Search results for: energy and water consumption
3850 Dutch Schools: Their Ventilation Systems
Authors: Milad Golshan, Wim Zeiler
Abstract:
During the last decade research was done to clarify the importance of good Indoor Air Quality in schools. As a result, measurements were undertaken in different types of schools to see whether naturally ventilated schools could provide adequate indoor conditions. Also, a comparison was made between schools with hybrid ventilation and those with complete mechanical ventilation systems. Recently a large survey was undertaken at 60 schools to establish the average current situation of schools in the Netherlands. The results of the questionnaires were compared with those of earlier measured schools. This allowed us to compare different types of schools as well as schools of different periods. Overall it leads to insights about the actual current perceived quality by the teachers as well as the pupils and enables to draw some conclusions about the typical performances of specific types of school ventilation systems. Also, the perceived thermal comfort and controllability were researched. It proved that in around 50% of the schools there were major complains about the indoor air quality causing concentration problems and headaches by the pupils at the end of class. Although the main focus of the latest research was focused more on the quality of recently finished nearly Zero Energy schools, this research showed that especially the main focus school be on the renovation and upgrading of the existing 10.000 schools in the Netherlands.Keywords: school ventilation, indoor air quality, perceiver thermal comfort, comparison different types
Procedia PDF Downloads 2273849 A Community-Engaged Approach to Examining Health Outcomes Potentially Related to Exposure to Environmental Contaminants in Yuma, Arizona
Authors: Julie A. Baldwin, Robert T. Trotter, Mark Remiker, C. Loren Buck, Amanda Aguirre, Trudie Milner, Emma Torres, Frank A. von Hippel
Abstract:
Introduction: In the past, there have been concerns about contaminants in the water sources in Yuma, Arizona, including the Colorado River. Prolonged exposure to contaminants, such as perchlorate and heavy metals, can lead to deleterious health effects in humans. This project examined the association between the concentration of environmental contaminants and patient health outcomes in Yuma residents, using a community-engaged approach to data collection. Methods: A community-engaged design allowed community partners and researchers to establish joint research goals, recruit participants, collect data, and formulate strategies for dissemination of findings. Key informant interviews were conducted to evaluate adherence to models of community-based research. Results: The training needs, roles, and expectations of community partners varied based on available resources, prior research experience, and perceived research challenges and ways to address them. Conclusions: Leveraging community-engaged approaches for studies of environmental contamination in marginalized communities can expedite recruitment efforts and stimulate action that can lead to improved community health.Keywords: community engaged research, environmental contaminants, underserved populations, health equity
Procedia PDF Downloads 1443848 Crowdsourced Economic Valuation of the Recreational Benefits of Constructed Wetlands
Authors: Andrea Ghermandi
Abstract:
Constructed wetlands have long been recognized as sources of ancillary benefits such as support for recreational activities. To date, there is a lack of quantitative understanding of the extent and welfare impact of such benefits. Here, it is shown how geotagged, passively crowdsourced data from online social networks (e.g., Flickr and Panoramio) and Geographic Information Systems (GIS) techniques can: (1) be used to infer annual recreational visits to 273 engineered wetlands worldwide; and (2) be integrated with non-market economic valuation techniques (e.g., travel cost method) to infer the monetary value of recreation in these systems. Counts of social media photo-user-days are highly correlated with the number of observed visits in 62 engineered wetlands worldwide (Pearson’s r = 0.811; p-value < 0.001). The estimated, mean willingness to pay for access to 115 wetlands ranges between $5.3 and $374. In 50% of the investigated wetlands providing polishing treatment to advanced municipal wastewater, the present value of such benefits exceeds that of the capital, operation and maintenance costs (lifetime = 45 years; discount rate = 6%), indicating that such systems are sources of net societal benefits even before factoring in benefits derived from water quality improvement and storage. Based on the above results, it is argued that recreational benefits should be taken into account in the design and management of constructed wetlands, as well as when such green infrastructure systems are compared with conventional wastewater treatment solutions.Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, social media
