Search results for: Meshless Methods
14131 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History
Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu
Abstract:
Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation
Procedia PDF Downloads 24514130 An Essay on Origamic and Isomorphic Approach as Interface of Form in Architectural Basic Design Education
Authors: Gamze Atay, Altay Colak
Abstract:
It is a fact that today's technology shapes the change and development of architectural forms by creating different perspectives. The research is an experimental study that explores the integration of architectural forms in this process of change/development into design education through traditional design tools. An examination of the practices in the studio environment shows that the students who just started architectural education have difficulty accessing the form. The main objective of this study has been to enable students to use and interpret different disciplines in the design process to improve their perception of form. In this sense, the origami, which is defined as "the art of paper folding", and isomorphous (equally formed) approaches have been used with design studio students at the beginning stage as methods in the process of 3-dimensional thinking and creating the form. These two methods were examined with students in three stages: analysis, creation, and outcome. As a result of the study, it was seen that the use of different disciplines as a method during form creation gave the designs of the student originality, freedom, and dynamism.Keywords: architectural form, design education, isomorphic approach, origamic approach
Procedia PDF Downloads 15714129 The Effects of Agricultural Waste Compost Applications on Soil Properties
Authors: Ilker Sönmez, Mustafa Kaplan
Abstract:
The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment.Keywords: agricultural wastes, carnation wastes, composting, organic material, spent mushroom compost
Procedia PDF Downloads 38914128 Exploring Managerial Approaches towards Green Manufacturing: A Thematic Analysis
Authors: Hakimeh Masoudigavgani
Abstract:
Since manufacturing firms deplete non-renewable resources and pollute air, soil, and water in greatly unsustainable manner, industrial activities or production of products are considered to be a key contributor to adverse environmental impacts. Hence, management strategies and approaches that involve an effective supply chain decision process in a manufacturing sector could be extremely significant to the application of environmental initiatives. Green manufacturing (GM) is one of these strategies which minimises negative effects on the environment through reducing greenhouse gas emissions, waste, and the consumption of energy and natural resources. This paper aims to explore what greening methods and mechanisms could be applied in the manufacturing supply chain and what are the outcomes of adopting these methods in terms of abating environmental burdens? The study is an interpretive research with an exploratory approach, using thematic analysis by coding text, breaking down and grouping the content of collected literature into various themes and categories. It is found that green supply chain could be attained through execution of some pre-production strategies including green building, eco-design, and green procurement as well as a number of in-production and post-production strategies involving green manufacturing and green logistics. To achieve an effective GM, the pre-production strategies are suggested to be employed. This paper defines GM as (1) the analysis of the ecological impacts generated by practices, products, production processes, and operational functions, and (2) the implementation of greening methods to reduce damaging influences of them on the natural environment. Analysis means assessing, monitoring, and auditing of practices in order to measure and pinpoint their harmful impacts. Moreover, greening methods involved within GM (arranged in order from the least to the most level of environmental compliance and techniques) consist of: •product stewardship (e.g. less use of toxic, non-renewable, and hazardous materials in the manufacture of the product; and stewardship of the environmental problems with regard to the product in all production, use, and end-of-life stages); •process stewardship (e.g. controlling carbon emission, energy and resources usage, transportation method, and disposal; reengineering polluting processes; recycling waste materials generated in production); •lean and clean production practices (e.g. elimination of waste, materials replacement, materials reduction, resource-efficient consumption, energy-efficient usage, emission reduction, managerial assessment, waste re-use); •use of eco-industrial parks (e.g. a shared warehouse, shared logistics management system, energy co-generation plant, effluent treatment). However, the focus of this paper is only on methods related to the in-production phase and needs further research on both pre-production and post-production environmental innovations. The outlined methods in this investigation may possibly be taken into account by policy/decision makers. Additionally, the proposed future research direction and identified gaps can be filled by scholars and researchers. The paper compares and contrasts a variety of viewpoints and enhances the body of knowledge by building a definition for GM through synthesising literature and categorising the strategic concept of greening methods, drivers, barriers, and successful implementing tactics.Keywords: green manufacturing (GM), product stewardship, process stewardship, clean production, eco-industrial parks (EIPs)
