downloads 1691017 Communication Tools Used in Teaching and Their Effects: An Empirical Study on the T. C. Selcuk University Samples
Authors: Sedat Simsek, Tugay Arat
Abstract:
Today's communication concept, which has a great revolution with the printing press which has been found by Gutenberg, has no boundary thanks to advanced communication devices and the internet. It is possible to take advantage in many areas, such as from medicine to social sciences or from mathematics to education, from the computers that was first produced for the purpose of military services. The use of these developing technologies in the field of education has created a great vision changes in both training and having education. Materials, which can be considered as basic communication resources and used in traditional education has begun to lose its significance, and some technologies have begun to replace them such as internet, computers, smart boards, projection devices and mobile phone. On the other hand, the programs and applications used in these technologies have also been developed. University students use virtual books instead of the traditional printed book, use cell phones instead of note books, use the internet and virtual databases instead of the library to research. They even submit their homework with interactive methods rather than printed materials. The traditional education system, these technologies, which increase productivity, have brought a new dimension to education. The aim of this study is to determine the influence of technologies in the learning process of students and to find whether is there any similarities and differences that arise from the their faculty that they have been educated and and their learning process. In addition to this, it is aimed to determine the level of ICT usage of students studying at the university level. In this context, the advantages and conveniences of the technology used by students are also scrutinized. In this study, we used surveys to collect data. The data were analyzed by using SPSS 16 statistical program with the appropriate testing.Keywords: education, communication technologies, role of technology, teaching
Procedia PDF Downloads 3051016 Energy Efficiency and Sustainability Analytics for Reducing Carbon Emissions in Oil Refineries
Authors: Gaurav Kumar Sinha
Abstract:
The oil refining industry, significant in its energy consumption and carbon emissions, faces increasing pressure to reduce its environmental footprint. This article explores the application of energy efficiency and sustainability analytics as crucial tools for reducing carbon emissions in oil refineries. Through a comprehensive review of current practices and technologies, this study highlights innovative analytical approaches that can significantly enhance energy efficiency. We focus on the integration of advanced data analytics, including machine learning and predictive modeling, to optimize process controls and energy use. These technologies are examined for their potential to not only lower energy consumption but also reduce greenhouse gas emissions. Additionally, the article discusses the implementation of sustainability analytics to monitor and improve environmental performance across various operational facets of oil refineries. We explore case studies where predictive analytics have successfully identified opportunities for reducing energy use and emissions, providing a template for industry-wide application. The challenges associated with deploying these analytics, such as data integration and the need for skilled personnel, are also addressed. The paper concludes with strategic recommendations for oil refineries aiming to enhance their sustainability practices through the adoption of targeted analytics. By implementing these measures, refineries can achieve significant reductions in carbon emissions, aligning with global environmental goals and regulatory requirements.Keywords: energy efficiency, sustainability analytics, carbon emissions, oil refineries, data analytics, machine learning, predictive modeling, process optimization, greenhouse gas reduction, environmental performance
Procedia PDF Downloads 321015 Hybrid Heat Pump for Micro Heat Network
Authors: J. M. Counsell, Y. Khalid, M. J. Stewart
Abstract:
Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat. For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system. This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric
Procedia PDF Downloads 4201014 Effectiveness of Catalysis in Ozonation for the Removal of Herbizide 2,4 Dichlorophenoxyacetic Acid from Contaminated Water
Authors: S. Shanthi
Abstract:
Catalyzed oxidation processes show extraordinary guarantee for application in numerous wastewater treatment ranges. Advanced oxidation processes are emerging innovation that might be utilized for particular objectives in wastewater treatment. This research work provides a solution for removal a refractory organic compound 2,4-dichlorophenoxyaceticacid a common water pollutant. All studies were done in batch mode in a constantly stirred reactor. Alternative ozonation processes catalysed by transition metals or granular activated carbon have been investigated for degradation of organics. Catalytic ozonation under study are homogeneous catalytic ozonation, which is based on ozone activation by transition metal ions present in aqueous solution, and secondly as heterogeneous catalytic ozonation in the presence of Granular Activated Carbon (GAC). The present studies reveal that heterogeneous catalytic ozonation using GAC favour the ozonation of 2,4-dichlorophenoxyaceticacid by increasing the rate of ozonation and a much higher degradation of substrates were obtained in a given time. Be that it may, Fe2+and Fe3+ ions decreased the rate of degradation of 2,4-dichlorophenoxyaceticacid indicating that it acts as a negative catalyst. In case of heterogeneous catalytic ozonation using GAC catalyst it was found that during the initial 5 minutes of contact solution concentration decreased significantly as the pollutants were adsorbed initially. Thereafter the substrate started getting oxidized and ozonation became a dominates the treatment process. The exhausted GAC was found to be regenerated in situ. The percentage reduction of the substrate was maximum achieved in minimum possible time when GAC catalyst is employed.Keywords: ozonation, homogeneous catalysis, heterogeneous catalysis, granular activated carbon
Procedia PDF Downloads 2501013 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 1971012 Evaluating a Holistic Fitness Program Used by High Performance Athletes and Mass Participants
Authors: Peter Smolianov, Jed Smith, Lisa Chen, Steven Dion, Christopher Schoen, Jaclyn Norberg
Abstract:
This study evaluated the effectiveness of an experimental training program used to improve performance and health of competitive athletes and recreational sport participants. This holistic program integrated and advanced Eastern and Western methods of prolonging elite sports participation and enjoying lifelong fitness, particularly from China, India, Russia, and the United States. The program included outdoor, gym, and water training approaches focused on strengthening while stretching/decompressing and on full body activation-all in order to improve performance as well as treat and prevent common disorders and pains. The study observed and surveyed over 100 users of the program including recreational fitness and sports enthusiasts as well as elite athletes who competed for national teams of different countries and for Division I teams of National Collegiate Athletic Association in the United States. Different types of sport were studied, including territorial games (e.g., American football, basketball, volleyball), endurance/cyclical (athletics/track and field, swimming), and artistic (e.g., gymnastics and synchronized swimming). Results of the study showed positive effects on the participants’ performance and health, particularly for those who used the program for more than two years and especially in reducing spinal disorders and in enabling to perform new training tasks which previously caused back pain.Keywords: lifelong fitness, injury prevention, prolonging sport participation, improving performance and health
Procedia PDF Downloads 1561011 Influence of Alcohol Consumption on Attention in Wistar Albino Rats
Authors: Adekunle Adesina, Dorcas Adesina
Abstract:
This Research investigated the influence of alcohol consumption on attention in Wister albino rats. It was designed to test whether or not alcohol consumption affected visual and auditory attention. The sample of this study comprise of 3males albino rats and 3 females albino rats which were randomly assigned to 3 (male/female each) groups, 1, 2 and 3. The first group which was experimental Group 1 received 4ml of alcohol ingestion with cannula twice daily (morning and evening). The second group which was experimental group 2 received 2ml of alcohol ingestion with cannula twice daily (morning and evening). Third group which was the control group only received water (placebo), all these happened within a period of 2 days. Three hypotheses were advanced and testedf in the study. Hypothesis 1 stated that there will be no significant difference between the response speed of albino rats that consume alcohol and those that consume water on visual attention using 5-CSRTT. This was confirmed (DF (2, 9) = 0.72, P <.05). Hypothesis 2 stated that albino rats who consumed alcohol will perform better than those who consume water on auditory accuracy using 5-CSRTT. This was also tested but not confirmed (DF (2, 9) = 2.10, P< .05). The third hypothesis which stated that female albino rats who consumed alcohol would not perform better than male albino rats who consumed alcohol on auditory accuracy using 5-CSRTT was tested and not confirmed. (DF (4) = 0.17, P < .05). Data was analyzed using one-way ANOVA and T-test for independent measures. It was therefore recommended that government policies and programs should be directed at reducing to the barest minimum the rate of alcohol consumption especially among males as it is detrimental to the human auditory attentional organ.Keywords: alcohol, attention, influence, rats, Wistar