Procedia PDF Downloads 1363847 The Dynamics of Unsteady Squeezing Flow between Parallel Plates (Two-Dimensional)
Authors: Jiya Mohammed, Ibrahim Ismail Giwa
Abstract:
Unsteady squeezing flow of a viscous fluid between parallel plates is considered. The two plates are considered to be approaching each other symmetrically, causing the squeezing flow. Two-dimensional rectangular Cartesian coordinate is considered. The Navier-Stokes equation was reduced using similarity transformation to a single fourth order non-linear ordinary differential equation. The energy equation was transformed to a second order coupled differential equation. We obtained solution to the resulting ordinary differential equations via Homotopy Perturbation Method (HPM). HPM deforms a differential problem into a set of problem that are easier to solve and it produces analytic approximate expression in the form of an infinite power series by using only sixth and fifth terms for the velocity and temperature respectively. The results reveal that the proposed method is very effective and simple. Comparisons among present and existing solutions were provided and it is shown that the proposed method is in good agreement with Variation of Parameter Method (VPM). The effects of appropriate dimensionless parameters on the velocity profiles and temperature field are demonstrated with the aid of comprehensive graphs and tables.Keywords: coupled differential equation, Homotopy Perturbation Method, plates, squeezing flow
Procedia PDF Downloads 4773846 Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter
Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava
Abstract:
Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study.Keywords: shrinkage, convective heat transfer coefficient, effectivive diffusivity, convective mass transfer coefficient
Procedia PDF Downloads 2613845 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank
Authors: S. Chikh, S. Boulifa
Abstract:
The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.Keywords: evaporation, liquid ammonia, storage tank, numerical simulation
Procedia PDF Downloads 2973844 Inductions of CaC₂ on Sperm Morphology and Viability of the Albino Mice (Mus musculus)
Authors: Dike H. Ogbuagu, Etsede J. Oritsematosan
Abstract:
This work investigated possible inductions of CaC₂, often misused by fruit vendors to stimulate artificial ripening, on mammalian sperm morphology and viability. Thirty isogenic strains of male albino mice, Mus musculus (age≈ 8weeks; weight= 32.5±2.0g) were acclimatized (ambient temperature 28.0±1.0°C) for 2 weeks and fed standard growers mash and water ad libutum. They were later exposed to graded toxicant concentrations (w/w) of 2.5000, 1.2500, 0.6250, and 0.3125% in 4 cages. A control cage was also established. After 5 weeks, 3 animals from each cage were sacrificed by cervical dislocation and the cauda epididymis excised. Sperm morphology and viability were determined by microscopic procedures. The ANOVA, means plots, Student’s t-test and variation plots were used to analyze data. The common abnormalities observed included Double Head, Pin Head, Knobbed Head, No Tail and With Hook. The higher toxicant concentrations induced significantly lower body weights [F(829.899) ˃ Fcrit(4.19)] and more abnormalities [F(26.52) ˃ Fcrit(4.00)] at P˂0.05. Sperm cells in the control setup were significantly more viable than those in the 0.625% (t=0.005) and 2.500% toxicant doses (t=0.018) at the 95% confidence limit. CaC₂ appeared to induced morphological abnormalities and reduced viability in sperm cells of M. musculus.Keywords: artificial ripening, calcium carbide, fruit vendors, sperm morphology, sperm viability
Procedia PDF Downloads 2243843 Preparation and Evaluation of Citrus hystrix Nanoemulsion Formulation against Rice Weevil, Sitophilus oryzae
Authors: Elsayed Elmiligy, Dzolkhifili Omar, Norhayu Asib
Abstract:
Sitophilus oryzae is a primary destructive insect pest. A study on nanoemulsion formulation of C. hystrix peel oil and evaluation of its insecticidal effect on the adults of S. oryzae was held in toxicology laboratory at Faculty of Agriculture, Universiti Putra Malaysia (UPM). Three nanoemulsion formulations (F1, F2, and F3) were prepared using C. hystrix peel oil (a.i), Tween 80 (surfactant), AMD 810 (carrier) and deionized water. The selected formulations have undergone stability tests, surface tension, zeta potential and particle size measurements. The formulations were tested for their contact and fumigant activity against the adults of S. oryzae. LC₅₀ values were obtained from Probit regressions using the Polo-PC program. All the formulations showed stability under storage temperature and centrifugation. They were characterized as nanoemulsions as they remained in the range of nanoscale 200 nm. The formulations revealed lower surface tension in the range of 29.5 to 30.4 mN/m. They showed stable of zeta potential values. The formulations showed the highest toxicity against the adults of S. oryzae. The order of decreasing toxicity was F1 > F2 > F3 with LC₅₀ values of 52.1, 58.5, and 61.7 µl/l for contact toxicity, and 71, 75.5, and 76.7 µl/l air for fumigant bioassay after 72 hours. Formulation of C. hystrix peel oil in a nanoemulsion enhance its effectiveness and reduce the amount of applied essential oil.Keywords: Citrus hystrix peel oil, Sitophilus oryzae, nanoemulsion, contact toxicity, Fumigant bioassay
Procedia PDF Downloads 1443842 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal
Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi
Abstract:
Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt
Procedia PDF Downloads 4443841 Enhanced Image Representation for Deep Belief Network Classification of Hyperspectral Images
Authors: Khitem Amiri, Mohamed Farah
Abstract:
Image classification is a challenging task and is gaining lots of interest since it helps us to understand the content of images. Recently Deep Learning (DL) based methods gave very interesting results on several benchmarks. For Hyperspectral images (HSI), the application of DL techniques is still challenging due to the scarcity of labeled data and to the curse of dimensionality. Among other approaches, Deep Belief Network (DBN) based approaches gave a fair classification accuracy. In this paper, we address the problem of the curse of dimensionality by reducing the number of bands and replacing the HSI channels by the channels representing radiometric indices. Therefore, instead of using all the HSI bands, we compute the radiometric indices such as NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), etc, and we use the combination of these indices as input for the Deep Belief Network (DBN) based classification model. Thus, we keep almost all the pertinent spectral information while reducing considerably the size of the image. In order to test our image representation, we applied our method on several HSI datasets including the Indian pines dataset, Jasper Ridge data and it gave comparable results to the state of the art methods while reducing considerably the time of training and testing.Keywords: hyperspectral images, deep belief network, radiometric indices, image classification
Procedia PDF Downloads 2853840 Absorbed Dose Measurements for Teletherapy Prediction of Superficial Dose Using Halcyon Linear Accelerator
Authors: Raymond Limen Njinga, Adeneye Samuel Olaolu, Akinyode Ojumoola Ajimo
Abstract:
Introduction: Measurement of entrance dose and dose at different depths is essential to avoid overdose and underdose of patients. The aim of this study is to verify the variation in the absorbed dose using a water-equivalent material. Materials and Methods: The plastic phantom was arranged on the couch of the halcyon linear accelerator by Varian, with the farmer ionization chamber inserted and connected to the electrometer. The image of the setup was taken using the High-Quality Single 1280x1280x16 higher on the service mode to check the alignment with the isocenter. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was done to check the beam quality of the machine at a field size of 10 cm x 10 cm. The calibration was done using SAD type set-up at a depth of 5 cm. This process was repeated for ten consecutive weeks, and the values were recorded. Results: The results of the beam output for the teletherapy machine were satisfactory and accepted in comparison with the commissioned measurement of 0.62. The beam quality TPR₂₀,₁₀ (Tissue phantom ratio) was reasonable with respect to the beam quality of the machine at a field size of 10 cm x 10 cm. Conclusion: The results of the beam quality and the absorbed dose rate showed a good consistency over the period of ten weeks with the commissioned measurement value.Keywords: linear accelerator, absorbed dose rate, isocenter, phantom, ionization chamber
Procedia PDF Downloads 673839 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis
Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu
Abstract:
Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide
Procedia PDF Downloads 2443838 Innovation and Creativity: Inspiring the Next Generation in the Ethekwini Municipality
Authors: Anneline Chetty