Procedia PDF Downloads 58514127 Effective Learning and Testing Methods in School-Aged Children
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharrazi
Abstract:
When we teach, we have two critical elements at our disposal to help students: learning styles as well as testing styles. There are many different ways in which educators can effectively teach their students; verbal learning and experience-based learning. Lecture as a form of verbal learning style is a traditional arrangement in which teachers are more active and share information verbally with students. In experienced-based learning as the process of through, students learn actively through hands-on learning materials and observing teachers or others. Meanwhile, standard testing or assessment is the way to determine progress toward proficiency. Teachers and instructors mainly use essay (requires written responses), multiple choice questions (includes the correct answer and several incorrect answers as distractors), or open-ended questions (respondents answers it with own words). The current study focused on exploring an effective teaching style and testing methods as the function of age over school ages. In the present study, totally 410 participants were selected randomly from four grades (2ⁿᵈ, 4ᵗʰ, 6ᵗʰ, and 8ᵗʰ). Each subject was tested individually in one session lasting around 50 minutes. In learning tasks, the participants were presented three different instructions for learning materials (learning by doing, learning by observing, and learning by listening). Then, they were tested via different standard assessments as free recall, cued recall, and recognition tasks. The results revealed that generally students remember more of what they do and what they observe than what they hear. The age effect was more pronounced in learning by doing than in learning by observing, and learning by listening, becoming progressively stronger in the free-recall, cued-recall, and recognition tasks. The findings of this study indicated that learning by doing and free recall task is more age sensitive, suggesting that both of them are more strategic and more affected by developmental differences. Pedagogically, these results denoted that learning by modeling and engagement in program activities have the special role for learning. Moreover, the findings indicated that the multiple-choice questions can produce the best performance for school-aged children but is less age-sensitive. By contrast, the essay as essay can produce the lowest performance but is more age-sensitive. It will be very helpful for educators to know that what types of learning styles and test methods are most effective for students in each school grade.Keywords: experience-based learning, learning style, school-aged children, testing methods, verbal learning
Procedia PDF Downloads 20714126 Urban Runoff Modeling of Ungauged Volcanic Catchment in Madinah, Western Saudi Arabia
Authors: Fahad Alahmadi, Norhan Abd Rahman, Mohammad Abdulrazzak, Zulikifli Yusop
Abstract:
Runoff prediction of ungauged catchment is still a challenging task especially in arid regions with a unique land cover such as volcanic basalt rocks where geological weathering and fractures are highly significant. In this study, Bathan catchment in Madinah western Saudi Arabia was selected for analysis. The aim of this paper is to evaluate different rainfall loss methods; soil conservation Services curve number (SCS-CN), green-ampt and initial-constant rate. Different direct runoff methods were evaluated: soil conservation services dimensionless unit hydrograph (SCS-UH), Snyder unit hydrograph and Clark unit hydrograph. The study showed the superiority of SCS-CN loss method and Clark unit hydrograph method for ungauged catchment where there is no observed runoff data.Keywords: urban runoff modelling, arid regions, ungauged catchments, volcanic rocks, Madinah, Saudi Arabia
Procedia PDF Downloads 40914125 Experimental Partial Discharge Localization for Internal Short Circuits of Transformers Windings
Authors: Jalal M. Abdallah
Abstract:
This paper presents experimental studies carried out on a three phase transformer to investigate and develop the transformer models, which help in testing procedures, describing and evaluating the transformer dielectric conditions process and methods such as: the partial discharge (PD) localization in windings. The measurements are based on the transfer function methods in transformer windings by frequency response analysis (FRA). Numbers of tests conditions were applied to obtain the sensitivity frequency responses of a transformer for different type of faults simulated in a particular phase. The frequency responses were analyzed for the sensitivity of different test conditions to detect and identify the starting of small faults, which are sources of PD. In more detail, the aim is to explain applicability and sensitivity of advanced PD measurements for small short circuits and its localization. The experimental results presented in the paper will help in understanding the sensitivity of FRA measurements in detecting various types of internal winding short circuits in the transformer.Keywords: frequency response analysis (FRA), measurements, transfer function, transformer