Procedia PDF Downloads 2671010 From Liquid to Solid: Advanced Characterization of Glass Applying Oscillatory Rheometry
Authors: Christopher Giehl, Anja Allabar, Daniela Ehgartner
Abstract:
Rotational rheometry is standard practice for the viscosity measurement of molten glass, neglecting the viscoelastic properties of this material, especially at temperatures approaching the glass transition. Oscillatory rheometry serves as a powerful toolbox for glass melt characterization beyond viscosity measurements. Heating and cooling rates and the time-dependent visco-elastic behavior influence the temperature where materials undergo the glass transition. This study presents quantitative thermo-mechanical visco-elasticity measurements on three samples in the Na-K-Al-Si-O system. The measurements were performed with a Furnace Rheometer System combined with an air-bearing DSR 502 measuring head (Anton Paar) and a Pt90Rh10 measuring geometry. Temperature ramps were conducted in rotation and oscillation, and the (complex) viscosity values were compared to calculated viscosity values based on sample composition. Furthermore, temperature ramps with different frequencies were conducted, also revealing the frequency-dependence of the shear loss modulus G’’ and the shear storage modulus G’. Here, lower oscillatory frequency results in lower glass transition temperature, as defined by the G’-G’’ crossover point. This contribution demonstrates that oscillatory rheometry serves as a powerful toolbox beyond viscosity measurements, as it considers the visco-elasticity of glass melts quantifying viscous and elastic moduli. Further, it offers a strong definition of Tg beyond the 10^12 Pas concept, which cannot be utilized with rotational viscometry data.Keywords: frequency dependent glass transition, Na-K-Al-Si-O glass melts, oscillatory rheometry, visco-elasticity
Procedia PDF Downloads 1081009 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics
Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar
Abstract:
Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic
Procedia PDF Downloads 501008 Azadrachea indica Leaves Extract Assisted Green Synthesis of Ag-TiO₂ for Degradation of Dyes in Aqueous Medium
Authors: Muhammad Saeed, Sheeba Khalid
Abstract:
Aqueous pollution due to the textile industry is an important issue. Photocatalysis using metal oxides as catalysts is one of the methods used for eradication of dyes from textile industrial effluents. In this study, the synthesis, characterization, and evaluation of photocatalytic activity of Ag-TiO₂ are reported. TiO₂ catalysts with 2, 4, 6 and 8% loading of Ag were prepared by green methods using Azadrachea indica leaves' extract as reducing agent and titanium dioxide and silver nitrate as precursor materials. The 4% Ag-TiO₂ exhibited the best catalytic activity for degradation of dyes. Prepared catalyst was characterized by advanced techniques. Catalytic degradation of methylene blue and rhodamine B were carried out in Pyrex glass batch reactor. Deposition of Ag greatly enhanced the catalytic efficiency of TiO₂ towards degradation of dyes. Irradiation of catalyst excites electrons from conduction band of catalyst to valence band yielding an electron-hole pair. These photoexcited electrons and positive hole undergo secondary reaction and produce OH radicals. These active radicals take part in the degradation of dyes. More than 90% of dyes were degraded in 120 minutes. It was found that there was no loss catalytic efficiency of prepared Ag-TiO₂ after recycling it for two times. Photocatalytic degradation of methylene blue and rhodamine B followed Eley-Rideal mechanism which states that dye reacts in fluid phase with adsorbed oxygen. 27 kJ/mol and 20 kJ/mol were found as activation energy for photodegradation of methylene blue and rhodamine B dye respectively.Keywords: TiO₂, Ag-TiO₂, methylene blue, Rhodamine B., photo degradation
Procedia PDF Downloads 1661007 The Role of Phase Morphology on the Corrosion Fatigue Mechanism in Marine Steel
Authors: Victor Igwemezie, Ali Mehmanparast
Abstract:
The correct knowledge of corrosion fatigue mechanism in marine steel is very important. This is because it enables the design, selection, and use of steels for offshore applications. It also supports realistic corrosion fatigue life prediction of marine structures. A study has been conducted to increase the understanding of corrosion fatigue mechanism in marine steels. The materials investigated are normalized and advanced S355 Thermomechanical control process (TMCP) steels commonly used in the design of offshore wind turbine support structures. The experimental study was carried out by conducting corrosion fatigue tests under conditions pertinent to offshore wind turbine operations, using the state of the art facilities. A careful microstructural