Search results for: variant surface glycoprotein
5610 Numerical Investigation of Slot Die Coating Based on VOF Method
Authors: Zhidi Lei, Xixi Cai, Jue Ding, Peifen Weng, Xiaowei Li
Abstract:
In the process of preparing thin films by chemical solution method, the uniformity of gel coating has a great influence on the subsequent film thickness. Based on a coating device, the research tracks the interface development of gas-liquid flow by volume of fluid method (VOF). The effects of fluid viscosity and wall wetting property for the shape and position of the coating window are discussed in the process of slot die coating. The result shows that downstream contact lines gets closer to the corner with the increase of fluid viscosity. When the viscosity increases from 0.2Pa∙s to 0.3Pa∙s, 18.2% of the vortex region area will be reduced. With the static contact angle of upper die head surface (θ_sd) increasing, X_u decreased gradually which cause the instability changes of upstream surface. Also, θ_sd increasing brings the reduction of vortex region.Keywords: film growth, vortex, VOF, slot die coating
Procedia PDF Downloads 3715609 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography
Authors: Wei-Hsuan Hsu, Yi-Xuan Huang
Abstract:
Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.Keywords: electrowetting, mold filling, nano-imprint, surface modification
Procedia PDF Downloads 1705608 Gas Sensor Based on Carbon Nanotubes: A Review
Authors: Brian Yuliarto, Ni Luh Wulan Septiani
Abstract:
Carbon nanotubes are one of the carbon nanomaterial that very popular in the field of gas sensors. It has unique properties, large surface area and has hollow structure that makes its potentially used as a gas sensor. Several attempts have been made to improve the sensitivity and selectivity of CNTs by modifying CNTs with a noble metals, metal oxides and polymers. From these studies, there are evidents that modification of CNTs with these materials can improve the sensitivity and selectivity of CNTs against some harmful gases. Decorating carbon nano tubes with metal oxides improve CNTs with the highest sensitivity and increased sensitivity of polymer/CNTs is higher than the metal/CNTs. The used of metal in CNTs aims to accelerate the reaction surface and as channel for electrons path from or to the CNTs. The used of metal oxides on CNTs built a p-n junction that can increase sensitivity. While the addition of polymer can increase the charge carriers density in CNTs.Keywords: carbon nanotubes, gas sensors, modification of CNT, sensitivity
Procedia PDF Downloads 4845607 The Study of Dengue Fever Outbreak in Thailand Using Geospatial Techniques, Satellite Remote Sensing Data and Big Data
Authors: Tanapat Chongkamunkong
Abstract:
The objective of this paper is to present a practical use of Geographic Information System (GIS) to the public health from spatial correlation between multiple factors and dengue fever outbreak. Meteorological factors, demographic factors and environmental factors are compiled using GIS techniques along with the Global Satellite Mapping Remote Sensing (RS) data. We use monthly dengue fever cases, population density, precipitation, Digital Elevation Model (DEM) data. The scope cover study area under climate change of the El Niño–Southern Oscillation (ENSO) indicated by sea surface temperature (SST) and study area in 12 provinces of Thailand as remote sensing (RS) data from January 2007 to December 2014.Keywords: dengue fever, sea surface temperature, Geographic Information System (GIS), remote sensing
Procedia PDF Downloads 1975606 The Monitoring of Surface Water Bodies from Tisa Catchment Area, Maramureş County in 2014
Authors: Gabriela-Andreea Despescu, Mădălina Mavrodin, Gheorghe Lăzăroiu, S. Nacu, R. Băstinaş
Abstract:
The Monitoring of Surface Water Bodies (Rivers) from Tisa Catchment Area - Maramureş County in 2014. This study is focused on the monitoring and evaluation of river’s water bodies from Maramureş County, using the methodology associated with the EU Water Framework Directive 60/2000. Thus, in the first part are defined the theoretical terms of monitoring activities related to the water bodies’ quality and the specific features of those we can find in the studied area. There are presented the water bodies’ features, quality indicators and the monitoring frequencies for the rivers situated in the Tisa catchment area. The results have shown the actual ecological and chemical state of those water bodies, in relation with the standard values mentioned through the Water Framework Directive.Keywords: monitoring, surveillance, water bodies, quality