Procedia PDF Downloads 28414124 Mutiple Medical Landmark Detection on X-Ray Scan Using Reinforcement Learning
Authors: Vijaya Yuvaram Singh V M, Kameshwar Rao J V
Abstract:
The challenge with development of neural network based methods for medical is the availability of data. Anatomical landmark detection in the medical domain is a process to find points on the x-ray scan report of the patient. Most of the time this task is done manually by trained professionals as it requires precision and domain knowledge. Traditionally object detection based methods are used for landmark detection. Here, we utilize reinforcement learning and query based method to train a single agent capable of detecting multiple landmarks. A deep Q network agent is trained to detect single and multiple landmarks present on hip and shoulder from x-ray scan of a patient. Here a single agent is trained to find multiple landmark making it superior to having individual agents per landmark. For the initial study, five images of different patients are used as the environment and tested the agents performance on two unseen images.Keywords: reinforcement learning, medical landmark detection, multi target detection, deep neural network
Procedia PDF Downloads 14714123 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 19114122 Forecasting Unemployment Rate in Selected European Countries Using Smoothing Methods
Authors: Ksenija Dumičić, Anita Čeh Časni, Berislav Žmuk
Abstract:
The aim of this paper is to select the most accurate forecasting method for predicting the future values of the unemployment rate in selected European countries. In order to do so, several forecasting techniques adequate for forecasting time series with trend component, were selected, namely: double exponential smoothing (also known as Holt`s method) and Holt-Winters` method which accounts for trend and seasonality. The results of the empirical analysis showed that the optimal model for forecasting unemployment rate in Greece was Holt-Winters` additive method. In the case of Spain, according to MAPE, the optimal model was double exponential smoothing model. Furthermore, for Croatia and Italy the best forecasting model for unemployment rate was Holt-Winters` multiplicative model, whereas in the case of Portugal the best model to forecast unemployment rate was Double exponential smoothing model. Our findings are in line with European Commission unemployment rate estimates.Keywords: European Union countries, exponential smoothing methods, forecast accuracy unemployment rate
Procedia PDF Downloads 37014121 An Assessment of Airport Collaborative Decision-Making System Using Predictive Maintenance
Authors: Faruk Aras, Melih Inal, Tansel Cinar
Abstract:
The coordination of airport staff especially in the operations and maintenance departments is important for the airport operation. As a result, this coordination will increase the efficiency in all operation. Therefore, a Collaborative Decision-Making (CDM) system targets on improving the overall productivity of all operations by optimizing the use of resources and improving the predictability of actions. Enlarged productivity can be of major benefit for all airport operations. It also increases cost-efficiency. This study explains how predictive maintenance using IoT (Internet of Things), predictive operations and the statistical data such as Mean Time To Failure (MTTF) improves airport terminal operations and utilize airport terminal equipment in collaboration with collaborative decision making system/Airport Operation Control Center (AOCC). Data generated by the predictive maintenance methods is retrieved and analyzed by maintenance managers to predict when a problem is about to occur. With that information, maintenance can be scheduled when needed. As an example, AOCC operator would have chance to assign a new gate that towards to this gate all the equipment such as travellator, elevator, escalator etc. are operational if the maintenance team is in collaboration with AOCC since maintenance team is aware of the health of the equipment because of predictive maintenance methods. Applying predictive maintenance methods based on analyzing the health of airport terminal equipment dramatically reduces the risk of downtime by on time repairs. We can classify the categories as high priority calls for urgent repair action, as medium priority requires repair at the earliest opportunity, and low priority allows maintenance to be scheduled when convenient. In all cases, identifying potential problems early resulted in better allocation airport terminal resources by AOCC.Keywords: airport, predictive maintenance, collaborative decision-making system, Airport Operation Control Center (AOCC)