study of the crack growth path was conducted using metallurgical optical microscope (OM), scanning electron microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX). The test was conducted on three subgrades of S355 steel: S355J2+N, S355G8+M and S355G10+M and the data compared with similar studies in the literature. The result shows that the ferrite-pearlite morphology primarily controls the corrosion-fatigue crack growth path in marine steels. A corrosion fatigue mechanism which relies on the hydrogen embrittlement of the grain boundaries and pearlite phase is used to explain the crack propagation behaviour. The crack growth trend in the Paris region of the da/dN vs. ΔK curve is used to explain the dependency of the corrosion-fatigue crack growth rate on the ferrite-pearlite morphology.Keywords: corrosion-fatigue mechanism, fatigue crack growth rate, ferritic-pearlitic steel, microstructure, phase morphology
Procedia PDF Downloads 1601006 Synthesis, Characterization, and Application of Novel Trihexyltetradecyl Phosphonium Chloride for Extractive Desulfurization of Liquid Fuel
Authors: Swapnil A. Dharaskar, Kailas L. Wasewar, Mahesh N. Varma, Diwakar Z. Shende
Abstract:
Owing to the stringent environmental regulations in many countries for production of ultra low sulfur petroleum fractions intending to reduce sulfur emissions results in enormous interest in this area among the scientific community. The requirement of zero sulfur emissions enhances the prominence for more advanced techniques in desulfurization. Desulfurization by extraction is a promising approach having several advantages over conventional hydrodesulphurization. Present work is dealt with various new approaches for desulfurization of ultra clean gasoline, diesel and other liquid fuels by extraction with ionic liquids. In present paper experimental data on extractive desulfurization of liquid fuel using trihexyl tetradecyl phosphonium chloride has been presented. The FTIR, 1H-NMR, and 13C-NMR have been discussed for the molecular confirmation of synthesized ionic liquid. Further, conductivity, solubility, and viscosity analysis of ionic liquids were carried out. The effects of reaction time, reaction temperature, sulfur compounds, ultrasonication, and recycling of ionic liquid without regeneration on removal of dibenzothiphene from liquid fuel were also investigated. In extractive desulfurization process, the removal of dibenzothiophene in n-dodecane was 84.5% for mass ratio of 1:1 in 30 min at 30OC under the mild reaction conditions. Phosphonium ionic liquids could be reused five times without a significant decrease in activity. Also, the desulfurization of real fuels, multistage extraction was examined. The data and results provided in present paper explore the significant insights of phosphonium based ionic liquids as novel extractant for extractive desulfurization of liquid fuels.Keywords: ionic liquid, PPIL, desulfurization, liquid fuel, extraction
Procedia PDF Downloads 6091005 A Worldwide Assessment of Geothermal Energy Policy: Systematic, Qualitative and Critical Literature Review
Authors: Diego Moya, Juan Paredes, Clay Aldas, Ramiro Tite, Prasad Kaparaju
Abstract:
Globally, energy policy for geothermal development is addressed in different forms, depending on the economy, resources, country-development, environment aspects and technology access. Although some countries have established strong regulations and standards for geothermal exploration, exploitation and sustainable use at the policy level (government departments and institutions), others have discussed geothermal laws at legal levels (congress – a national legislative body of a country). Appropriate regulations are needed not only to meet local and international funding requirements but also to avoid speculation in the use of the geothermal resource. In this regards, this paper presents the results of a systematic, qualitative and critical literature review of geothermal energy policy worldwide addressing two scenarios: policy and legal levels. At first, literature is collected and classified from scientific and government sources regarding geothermal energy policy of the most advanced geothermal producing countries, including Iceland, New Zealand, Mexico, the USA, Central America, Italy, Japan, Philippines, Indonesia, Kenia, and Australia. This is followed by a systematic review of the literature aiming to know the best geothermal practices and what remains uncertain regarding geothermal policy implementation. This analysis is made considering the stages of geothermal production. Furthermore, a qualitative analysis is conducted comparing the findings across geothermal policies in the countries mentioned above. Then, a critical review aims to identify significant items in the field to be applied in countries with geothermal potential but with no or weak geothermal policies. Finally, patterns and relationships are detected, and conclusions are drawn.Keywords: assessment, geothermal, energy policy, worldwide
Procedia PDF Downloads 387