Procedia PDF Downloads 2615605 Polyclonal IgG glycosylation in Patients with Pediatric Appendicitis
Authors: Dalma Dojcsák, Csaba Váradi, Flóra Farkas, Tamás Farkas, János Papp, Béla Viskolcz
Abstract:
Background: Appendicitis is a common acute inflammatory condition in both children and adults, but current laboratory markers such as C-reactive protein (CRP), white blood cell count (WBC), absolute neutrophil count (ANC), and red blood cell count (RNC) lack specificity in detecting appendicitis-related inflammation. N-glycosylation, an asparagine-linked glycosylation process, plays a vital role in cellular interactions, angiogenesis, immune response, and effector functions. Altered N-glycosylation impacts tumor growth and both acute and chronic inflammatory processes. IgG, the second most abundant glycoprotein in serum, shows altered glycosylation patterns during inflammation, suggesting that IgG glycan modifications may serve as potential biomarkers for appendicitis. Specifically, increased levels of agalactosylated IgG glycans are a known feature of various inflammatory conditions, potentially including appendicitis. Identifying pediatric appendicitis remains challenging due to the absence of specific biomarkers, which makes diagnosis reliant on clinical symptoms, imaging such as ultrasound, and nonspecific lab indicators (e.g., CRP, WBC, ANC). In this study, we analyzed the IgG derived N-glycome in pediatric patients with appendicitis compared with healthy controls. Methodology: The N-glycome was analyzed by high-performance liquid-chromatography combined with mass spectrometry. IgG was isolated from serum samples by Protein G column. The IgG derived glycans were released by enzymatic deglycosylation and fluorescent tags were attached to each glycan moiety, which made necessitates the sample clean-up for further reliable quantitation. Overall, 38 controls and 40 serum samples diagnosed with pediatric appendicitis were analyzed by HILIC-MS methods. Multivariate statistical tests were performed with area percentage under the peak data derived from the integrated peaks, which were obtained from the chromatograms. Conclusions: Our results represented the altered N-glycome of IgG in pediatric appendicitis is similar with other observations. The glycosylation pattern reported so far for IgG is characterized by decreased galactosylation and sialylation, and an increase in fucosylation.Keywords: N-glycosylation, liquid chromatography, mass spectrometry, inflammation, appendicitis, immunoglobulin G
Procedia PDF Downloads 55604 Supplementation of Fig Fruit (Ficus carica linn.) Extract in Extender on Sperm Motility and Viability of Native Chicken Semen after Cooling
Authors: N. Isnaini, S. Wahjuningsih
Abstract:
Fig fruit is the fruit of a tropical plant with content of flavanoids, vitamins A, C, and E which are antioxidants that effectively prevent and neutralize free radicals. This study was conducted to evaluate the supplementation of fig fruit extract in a physiological NaCl-based diluent on sperm motility and viability of native chicken semen after cooling. Semen was collected from 4 male mature chocks using massage method. Fresh semen evaluated for colour, pH, volume, concentration, mass motility, individual motility, life sperm and sperm abnormality. Semen was diluted with physiological NaCl-based extender supplemented with different levels of fig fruit extract (0, 10, 20 and 30 %) v/v with the ratio of 1 semen: 4 diluter. Semen used had mass motility of 2+ and motility of 70%. Immediately after dilution semen was stored in 3-5 °C and sperm motility and viability percentage were observed at 0, 12 and 24 h. The obtained data were analyze with Analysis of Variant (ANOVA) and Least Significant Difference were determined. The experiment was designed using completely random design (4 treatments and 10 replications). The results showed that the level of fig fruit extract had very significant effect (P < 0,01) on sperm motility and viability percentage in 0, 12 and 24 h of cooling. It can be concluded that the best fig fruit extract level for resulting optimal sperm motility and viability was 10%.Keywords: chock, antioxidant, fig fruit extract, sperm
Procedia PDF Downloads 3045603 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats
Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh
Abstract:
Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model