Abstract:
Innovation is not always born in a sterile lab or is not always about applications and technology. Innovative solutions to community challenges can be borne out of the creativity of community members. This was proven by Professor Anil Gupta who for more than two decades scoured rural India for its hidden innovations motivated by the belief that the most powerful ideas for fighting poverty and hardship will not come from corporate research labs, but from ordinary people struggling to survive. The Ethekwini Municipality is a city in South Africa which adopted a similar approach, recognising the innovativeness of youth (students and school pupils) in its area. The intention was to make the youth a part of the solution to challenges faced by the Municipality. In this regard, five areas were selected and five groups of students were identified. Each group was sent into the community to identify challenges and engage with community leaders as well as members. Each group was tasked to come with solutions to these challenges which were to be presented at an Innovation Summit. The presented solutions were judged and the winning solution would be implemented by the Municipality. This paper, documents the experience of the students as well as the kinds of solutions that were presented. The purpose is to highlight the importance of using the ingenious minds and creativity of youth and channel their energy into becoming part of society’s solutions as opposed to being the problemKeywords: innovation, indigenous, entrepreneurship, community
Procedia PDF Downloads 4053837 A Life Cycle Assessment (LCA) of Aluminum Production Process
Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour
Abstract:
The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.Keywords: life cycle assessment, aluminium production, supply chain, ecological impacts
Procedia PDF Downloads 5353836 Controlling the Degradation Rate of Biodegradable Mg Implant Using Magnetron-Sputtered (Zr-Nb) Thin Films
Authors: Somayeh Azizi, Mohammad Hossein Ehsani, Amir Zareidoost
Abstract:
In this research, a technique has been developed to reduce the corrosion rate of magnesium (Mg) metal by creating Zr-Nb thin film coatings. In this regard, thin-film coatings of niobium (Nb) zirconium (Zr) double alloy are applied on pure Mg specimens under different processes conditions, such as the change of the substrate temperature, substrate bias, and coating thickness using the magnetron sputtering method. Then, deposited coatings are analyzed in terms of surface features via field-emission scanning electron microscopy (FE-SEM), thin-layer X-ray diffraction (GI-XRD), energy-dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and corrosion tests. Also, nano-scratch tests were carried out to investigate the adhesion of the thin film. The results showed that the (Zr-Nb) thin films could control the degradation rate of Mg in the simulated body fluid (SBF). The nano-scratch studies depicted that the (Zr-Nb) thin films have a proper adhesion with the Mg substrate. Therefore, this technique could be used to enhance the corrosion resistance of bare Mg and could result in improving the performance of the biodegradable Mg implant for orthopedic applications.Keywords: (Zr-Nb) thin film, magnetron sputtering, biodegradable Mg, degradation rate
Procedia PDF Downloads 1243835 Role of Community Forestry to Address Climate Change in Nepal
Authors: Laxmi Prasad Bhattarai
Abstract:
Climate change is regarded as one of the most fundamental threats to sustainable livelihood and global development. There is a growing global concern in linking community-managed forests as potential climate change mitigation projects. This study was conducted to explore local people’s perception on climate change and the role of community forestry (CF) to combat climate change impacts. Two active community forest user groups (CFUGs) from Kaski and Syangja Districts in Nepal were selected as study sites, and various participatory tools were applied to collect primary data. Although most of the respondents were unaware about the words “Climate Change” in study sites, they were quite familiar with the irregularities in rainfall season and other weather extremities. 60% of the respondents had the idea that, due to increase in precipitation, there is a frequent occurrence of erosion, floods, and landslide. Around 85% of the people agreed that community forests help in stabilizing soil, reducing the natural hazards like erosion, landslide. Biogas as an alternative source of cooking energy, and changes in crops and their varieties are the common adaptation measures that local people start practicing in both CFUGs in Nepal.Keywords: community forestry, climate change, global warming, adaptation, Nepal