Procedia PDF Downloads 36714120 Exploring the Situational Approach to Decision Making: User eConsent on a Health Social Network
Authors: W. Rowan, Y. O’Connor, L. Lynch, C. Heavin
Abstract:
Situation Awareness can offer the potential for conscious dynamic reflection. In an era of online health data sharing, it is becoming increasingly important that users of health social networks (HSNs) have the information necessary to make informed decisions as part of the registration process and in the provision of eConsent. This research aims to leverage an adapted Situation Awareness (SA) model to explore users’ decision making processes in the provision of eConsent. A HSN platform was used to investigate these behaviours. A mixed methods approach was taken. This involved the observation of registration behaviours followed by a questionnaire and focus group/s. Early results suggest that users are apt to automatically accept eConsent, and only later consider the long-term implications of sharing their personal health information. Further steps are required to continue developing knowledge and understanding of this important eConsent process. The next step in this research will be to develop a set of guidelines for the improved presentation of eConsent on the HSN platform.Keywords: eConsent, health social network, mixed methods, situation awareness
Procedia PDF Downloads 29814119 Dairy Wastewater Treatment by Electrochemical and Catalytic Method
Authors: Basanti Ekka, Talis Juhna
Abstract:
Dairy industrial effluents originated by the typical processing activities are composed of various organic and inorganic constituents, and these include proteins, fats, inorganic salts, antibiotics, detergents, sanitizers, pathogenic viruses, bacteria, etc. These contaminants are harmful to not only human beings but also aquatic flora and fauna. Because consisting of large classes of contaminants, the specific targeted removal methods available in the literature are not viable solutions on the industrial scale. Therefore, in this on-going research, a series of coagulation, electrochemical, and catalytic methods will be employed. The bulk coagulation and electrochemical methods can wash off most of the contaminants, but some of the harmful chemicals may slip in; therefore, specific catalysts designed and synthesized will be employed for the removal of targeted chemicals. In the context of Latvian dairy industries, presently, work is under progress on the characterization of dairy effluents by total organic carbon (TOC), Inductively Coupled Plasma Mass Spectrometry (ICP-MS)/ Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass Spectrometry (GC-MS), and Mass Spectrometry. After careful evaluation of the dairy effluents, a cost-effective natural coagulant will be employed prior to advanced electrochemical technology such as electrocoagulation and electro-oxidation as a secondary treatment process. Finally, graphene oxide (GO) based hybrid materials will be used for post-treatment of dairy wastewater as graphene oxide has been widely applied in various fields such as environmental remediation and energy production due to the presence of various oxygen-containing groups. Modified GO will be used as a catalyst for the removal of remaining contaminants after the electrochemical process.Keywords: catalysis, dairy wastewater, electrochemical method, graphene oxide
Procedia PDF Downloads 14814118 Data Mining Spatial: Unsupervised Classification of Geographic Data
Authors: Chahrazed Zouaoui
Abstract:
In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.Keywords: mining, GIS, geo-clustering, neighborhood
Procedia PDF Downloads 37614117 A Literature Review on Sustainability Appraisal Methods for Highway Infrastructure Projects
Authors: S. Kaira, S. Mohamed, A. Rahman
Abstract:
Traditionally, highway infrastructure projects are initiated based on their economic benefits, thereafter environmental, social and governance impacts are addressed discretely for the selected project from a set of pre-determined alternatives. When opting for cost-benefit analysis (CBA), multi-criteria decision-making (MCDM) has been used as the default assessment tool. But this tool has been critiqued as it does not mimic the real-world dynamic environment. Indeed, it is because of the fact that public sector projects like highways have to experience intense exposure to dynamic environments. Therefore, it is essential to appreciate the impacts of various dynamic factors (factors that change or progress with the system) on project performance. Thus, this paper presents various sustainability assessment tools that have been globally developed to determine sustainability performance of infrastructure projects during the design, procurement and commissioning phase. Indeed, identification of the current gaps in the available assessment methods provides a potential to add prominent part of knowledge in the field of ‘road project development systems and procedures’ that are generally used by road agencies.Keywords: dynamic impact factors, micro and macro factors, sustainability assessment framework, sustainability performance
Procedia PDF Downloads 14314116 Comparison of Bioelectric and Biomechanical Electromyography Normalization Techniques in Disparate Populations