Procedia PDF Downloads 3555602 Investigation of Microstructure, Mechanical Properties and Anti-Corrosive Behavior of Al2O3/Cr2O3 Nanocomposite on Zn Rich Bath
Authors: N. Malatji, A. P. I. Popoola
Abstract:
Zn-Al2O3 and Cr2O3 nanocomposite coatings were successfully produced by electrodeposition technique from chloride acidic bath. Particle loading of Al2O3 (50nm) particles were varied from 5-10 g/L and for Cr2O3(100nm) was 10-20 g/L. Scanning electron microscope (SEM) affixed with energy dispersive spectrometry was used to study the surface morphology and content of the nanoparticles incorporated into the coatings. Microhardness, thermal stability, wear and corrosion behavior of the coatings were also evaluated to study the effect of these nanoparticles on these properties. Zn-Al2O3 nanocomposite was found to exhibit good surface properties especially corrosion resistance. On the other side, Cr2O3 incorporation resulted in the improvement of only mechanical properties. Therefore, Zn-Al2O3 proved to be a better coating for most industrial applications where both chemical and mechanical properties are required.Keywords: electrodeposition, nanocomposite coatings, corrosion, thermal stability, tribology
Procedia PDF Downloads 3875601 Assessment of Agricultural Land Use Land Cover, Land Surface Temperature and Population Changes Using Remote Sensing and GIS: Southwest Part of Marmara Sea, Turkey
Authors: Melis Inalpulat, Levent Genc
Abstract:
Land Use Land Cover (LULC) changes due to human activities and natural causes have become a major environmental concern. Assessment of temporal remote sensing data provides information about LULC impacts on environment. Land Surface Temperature (LST) is one of the important components for modeling environmental changes in climatological, hydrological, and agricultural studies. In this study, LULC changes (September 7, 1984 and July 8, 2014) especially in agricultural lands together with population changes (1985-2014) and LST status were investigated using remotely sensed and census data in South Marmara Watershed, Turkey. LULC changes were determined using Landsat TM and Landsat OLI data acquired in 1984 and 2014 summers. Six-band TM and OLI images were classified using supervised classification method to prepare LULC map including five classes including Forest (F), Grazing Land (G), Agricultural Land (A), Water Surface (W), and Residential Area-Bare Soil (R-B) classes. The LST image was also derived from thermal bands of the same dates. LULC classification results showed that forest areas, agricultural lands, water surfaces and residential area-bare soils were increased as 65751 ha, 20163 ha, 1924 ha and 20462 ha respectively. In comparison, a dramatic decrement occurred in grazing land (107985 ha) within three decades. The population increased % 29 between years 1984-2014 in whole study area. Along with the natural causes, migration also caused this increase since the study area has an important employment potential. LULC was transformed among the classes due to the expansion in residential, commercial and industrial areas as well as political decisions. In the study, results showed that agricultural lands around the settlement areas transformed to residential areas in 30 years. The LST images showed that mean temperatures were ranged between 26-32 °C in 1984 and 27-33 °C in 2014. Minimum temperature of agricultural lands was increased 3 °C and reached to 23 °C. In contrast, maximum temperature of A class decreased to 41 °C from 44 °C. Considering temperatures of the 2014 R-B class and 1984 status of same areas, it was seen that mean, min and max temperatures increased by 2 °C. As a result, the dynamism of population, LULC and LST resulted in increasing mean and maximum surface temperatures, living spaces/industrial areas and agricultural lands.Keywords: census data, landsat, land surface temperature (LST), land use land cover (LULC)
Procedia PDF Downloads 3915600 Electrochemical Sensing of L-Histidine Based on Fullerene-C60 Mediated Gold Nanocomposite
Authors: Sanjeeb Sutradhar, Archita Patnaik
Abstract:
Histidine is one of the twenty-two naturally occurring essential amino acids exhibiting two conformations, L-histidine and D-histidine. D-Histidine is biologically inert, while L-histidine is bioactive because of its conversion to neurotransmitter or neuromodulator histamine in both brain as well as central nervous system. The deficiency of L-histidine causes serious diseases like Parkinson’s disease, epilepsy and the failure of normal erythropoiesis development. Gold nanocomposites are attractive materials due to their excellent biocompatibility and are easy to adsorb on the electrode surface. In the present investigation, hydrophobic fullerene-C60 was functionalized with homocysteine via nucleophilic addition reaction to make it hydrophilic and to successively make the nanocomposite with in-situ prepared gold nanoparticles with ascorbic acid as reducing agent. The electronic structure calculations of the AuNPs@Hcys-C60 nanocomposite showed a drastic reduction of HOMO-LUMO gap compared to the corresponding molecules of interest, indicating enhanced electron transportability to the electrode surface. In addition, the electrostatic potential map of the nanocomposite showed the charge was distributed over either end of the nanocomposite, evidencing faster direct electron transfer from nanocomposite to the electrode surface. This nanocomposite showed catalytic activity; the nanocomposite modified glassy carbon electrode showed a tenfold higher kₑt, the electron transfer rate constant than the bare glassy carbon electrode. Significant improvement in its sensing behavior by square wave voltammetry was noted.Keywords: fullerene-C60, gold nanocomposites, L-Histidine, square wave voltammetry
Procedia PDF Downloads 2485599 Structural and Microstructural Analysis of White Etching Layer Formation by Electrical Arcing Induced on the Surface of Rail Track
Authors: Ali Ahmed Ali Al-Juboori, H. Zhu, D. Wexler, H. Li, C. Lu, J. McLeod, S. Pannila, J. Barnes
Abstract:
A number of studies have focused on the formation mechanics of white etching layer and its origin in the railway operation. Until recently, the following hypotheses consider the precise mechanics of WELs formation: (i) WELs are the result of thermal process caused by wheel slip; (ii) WELs are mechanically induced by severe plastic deformation; (iii) WELs are caused by a combination of thermo-mechanical process. The mechanisms discussed above lead to occurrence of white etching layers on the area of wheel and rail contact. This is because the contact patch which is the active point of the wheel on the rail is exposed to highest shear stresses which result in localised severe plastic deformation; and highest rate of heat caused by wheel slipe during excessive traction or braking effort. However, if the WELs are not on the running band area, it would suggest that there is another cause of WELs formation. In railway system, particularly electrified railway, arcing phenomenon has been occurring more often and regularly on the rails. In electrified railway, the current is delivered to the train traction motor via contact wires and then returned to the station via the contact between the wheel and the rail. If the contact between the wheel and the rail is temporarily losing, due to dynamic vibration, entrapped dirt or water, lubricant effect or oxidation occurrences, high current can jump through the gap and results in arcing. The other resources of arcing also include the wheel passage the insulated joint and lightning on a train during bad weather. During the arcing, an extensive heat is generated and speared over a large area of top surface of rail. Thus, arcing is considered another heat source in the rail head (rather than wheel slipe) that results in microstructural changes and white etching layer formation. A head hardened (HH) rail steel, cut from a curved rail truck was used for the investigation. Samples were sectioned from a depth of 10 mm below the rail surface, where the material is considered to be still within the hardened layer but away from any microstructural changes on the top surface layer caused by train passage. These samples were subjected to electrical discharges by using Gas Tungsten Arc Welding (GTAW) machine. The arc current was controlled and moved along the samples surface in the direction of travel, as indicated by an arrow. Five different conditions were applied on the surface of the samples. Samples containing pre-existed WELs, taken from ex-service rail surface, were also considered in this study for comparison. Both simulated and ex-serviced WELs were characterised by advanced methods including SEM, TEM, TKD, EDS, XRD. Samples for TEM and TKFD were prepared by Focused Ion Beam (FIB) milling. The results showed that both simulated WELs by electrical arcing and ex-service WEL comprise similar microstructure. Brown etching layer was found with WELs and likely induced by a concurrent tempering process. This study provided a clear understanding of new formation mechanics of WELs which contributes to track maintenance procedure.Keywords: white etching layer, arcing, brown etching layer, material characterisation