Procedia PDF Downloads 3103834 Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties.Keywords: CFRP, acrylic resin, organosilicon compounds, mechanical properties, electrical properties
Procedia PDF Downloads 1333833 Socioeconomic Impact of Capture and Sale of Scylla serrata in Metuge Community
Authors: Siran Offman, TeóFilo Nhamuhuco, EzíDio Cuamba
Abstract:
Scylla serrata is important for livelihood in coastal communities in Metuge District, Northern Mozambique, where the study was conducted from June to August 2014. The aim was to estimate the socioeconomic impact of mangrove crabs captures in Metuge communities. Data was collected based on semi-structured questionnaire in the landing sites and in local crab markets. In total were inquired 26 crab collectors and 6 traders, this activity is practiced only by men, with ages ranging from 15 to 68 years old. To capture the crab the collectors use a long iron hook with 1.5-2 meters, during 5-7 times per week, spending about 5-8 hours a day. The captured varied from 2-20 kg per day. In the village 1 kg costs 1-1.5 USD and 3 USD applied by traders who sell along the streets, for tourists and specific customers from Asia, where the traders can sell until 50 kg.The incomes vary from 11-174USD per month. The value chain between the collectors and trader is unreasonable, as the second makes less effort and earns more, thereby the socio-economic impact is observed, however not high for the collectors, as the money is intended to purchase food and agricultural instruments. In another hand, 90% of collectors dropped out the school, and the money does not have a great impact as they still have precarious housing, rely on community wells to access water, do not have electric power and possess high number of family members.Keywords: socio-economic and of, impacts, capture, sale, Scylla serrata
Procedia PDF Downloads 2263832 Numerical Investigation of Plasma-Fuel System (PFS) for Coal Ignition and Combustion
Authors: Vladimir Messerle, Alexandr Ustimenko, Oleg Lavrichshev
Abstract:
To enhance the efficiency of solid fuels’ use, to decrease the fuel oil rate in the thermal power plants fuel balance and to minimize harmful emissions, a plasma technology of coal ignition, gasification and incineration is successfully applied. This technology is plasma thermochemical preparation of fuel for burning (PTCPF). In the framework of this concept, some portion of pulverized solid fuel (PF) is separated from the main PF flow and undergone the activation by arc plasma in a specific chamber with plasma torch – PFS. The air plasma flame is a source of heat and additional oxidation, it provides a high-temperature medium enriched with radicals, where the fuel mixture is heated, volatile components of coal are extracted, and carbon is partially gasified. This active blended fuel can ignite the main PF flow supplied into the furnace. This technology provides the boiler start-up and stabilization of PF flame and eliminates the necessity for addition of highly reactive fuel. In the report, a model of PTCPF, implemented as a program PlasmaKinTherm for the PFS calculation is described. The model combines thermodynamic and kinetic methods for describing the process of PTCPF in PFS. The numerical investigation of operational parameters of PFS depending on the electric power of the plasma generator and steam coal ash content revealed the temperature and velocity of gas and coal particles, and concentrations of PTCPF products dependences on the PFS length. Main mechanisms of PTCPF were disclosed. It was found that in the range of electric power of plasma generator from 40 to 100 kW high ash bituminous coal, having consumption 1667 kg/h is ignited stably. High level of temperature (1740 K) and concentration of combustible components (44%) at the PFS exit is a confirmation of it. Augmentation in power of plasma generator results displacement maxima temperatures and speeds of PTCPF products upstream (in the direction of the plasma source). The maximum temperature and velocity vary in a narrow range of values and practically do not depend on the power of the plasma torch. The numerical study of indicators of the process of PTCPF depending on the ash content in the range of its values 20-70% demonstrated that at the exit of PFS concentration of combustible components decreases with an increase in coal ash, the temperature of the gaseous products is increasing, and coal carbon conversion rate is increased to a maximum value when the ash content of 60%, dramatically decreasing with further increase in the ash content.Keywords: coal, efficiency, ignition, numerical modeling, plasma generator, plasma-fuel system