Authors: Drew Commandeur, Ryan Brodie, Sandra Hundza, Marc Klimstra
Abstract:
The amplitude of raw electromyography (EMG) is affected by recording conditions and often requires normalization to make meaningful comparisons. Bioelectric methods normalize with an EMG signal recorded during a standardized task or from the experimental protocol itself, while biomechanical methods often involve measurements with an additional sensor such as a force transducer. Common bioelectric normalization techniques for treadmill walking include maximum voluntary isometric contraction (MVIC), dynamic EMG peak (EMGPeak) or dynamic EMG mean (EMGMean). There are several concerns with using MVICs to normalize EMG, including poor reliability and potential discomfort. A limitation of bioelectric normalization techniques is that they could result in a misrepresentation of the absolute magnitude of force generated by the muscle and impact the interpretation of EMG between functionally disparate groups. Additionally, methods that normalize to EMG recorded during the task may eliminate some real inter-individual variability due to biological variation. This study compared biomechanical and bioelectric EMG normalization techniques during treadmill walking to assess the impact of the normalization method on the functional interpretation of EMG data. For the biomechanical method, we normalized EMG to a target torque (EMGTS) and the bioelectric methods used were normalization to the mean and peak of the signal during the walking task (EMGMean and EMGPeak). The effect of normalization on muscle activation pattern, EMG amplitude, and inter-individual variability were compared between disparate cohorts of OLD (76.6 yrs N=11) and YOUNG (26.6 yrs N=11) adults. Participants walked on a treadmill at a self-selected pace while EMG was recorded from the right lower limb. EMG data from the soleus (SOL), medial gastrocnemius (MG), tibialis anterior (TA), vastus lateralis (VL), and biceps femoris (BF) were phase averaged into 16 bins (phases) representing the gait cycle with bins 1-10 associated with right stance and bins 11-16 with right swing. Pearson’s correlations showed that activation patterns across the gait cycle were similar between all methods, ranging from r =0.86 to r=1.00 with p<0.05. This indicates that each method can characterize the muscle activation pattern during walking. Repeated measures ANOVA showed a main effect for age in MG for EMGPeak but no other main effects were observed. Interactions between age*phase of EMG amplitude between YOUNG and OLD with each method resulted in different statistical interpretation between methods. EMGTS normalization characterized the fewest differences (four phases across all 5 muscles) while EMGMean (11 phases) and EMGPeak (19 phases) showed considerably more differences between cohorts. The second notable finding was that coefficient of variation, the representation of inter-individual variability, was greatest for EMGTS and lowest for EMGMean while EMGPeak was slightly higher than EMGMean for all muscles. This finding supports our expectation that EMGTS normalization would retain inter-individual variability which may be desirable, however, it also suggests that even when large differences are expected, a larger sample size may be required to observe the differences. Our findings clearly indicate that interpretation of EMG is highly dependent on the normalization method used, and it is essential to consider the strengths and limitations of each method when drawing conclusions.Keywords: electromyography, EMG normalization, functional EMG, older adults
Procedia PDF Downloads 9614115 Propane Dehydrogenation with Better Stability by a Modified Pt-Based Catalyst
Authors: Napat Hataivichian
Abstract:
The effect of transition metal doping on Pt/Al2O3 catalyst used in propane dehydrogenation reaction at 500˚C was studied. The preparation methods investigated were sequential impregnation (Pt followed by the 2nd metal or the 2nd metal followed by Pt) and co-impregnation. The metal contents of these catalysts were fixed as the weight ratio of Pt per the 2nd metal of around 0.075. These catalysts were characterized by N2-physisorption, TPR, CO-chemisorption and NH3-TPD. It was found that the impregnated 2nd metal had an effect upon reducibility of Pt due to its interaction with transition metal-containing structure. This was in agreement with the CO-chemisorption result that the presence of Pt metal, which is a result from Pt species reduction, was decreased. The total acidity of bimetallic catalysts is decreased but the strong acidity is slightly increased. It was found that the stability of bimetallic catalysts prepared by co-impregnation and sequential impregnation where the 2nd metal was impregnated before Pt were better than that of monometallic catalyst (undoped Pt one) due to the forming of Pt sites located on the transition metal-oxide modified surface. Among all preparation methods, the sequential impregnation method- having Pt impregnated before the 2nd metal gave the worst stability because this catalyst lacked the modified Pt sites and some fraction of Pt sites was covered by the 2nd metal.Keywords: alumina, dehydrogenation, platinum, transition metal