Procedia PDF Downloads 1205598 Characterization of Inertial Confinement Fusion Targets Based on Transmission Holographic Mach-Zehnder Interferometer
Authors: B. Zare-Farsani, M. Valieghbal, M. Tarkashvand, A. H. Farahbod
Abstract:
To provide the conditions for nuclear fusion by high energy and powerful laser beams, it is required to have a high degree of symmetry and surface uniformity of the spherical capsules to reduce the Rayleigh-Taylor hydrodynamic instabilities. In this paper, we have used the digital microscopic holography based on Mach-Zehnder interferometer to study the quality of targets for inertial fusion. The interferometric pattern of the target has been registered by a CCD camera and analyzed by Holovision software. The uniformity of the surface and shell thickness are investigated and measured in reconstructed image. We measured shell thickness in different zone where obtained non uniformity 22.82 percent.Keywords: inertial confinement fusion, mach-zehnder interferometer, digital holographic microscopy, image reconstruction, holovision
Procedia PDF Downloads 3025597 Generating Spherical Surface of Wear Drain in Cutting Metal by Finite Element Method Analysis
Authors: D. Kabeya Nahum, L. Y. Kabeya Mukeba
Abstract:
In this work, the design of surface defects some support of the anchor rod ball joint. The future adhesion contact was rocking in manufacture machining, for giving by the numerical analysis of a short simple solution of thermo-mechanical coupled problem in process engineering. The analysis of geometrical evaluation and the quasi-static and dynamic states are discussed in kinematic dimensional tolerances onto surfaces of part. Geometric modeling using the finite element method (FEM) in rough part of such phase provides an opportunity to solve the nonlinearity behavior observed by empirical data to improve the discrete functional surfaces. The open question here is to obtain spherical geometry of drain wear with the operation of rolling. The formulation with (1 ± 0.01) mm thickness near the drain wear semi-finishing tool for studying different angles, do not help the professional factor in design cutting metal related vibration, friction and interface solid-solid of part and tool during this physical complex process, with multi-parameters no-defined in Sobolev Spaces. The stochastic approach of cracking, wear and fretting due to the cutting forces face boundary layers small dimensions thickness of the workpiece and the tool in the machining position is predicted neighbor to ‘Yakam Matrix’.Keywords: FEM, geometry, part, simulation, spherical surface engineering, tool, workpiece
Procedia PDF Downloads 2715596 Association of MIR146A rs2910164 Variation with a Predisposition to Sporadic Breast Cancer in a Pakistani Cohort
Authors: Mushtaq Ahmad, Bashir Rahman, Taqweem-ul-Haq, Fazal Jalil, Aftab Ali Shah
Abstract:
Single nucleotide polymorphisms (SNPs) in genes coding for microRNAs (miRNAs) play a pivotal role in the progression of breast cancer (BC). We investigated the association of miR-146a rs2910164 G/C polymorphism with the risk of BC in the Pakistani population. The miR-146a rs2910164 polymorphism was genotyped in 300 BC-cases and 300 age- and gender-matched healthy controls using T-ARMS-PCR. Genotype and allele frequencies were calculated, and the association between genotypes and the risk of BC was calculated by odds ratios (OR) and confidence intervals (95%). A significant difference in genotypic frequencies (χ2=63.10; p ≤ 0.0001) and allelic frequencies (OR=0.3955 (0.3132-0.4993); p ≤ 0.0001) was observed between cases and controls. Furthermore, we also found that miR-146 rs2910164 CC homozygote increased the risk of breast cancer in the dominant (OR=0.2397 (0.1629-0.3526); p=0.0001; GG vs GC+CC) and recessive (OR=2.803 (1.865- 4.213); P ≤ 0.0001; CC vs GC+GG) inheritance models. In summary, miR-146a rs2910164 G/C is significantly associated with BC in the Pakistani population. To our knowledge, this is the first study that assessed MIR146a rs2910164 G > C SNP in Pakistani population. By analyzing the secondary structure of MIR146A variant, a significant structural modification was noted. Study with a larger sample size is needed to further confirm these findings.Keywords: breast cancer, MIR146A, microRNA, SNP
Procedia PDF Downloads 1355595 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon
Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng
Abstract:
Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics
Procedia PDF Downloads 2685594 Thermography Evaluation on Facial Temperature Recovery after Elastic Gum
Authors: A. Dionísio, L. Roseiro, J. Fonseca, P. Nicolau
Abstract:
Thermography is a non-radiating and contact-free technology which can be used to monitor skin temperature. The efficiency and safety of thermography technology make it a useful tool for detecting and locating thermal changes in skin surface, characterized by increases or decreases in temperature. This work intends to be a contribution for the use of thermography as a methodology for evaluation of skin temperature in the context of orofacial biomechanics. The study aims to identify the oscillations of skin temperature in the left and right hemiface regions of the masseter muscle, during and after thermal stimulus, and estimate the time required to restore the initial temperature after the application of the stimulus. Using a FLIR T430sc camera, a data acquisition protocol was followed with a group of eight volunteers, aged between 22 and 27 years. The tests were performed in a controlled environment with the volunteers in a comfortably static position. The thermal stimulus involves the use of an ice volume with controlled size and contact surface. The skin surface temperature was recorded in two distinct situations, namely without further stimulus and with the additions of a stimulus obtained by a chewing gum. The data obtained were treated using FLIR Research IR Max software. The time required to recover the initial temperature ranged from 20 to 52 minutes when no stimulus was added and varied between 8 and 26 minutes with the chewing gum stimulus. These results show that recovery is faster with the addition of the stimulus and may guide clinicians regarding the pre and post-operative times with ice therapy, in the presence or absence of mechanical stimulus that increases muscle functions (e.g. phonetics or mastication).Keywords: thermography, orofacial biomechanics, skin temperature, ice therapy
Procedia PDF Downloads 2545593 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate
Authors: Arpit Bhardwaj, Koushik Roy
Abstract:
The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.Keywords: free vibration, multilayered plates, surface loading, quasicrystals
Procedia PDF Downloads 1435592 SEM and FTIR Study of Adsorption Characteristics Using Xanthate (KIBX) Synthesized Collectors on Sphalerite
Authors: Zohir Nedjar, Djamel Barkat
Abstract:
Thiols such as alkyl xanthates are commonly used as collectors in the froth flotation of sulfide minerals. Under the concen-tration, pH and Eh conditions relevant to flotation, the thermodynamically favoured reaction between a thiol and a sulfide mineral surface is charge transfechemisorption in which the collector becomes bonded to metal atoms in the outermost layer of the sulfide lattice. The adsorption of potassium isobutyl xanthate (KIBX 3.10-3M) on sphalerite has been also studied using electrochemical potential, FTIR technique and SEM. Non activated minerals and minerals activated with copper sulfate (10-4 M) and copper nitrate (10-4 M) have been investigated at pH = 7.5. Surface species have been identified by FTIR and correlated with SEM. After copper sulfate activation, copper xanthate exists on all of the minerals studied. Neutral pH is most favorable for potassium isobutyl xanthate adsorption on sphalerite.Keywords: flotation, adsorption, xanthate KIBX, sphalerite
Procedia PDF Downloads 3055591 Multiaxial Fatigue in Thermal Elastohydrodynamic Lubricated Contacts with Asperities and Slip
Authors: Carl-Magnus Everitt, Bo Alfredsson
Abstract:
Contact mechanics and tribology have been combined with fundamental fatigue and fracture mechanics to form the asperity mechanism which supplies an explanation for the surface-initiated rolling contact fatigue damage, called pitting or spalling. The cracks causing the pits initiates at one surface point and thereafter they slowly grow into the material before chipping of a material piece to form the pit. In the current study, the lubrication aspects on fatigue initiation are simulated by passing a single asperity through a thermal elastohydrodynamic lubricated, TEHL, contact. The physics of the lubricant was described with Reynolds equation and the lubricants pressure-viscosity relation was modeled by Roelands equation, formulated to include temperature dependence. A pressure dependent shear limit was incorporated. To capture the full phenomena of the sliding contact the