Procedia PDF Downloads 3013831 Influence of the Coarse-Graining Method on a DEM-CFD Simulation of a Pilot-Scale Gas Fluidized Bed
Authors: Theo Ndereyimana, Yann Dufresne, Micael Boulet, Stephane Moreau
Abstract:
The DEM (Discrete Element Method) is used a lot in the industry to simulate large-scale flows of particles; for instance, in a fluidized bed, it allows to predict of the trajectory of every particle. One of the main limits of the DEM is the computational time. The CGM (Coarse-Graining Method) has been developed to tackle this issue. The goal is to increase the size of the particle and, by this means, decrease the number of particles. The method leads to a reduction of the collision frequency due to the reduction of the number of particles. Multiple characteristics of the particle movement and the fluid flow - when there is a coupling between DEM and CFD (Computational Fluid Dynamics). The main characteristic that is impacted is the energy dissipation of the system, to regain the dissipation, an ADM (Additional Dissipative Mechanism) can be added to the model. The objective of this current work is to observe the influence of the choice of the ADM and the factor of coarse-graining on the numerical results. These results will be compared with experimental results of a fluidized bed and with a numerical model of the same fluidized bed without using the CGM. The numerical model is one of a 3D cylindrical fluidized bed with 9.6M Geldart B-type particles in a bubbling regime.Keywords: additive dissipative mechanism, coarse-graining, discrete element method, fluidized bed
Procedia PDF Downloads 753830 Independent Control over Surface Charge and Wettability Using Polyelectrolyte Architecture
Authors: Shanshan Guo, Xiaoying Zhu, Dominik Jańczewski, Koon Gee Neoh
Abstract:
Surface charge and wettability are two prominent physical factors governing cell adhesion and have been extensively studied in the literature. However, a comparison between the two driving forces in terms of their independent and cooperative effects in affecting cell adhesion is rarely explored on a systematic and quantitative level. Herein, we formulate a protocol which allows two-dimensional and independent control over both surface charge and wettability. This protocol enables the unambiguous comparison of the effects of these two properties on cell adhesion. This strategy is implemented by controlling both the relative thickness of polyion layers in the layer-by-layer assembly and the polyion side chain chemical structures. The 2D property matrix spans surface isoelectric point ranging from 5 to 9 and water contact angle from 35º to 70º, with other interferential factors (e.g. roughness) eliminated. The interplay between these two surface variables influences 3T3 fibroblast cell adhesion. The results show that both surface charge and wettability have an effect on its adhesion. The combined effects of positive charge and hydrophilicity led to the highest cell adhesion whereas negative charge and hydrophobicity led to the lowest cell adhesion. Our design strategy can potentially form the basis for studying the distinct behaviors of electrostatic force or wettability driven interfacial phenomena and serving as a reference in future studies assessing cell adhesion to surfaces with known charge and wettability within the property range studied here.Keywords: cell adhesion, layer-by-layer, surface charge, surface wettability
Procedia PDF Downloads 2733829 Morphometry of Female Reproductive Tract in Small Ruminants Using Ultrasonography
Authors: R. Jannat, N. S. Juyena, F. Y. Bari, M. N. Islam
Abstract:
Understanding anatomy of female reproductive organs is very much important to identify any variation in disease condition. Therefore, this study was conducted to determine the morphometry of female reproductive tract in small ruminant using ultrasonography. The reproductive tracts of 2l does and 20 ewes were collected, and both gross and ultrasonographic image measurements were performed to study morphometry of cervix, body of uterus, horn of uterus and ovary. Water bath ultrasonography technique was used with trans-abdominal linear probe for image measurements. Results revealed significant (P<0.001) variation among gross and image measurements of cervix, body of uterus and ovaries in does whereas, significant (P<0.001) variation existed between gross and image measurements of ovaries diameter in ewes. Gross measurements were proportionately higher than image measurements in both species. The mean length and width were found higher in right ovaries than those of left ovaries. In addition, the diameter of right ovaries was higher than those of left ovaries in both species. Pearson's correlation revealed a positive relation between two measurements. Moreover, it was found that echogenicity varied with reproductive organs. This is a model study. This study may help to identify female reproductive structures by trans-abdominal ultrasonography.Keywords: female reproductive tract, morphometry, small ruminants, ultrasonography