Procedia PDF Downloads 31714114 Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music
Authors: Raghavi Janaswamy, Saraswathi K. Vasudev
Abstract:
Music is ubiquitous in human lives. Ever since the fetus hears the sound inside the mother’s womb and later upon birth, the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than mere entertainment. The intricate balance between music, education, and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da, and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A, and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation), and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval, and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in it’s practice methods toward improvising the music have been explored in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.Keywords: Carnatic, Manodharmam, music cognition, Alapana
Procedia PDF Downloads 20714113 Doing Cause-and-Effect Analysis Using an Innovative Chat-Based Focus Group Method
Authors: Timothy Whitehill
Abstract:
This paper presents an innovative chat-based focus group method for collecting qualitative data to construct a cause-and-effect analysis in business research. This method was developed in response to the research and data collection challenges faced by the Covid-19 outbreak in the United Kingdom during 2020-21. This paper discusses the methodological approaches and builds a contemporary argument for its effectiveness in exploring cause-and-effect relationships in the context of focus group research, systems thinking and problem structuring methods. The pilot for this method was conducted between October 2020 and March 2021 and collected more than 7,000 words of chat-based data which was used to construct a consensus drawn cause-and-effect analysis. This method was developed in support of an ongoing Doctorate in Business Administration (DBA) thesis, which is using Design Science Research methodology to operationalize organisational resilience in UK construction sector firms.Keywords: cause-and-effect analysis, focus group research, problem structuring methods, qualitative research, systems thinking
Procedia PDF Downloads 22614112 Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge
Authors: Shatirah Akib, Hossein Basser, Hojat Karami, Afshin Jahangirzadeh
Abstract:
Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.Keywords: scour, bridge pier, numerical simulation, SSIIM 2.0
Procedia PDF Downloads 47814111 Determination of Verapamil Hydrochloride in the Tablet and Injection Solution by the Verapamil-Sensitive Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih, V. V. Egorov
Abstract:
Verapamil is a drug used in medicine for arrhythmia, angina, and hypertension as a calcium channel blocker. In this study, a Verapamil-selective electrode was prepared, and the concentrations of the components in the membrane were as follows: PVC (32.8 wt %), O-NPhOE (66.6 wt %), and KTPClPB (0.6 wt % or approximately 0.01 M). The inner solution containing verapamil hydrochloride 1 x 10⁻³ M was introduced, and the electrodes were conditioned overnight in 1 x 10⁻³ M verapamil hydrochloride solution in 1 x 10⁻³ M orthophosphoric acid. These studies have demonstrated that O-NPhOE and KTPClPB are the best plasticizers and ion exchangers, while both direct potentiometry and potentiometric titration methods can be used for the determination of verapamil hydrochloride in tablets and injection solutions. Normalized weights of verapamil per tablet (80.4±0.2, 80.7±0.2, 81.0±0.4 mg) were determined by direct potentiometry and potentiometric titration, respectively. Weights of verapamil per average tablet weight determined by the methods of direct potentiometry and potentiometric titration were" 80.4±0.2, 80.7±0.2 mg determined for the same set of tablets, respectively. The masses of verapamil in solutions for injection, determined by direct potentiometry for two ampoules from one set, were (5.00±0.015, 5.004±0.006) mg. In all cases, good reproducibility and excellent correspondence with the declared quantities were observed.Keywords: verapamil, potentiometry, ion-selective electrode, lipophilic physiologically active amines
Procedia PDF Downloads 9014110 Optimal Scheduling of Trains in Complex National Scale Railway Networks
Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna
Abstract:
Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.Keywords: mixed integer programming, optimization, railway network, train scheduling
Procedia PDF Downloads 16214109 Commercialization of Technologies, Productivity and Problems of Technological Audit in the Russian Economy
Authors: E. A. Tkachenko, E. M. Rogova, A. S. Osipenko
Abstract:
The problems of technological development for the Russian Federation take on special significance in the context of modernization of the production base. The complexity of the position of the Russian economy is that it cannot be attributed fully to developing ones. Russia is a strong industrial power that has gone through the processes of destructive de-industrialization in the conditions of changing its economic and political structure. The need to find ways for re-industrialization is not a unique task for the economies of industrially developed countries. Under the influence of production outsourcing for 20 years, the industrial potential of leading economies of the world was regressed against the backdrop of the ascent of China, a new industrial giant. Therefore, methods, tools, and techniques utilized for industrial renaissance in EU may be used to achieve a technological leap in the Russian Federation, especially since the temporary gap of 5-7 years makes it possible to analyze best practices and use those technological transfer tools that have shown the greatest efficiency. In this article, methods of technological transfer are analyzed, the role of technological audit is justified, and factors are analyzed that influence the successful process of commercialization of technologies.Keywords: technological transfer, productivity, technological audit, commercialization of technologies
Procedia PDF Downloads 21814108 Development the Potential of Parking Tax and Parking Retribution Revenues: Case Study in Bekasi City
Authors: Ivan Yudianto
Abstract:
The research objectives are to analyze the factors that impede the Parking Tax and Parking Retribution collection in Bekasi City Government, analyzing the factors that can increase local own revenue from the tax sector of parking tax and parking retribution, analyze monitoring the parking retribution collection by the Bekasi City Government, analyze strategies Bekasi City Government through the preparation of a roadmap and action plan to increase parking tax and parking retribution revenues. The approach used in this research is a qualitative approach. Qualitative research is used because the problem is not yet clear and the object to be studied will be holistic, complex, and dynamic, and the relationship will be interactive symptoms. Methods of data collection and technical analysis of the data was in-depth interviews, participant observation, documentary materials, literature, and triangulation, as well as new methods such as the methods of visual materials and internet browsing. The results showed that there are several factors that become an obstacle such as the parking taxpayer does not disclose the actual parking revenue, the parking taxpayer are late or do not pay Parking Tax, many parking locations controlled by illegal organizations, shortage of human resources in charge levy and supervise the parking tax and parking retribution collection in the Bekasi City Government, surveillance parking tax and parking retribution are not scheduled on a regular basis. Several strategic priorities in order to develop the potential of the Parking Tax and Parking Retribution in the Bekasi City Government, namely through increased controling and monitoring of the Parking Taxpayer, forming a team of auditors to audit the Parking Taxpayer, seek law enforcement persuasive and educative to reduce Parking Taxpayer wayward, providing strict sanctions against the Parking Taxpayer disobedient, revised regulations mayors about locations of parking in Bekasi City, rationalize revenues target of Parking Retribution, conducting takeover attempts parking location on the roadside of the individual or specific group, and drafting regional regulations on parking subscribe.Keywords: local own revenue, parking retribution, parking tax, parking taxpayer
Procedia PDF Downloads 33014107 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27914106 CE Method for Development of Japan's Stochastic Earthquake Catalogue
Authors: Babak Kamrani, Nozar Kishi
Abstract:
Stochastic catalog represents the events module of the earthquake loss estimation models. It includes series of events with different magnitudes and corresponding frequencies/probabilities. For the development of the stochastic catalog, random or uniform sampling methods are used to sample the events from the seismicity model. For covering all the Magnitude Frequency Distribution (MFD), a huge number of events should be generated for the above-mentioned methods. Characteristic Event (CE) method chooses the events based on the interest of the insurance industry. We divide the MFD of each source into bins. We have chosen the bins based on the probability of the interest by the insurance industry. First, we have collected the information for the available seismic sources. Sources are divided into Fault sources, subduction, and events without specific fault source. We have developed the MFD for each of the individual and areal source based on the seismicity of the sources. Afterward, we have calculated the CE magnitudes based on the desired probability. To develop the stochastic catalog, we have introduced uncertainty to the location of the events too.Keywords: stochastic catalogue, earthquake loss, uncertainty, characteristic event
Procedia PDF Downloads 30214105 Drone On-Time Obstacle Avoidance for Static and Dynamic Obstacles
Authors: Herath M. P. C. Jayaweera, Samer Hanoun
Abstract:
Path planning for on-time obstacle avoidance is an essential and challenging task that enables drones to achieve safe operation in any application domain. The level of challenge increases significantly on the obstacle avoidance technique when the drone is following a ground mobile entity (GME). This is mainly due to the change in direction and magnitude of the GME′s velocity in dynamic and unstructured environments. Force field techniques are the most widely used obstacle avoidance methods due to their simplicity, ease of use, and potential to be adopted for three-dimensional dynamic environments. However, the existing force field obstacle avoidance techniques suffer many drawbacks, including their tendency to generate longer routes when the obstacles are sideways of the drone′s route, poor ability to find the shortest flyable path, propensity to fall into local minima, producing a non-smooth path, and high failure rate in the presence of symmetrical obstacles. To overcome these shortcomings, this paper proposes an on-time three-dimensional obstacle avoidance method for drones to effectively and efficiently avoid dynamic and static obstacles in unknown environments while pursuing a GME. This on-time obstacle avoidance technique generates velocity waypoints for its obstacle-free and efficient path based on the shape of the encountered obstacles. This method can be utilized on most types of drones that have basic distance measurement sensors and autopilot-supported flight controllers. The proposed obstacle avoidance technique is validated and evaluated against existing force field methods for different simulation scenarios in Gazebo and ROS-supported PX4-SITL. The simulation results show that the proposed obstacle avoidance technique outperforms the existing force field techniques and is better suited for real-world applications.Keywords: drones, force field methods, obstacle avoidance, path planning
Procedia PDF Downloads 9714104 Software Engineering Inspired Cost Estimation for Process Modelling
Authors: Felix Baumann, Aleksandar Milutinovic, Dieter Roller
Abstract:
Up to this point business process management projects in general and business process modelling projects in particular could not rely on a practical and scientifically validated method to estimate cost and effort. Especially the model development phase is not covered by a cost estimation method or model. Further phases of business process modelling starting with implementation are covered by initial solutions which are discussed in the literature. This article proposes a method of filling this gap by deriving a cost estimation method from available methods in similar domains namely software development or software engineering. Software development is regarded as closely similar to process modelling as we show. After the proposition of this method different ideas for further analysis and validation of the method are proposed. We derive this method from COCOMO II and Function Point which are established methods of effort estimation in the domain of software development. For this we lay out similarities of the software development rocess and the process of process modelling which is a phase of the Business Process Management life-cycle.Keywords: COCOMO II, busines process modeling, cost estimation method, BPM COCOMO
Procedia PDF Downloads 44714103 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 9814102 The Training Demands of Nursing Assistants on Urinary Incontinence in Nursing Homes: A Mixed Methods Study
Authors: Lulu Liao, Huijing Chen, Yinan Zhao, Hongting Ning, Hui Feng
Abstract:
Urinary tract infection rate is an important index of care quality in nursing homes. The aim of the study is to understand the nursing assistant's current knowledge and attitudes of urinary incontinence and to explore related stakeholders' viewpoint about urinary incontinence training. This explanatory sequential study used Knowledge, Practice, and Attitude Model (KAP) and Adult Learning Theories, as the conceptual framework. The researchers collected data from 509 nursing assistants in sixteen nursing homes in Hunan province in China. The questionnaire survey was to assess the knowledge and attitude of urinary incontinence of nursing assistants. On the basis of quantitative research and combined with focus group, training demands were identified, which nurse managers should adopt to improve nursing assistants’ professional practice ability in urinary incontinence. Most nursing assistants held the poor knowledge (14.0 ± 4.18) but had positive attitudes (35.5 ± 3.19) toward urinary incontinence. There was a significant positive correlation between urinary incontinence knowledge and nursing assistants' year of work and educational level, urinary incontinence attitude, and education level (p < 0.001). Despite a general awareness of the importance of prevention of urinary tract infections, not all nurse managers fully valued the training in urinary incontinence compared with daily care training. And the nursing assistants required simple education resources to equip them with skills to address problem about urinary incontinence. The variety of learning methods also highlighted the need for educational materials, and nursing assistants had shown a strong interest in online learning. Related education material should be developed to meet the learning need of nurse assistants and provide suitable training method for planned quality improvement in urinary incontinence.Keywords: mixed methods, nursing assistants, nursing homes, urinary incontinence
Procedia PDF Downloads 142