temperature field was resolved through the incorporation of the energy flow. The heat was mainly generated due to shearing of the lubricant and from dry friction where metal contact occurred. The heat was then transported, and conducted, away by the solids and the lubricant. The fatigue damage caused by the asperities was evaluated through Findley’s fatigue criterion. The results show that asperities, in the size of surface roughness found in applications, may cause surface initiated fatigue damage and crack initiation. The simulations also show that the asperities broke through the lubricant in the inlet, causing metal to metal contact with high friction. When the asperities thereafter moved through the contact, the sliding provided the asperities with lubricant releasing the metal contact. The release of metal contact was possible due to the high viscosity the lubricant obtained from the high pressure. The metal contact in the inlet caused higher friction which increased the risk of fatigue damage. Since the metal contact occurred in the inlet it increased the fatigue risk more for asperities subjected to negative slip than positive slip. Therefore the fatigue evaluations showed that the asperities subjected to negative slip yielded higher fatigue stresses than the asperities subjected to positive slip of equal magnitude. This is one explanation for why pitting is more common in the dedendum than the addendum on pinion gear teeth. The simulations produced further validation for the asperity mechanism by showing that asperities cause surface initiated fatigue and crack initiation.Keywords: fatigue, rolling, sliding, thermal elastohydrodynamic
Procedia PDF Downloads 1205590 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 1335589 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.Keywords: DTM, Unmanned Aerial Vehicle (UAV), uniform, random, kriging
Procedia PDF Downloads 1535588 Development of Automatic Laser Scanning Measurement Instrument
Authors: Chien-Hung Liu, Yu-Fen Chen
Abstract:
This study used triangular laser probe and three-axial direction mobile platform for surface measurement, programmed it and applied it to real-time analytic statistics of different measured data. This structure was used to design a system integration program: using triangular laser probe for scattering or reflection non-contact measurement, transferring the captured signals to the computer through RS-232, and using RS-485 to control the three-axis platform for a wide range of measurement. The data captured by the laser probe are formed into a 3D surface. This study constructed an optical measurement application program in the concept of visual programming language. First, the signals are transmitted to the computer through RS-232/RS-485, and then the signals are stored and recorded in graphic interface timely. This programming concept analyzes various messages, and makes proper presentation graphs and data processing to provide the users with friendly graphic interfaces and data processing state monitoring, and identifies whether the present data are normal in graphic concept. The major functions of the measurement system developed by this study are thickness measurement, SPC, surface smoothness analysis, and analytical calculation of trend line. A result report can be made and printed promptly. This study measured different heights and surfaces successfully, performed on-line data analysis and processing effectively, and developed a man-machine interface for users to operate.Keywords: laser probe, non-contact measurement, triangulation measurement principle, statistical process control, labVIEW
Procedia PDF Downloads 3595587 Study of Biofuel Produced by Babassu Oil Fatty Acids Esterification
Authors: F. A. F. da Ponte, J. Q. Malveira, I. A. Maciel, M. C. G. Albuquerque
Abstract:
In this work aviation, biofuel production was studied by fatty acids (C6 to C16) esterification. The process variables in heterogeneous catalysis were evaluated using an experimental design. Temperature and reaction time were the studied parameters, and the methyl esters content was the response of the experimental design. An ion exchange resin was used as a heterogeneous catalyst. The process optimization was carried out using response surface methodology (RSM) and polynomial model of second order. Results show that the most influential variables on the linear coefficient of each effect studied were temperature and reaction time. The best result of methyl esters conversion in the experimental design was under the conditions: 10% wt of catalyst; 100 °C and 4 hours of reaction. The best-achieved conversion was 96.5% wt of biofuel.Keywords: esterification, ion-exchange resins, response surface methodology, biofuel