Procedia PDF Downloads 2713828 Using SMS Mobile Technology to Assess the Mastery of Subject Content Knowledge of Science and Mathematics Teachers of Secondary Schools in Tanzania
Authors: Joel S. Mtebe, Aron Kondoro, Mussa M. Kissaka, Elia Kibga
Abstract:
Sub-Saharan Africa is described as the second fastest growing mobile phone penetration in the world more than in the United States or the European Union. Mobile phones have been used to provide a lot of opportunities to improve people’s lives in the region such as in banking, marketing, entertainment, and paying various bills such as water, TV, and electricity. However, the potential of using mobile phones to enhance teaching and learning has not been explored. This study presents an experience of developing and delivering SMS quizzes questions that were used to assess mastery of the subject content knowledge of science and mathematics secondary school teachers in Tanzania. The SMS quizzes were used as a follow up support mechanism to 500 teachers who participated in a project to upgrade subject content knowledge of science and mathematics subjects. Quizzes of 10-15 questions were sent to teachers each week for 8 weeks and the results were analyzed using SPSS. The results showed that chemistry and biology had better performance compared to mathematics and physics. Teachers reported some challenges that led to poor performance, invalid answers, and non-responses and they are presented. This research has several practical implications for those who are implementing or planning to use mobile phones for teaching and learning especially in rural secondary schools in sub-Saharan Africa.Keywords: mobile learning, elearning, educational technolgies, SMS, secondary education, assessment
Procedia PDF Downloads 2883827 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe
Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon
Abstract:
The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.Keywords: vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter
Procedia PDF Downloads 4203826 Efficient Liquid Desiccant Regeneration for Fresh Air Dehumidification Application
Authors: M. V. Rane, Tareke Tekia
Abstract:
Fresh Air Dehumidifier having a capacity of 1 TR has been developed by Heat Pump Laboratory at IITB. This fresh air dehumidifier is based on potassium formate liquid desiccant. The regeneration of the liquid desiccant can be done in two stages. The first stage of liquid desiccant regeneration involves the boiling of liquid desiccant inside the evacuated glass type solar thermal collectors. Further regeneration of liquid desiccant can be achieved using Low Temperature Regenerator, LTR. The coefficient of performance of the fresh air dehumidifier greatly depends on the performance of the major components such as high temperature regenerator, low temperature regenerator, fresh air dehumidifier, and solution heat exchangers. High effectiveness solution heat exchanger has been developed and tested. The solution heat exchanger is based on a patented aluminium extrusion with special passage geometry to enhance the heat transfer rate. Effectiveness up to 90% was achieved. Before final testing of the dehumidifier, major components have been tested individually. Testing of the solar thermal collector as hot water and steam generator reveals that efficiency up to 55% can be achieved. In this paper, the development of 1 TR fresh air dehumidifier with special focus on solution heat exchangers and solar thermal collector performance is presented.Keywords: solar, liquid desiccant, dehumidification, air conditioning, regeneration, coefficient of performance
Procedia PDF Downloads 1953825 An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH
Authors: Khabat M. Ahmad
Abstract:
This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate.Keywords: flow rate, pH, permeability, fine migration, formation damage, XRD, SEM- EDS
Procedia PDF Downloads 663824 Exploration of Graphite Nano-Particles as Anti-Wear Additive for Performance Enhancement of Oil
Authors: Manoj Kumar Gupta, Jayashree Bijwe
Abstract:
Additives in lubricating oils are the focus of research attention since the further reduction in friction and wear properties of oils would lead to the further saving of tribo-materials and energy apart from improving their efficiency. Remarkable tribo-performance enhancement is reported in the literature due to addition of particles of solid lubricants in lubricating oils; especially that of nano-sizes. In the present work graphite nano-particles (NPs) in various amounts (1, 2, 3 and 4 wt. %) were used to explore the possible anti-wear (AW) performance enhancement in Group III oil. Polyisobutylene succinimide (PIBSI- 1 wt. %) was used as a dispersant for dispersing these NPs and to enhance the stability of these nano-suspensions. It was observed that PIBSI inclusion enhanced the stability of oil almost by eight times. NPs in all amounts enhanced the AW performance of oil considerably. The optimum amount was three wt. %, which led to the highest enhancement under all loads. The extent of benefits, however, were dependent on load. At the lowest (392 N) and highest loads (784 N), the benefits were not profound. At moderate load (588 N), highest improvement (around 60 %) was recorded. The SEM and AFM studies were done on the worn ball surfaces to reveal the detailed features of films transferred and proved useful to correlate the wear performance of oils.Keywords: dispersant, graphite, nano-lubricant, anti-wear additive
Procedia PDF Downloads 1663823 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India
Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma
Abstract:
Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation
Procedia PDF Downloads 1473822 Characterization of Biosurfactants Produced by Bacteria Degrading Gasoline
Authors: Ikram Kamal, Mohamed Blaghen
Abstract:
Biosurfactants are amphiphilic biological compounds consisting of hydrophobic and hydrophilic domains produced extracellularly or as part of the cell membrane by a variety of yeast, bacteria and filamentous fungi. Biosurfactant applications in the environmental industries are promising due to their biodegradability, low toxicity, and effectiveness in enhancing biodegradation and solubilization of low solubility compounds. Currently, the main application is for enhancement of oil recovery and hydrocarbon bioremediation due to their biodegradability and low critical micelle concentration (CMC). The use of biosurfactants has also been proposed for various industrial applications, such as in food additives, cosmetics, detergent formulations and in combinations with enzymes for wastewater treatment. In this study, we have investigated the potential of bacterial strains: Mannheimia haemolytica, Burkholderia cepacia and Serratia ficaria were collected aseptically from the lagoon Marchika (water and soil) in Nador, Morocco; for the production of biosurfactants. This study also aimed to optimize the biosurfactant production process by changing the variables that influence the type and amount of biosurfactant produced by these microorganisms such as: carbon sources and also other physical and chemical parameters such as temperature and pH. Emulsification index, methylene blue test, and thin layer chromatography (TLC) revealed the ability of strains used in this study to produce compounds that could emulsify gasoline. In addition, a GC/MS was used to separate and identify different biosurfactants purified.Keywords: biosurfactants, Mannheimia haemolytica, biodegradability, Burkholderia cepacia, Serratia ficaria
Procedia PDF Downloads 2613821 Abnormal Features of Two Quasiparticle Rotational Bands in Rare Earths
Authors: Kawalpreet Kalra, Alpana Goel
Abstract:
The behaviour of the rotational bands should be smooth but due to large amount of inertia and decreased pairing it is not so. Many experiments have been done in the last few decades, and a large amount of data is available for comprehensive study in this region. Peculiar features like signature dependence, signature inversion, and signature reversal are observed in many two quasiparticle rotational bands of doubly odd and doubly even nuclei. At high rotational frequencies, signature and parity are the only two good quantum numbers available to label a state. Signature quantum number is denoted by α. Even-angular momentum states of a rotational band have α =0, and the odd-angular momentum states have α =1. It has been observed that the odd-spin members lie lower in energy up to a certain spin Ic; the normal signature dependence is restored afterwards. This anomalous feature is termed as signature inversion. The systematic of signature inversion in high-j orbitals for doubly odd rare earth nuclei have been done. Many unusual features like signature dependence, signature inversion and signature reversal are observed in rotational bands of even-even/odd-odd nuclei. Attempts have been made to understand these phenomena using several models. These features have been analyzed within the framework of the Two Quasiparticle Plus Rotor Model (TQPRM).Keywords: rotational bands, signature dependence, signature quantum number, two quasiparticle
Procedia PDF Downloads 172