Procedia PDF Downloads 4935586 Synthesis of Silver Nanoparticles Adsorbent from Phytolacca Dodecandra ‘Endod’ Leaf to Water Treatment, at Almeda Textile Factory, Tigray Ethiopia
Authors: Letemariam Gebreslassie Gebrekidan
Abstract:
Water pollution is one of the most feared problems in modern societies, especially in developing countries like Ethiopia. Nanoparticles with controlled size and composition are of fundamental and technological interest as they provide solutions to technological and environmental challenges in the areas of solar energy conversion, catalysis, medicine, and water treatment. The synthesis of metallic nanoparticles is an active area of academic and, more importantly, application research in nanotechnology. Adsorption is a process in which pollutants are absorbed on a solid surface. A molecule (pollutant) adhered to the solid surface is called an adsorbate, and the solid surface is an adsorbent. Adsorption is controlled by various parameters such as temperature, the nature of the adsorbate and adsorbent, and the presence of other pollutants along with the experimental conditions (pH, concentration of pollutants, contact time, particle size, and temperature). Depending on the main problem of water pollution, this research is available on the adsorption of wastewater using silver nanoparticles extracted from phytolacca Dodecandra leaf. AgNP was synthesized from a 1mM aqueous solution of silver nitrate (AgNO3) and Phytolacca Dodecandra leaf extract at room temperature. The synthesized nanoparticles were characterized using UV/visible Spectrometer, FTIR and XRD. In the UV-Vis spectrum, The Surface Plasmon resonance (SPR) peak was observed at 414 nm, which confirmed the synthesis of AgNPs. FTIR spectroscopy, recorded from 4000 cm-1 to 400 cm-1, indicated the presence of a capping agent with the nanoparticles. From the XRD results, the average crystalline size was estimated to be 20 nm Confirming the nanoparticle nature of the obtained sample. Thus, the present method leads to the formation of silver nanoparticles with well-defined dimensions. The effects of different parameters like solution pH, adsorbent dose, contact time and initial concentration of dye were studied. The concentration of MB is 0.01 mg/L and 0.002 mg/L before and after adsorption, respectively. The wastewater containing MB was well purified using AgNP adsorbent.Keywords: wastewater, silver nanoparticle, Characterization, adsorption, parameter
Procedia PDF Downloads 135585 Designing and Prototyping Permanent Magnet Generators for Wind Energy
Authors: T. Asefi, J. Faiz, M. A. Khan
Abstract:
This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms
Procedia PDF Downloads 1495584 Combination Approach Using Experiments and Optimal Experimental Design to Optimize Chemical Concentration in Alkali-Surfactant-Polymer Process
Authors: H. Tai Pham, Bae Wisup, Sungmin Jung, Ivan Efriza, Ratna Widyaningsih, Byung Un Min
Abstract:
The middle-phase-microemulsion in Alkaline-Surfactant-Polymer (ASP) solution and oil play important roles in the success of an ASP flooding process. The high quality microemulsion phase has ultralow interfacial tensions and it can increase oil recovery. The research used optimal experimental design and response-surface-methodology to predict the optimum concentration of chemicals in ASP solution for maximum microemulsion quality. Secondly, this optimal ASP formulation was implemented in core flooding test to investigate the effective injection volume. As the results, the optimum concentration of surfactants in the ASP solution is 0.57 wt.% and the highest effective injection volume is 19.33% pore volume.Keywords: optimize, ASP, response surface methodology, solubilization ratio
Procedia PDF Downloads 3465583 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application
Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami
Abstract:
This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage
Procedia PDF Downloads 585582 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials
Authors: Mohamed Akbi, Aissa Bouchou
Abstract:
The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission
Procedia PDF Downloads 3845581 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand
Authors: Wallapa Boonrod
Abstract:
Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses
Procedia PDF Downloads 449