Search results for: network group behavior
16952 The Territorial Expression of Religious Identity: A Case Study of Catholic Communities
Authors: Margarida Franca
Abstract:
The influence of the ‘cultural turn’ movement and the consequent deconstruction of scientific thought allowed geography and other social sciences to open or deepen their studies based on the analysis of multiple identities, on singularities, on what is particular or what marks the difference between individuals. In the context of postmodernity, the geography of religion has gained a favorable scientific, thematic and methodological focus for the qualitative and subjective interpretation of various religious identities, sacred places, territories of belonging, religious communities, among others. In the context of ‘late modernity’ or ‘net modernity’, sacred places and the definition of a network of sacred territories allow believers to attain the ‘ontological security’. The integration on a religious group or a local community, particularly a religious community, allows human beings to achieve a sense of belonging, familiarity or solidarity and to overcome, in part, some of the risks or fears that society has discovered. The importance of sacred places comes not only from their inherent characteristics (eg transcendent, mystical and mythical, respect, intimacy and abnegation), but also from the possibility of adding and integrating members of the same community, creating bonds of belonging, reference and individual and collective memory. In addition, the formation of different networks of sacred places, with multiple scales and dimensions, allows the human being to identify and structure his times and spaces of daily life. Thus, each individual, due to his unique identity and life and religious paths, creates his own network of sacred places. The territorial expression of religious identity allows to draw a variable and unique geography of sacred places. Through the case study of the practicing Catholic population in the diocese of Coimbra (Portugal), the aim is to study the territorial expression of the religious identity of the different local communities of this city. Through a survey of six parishes in the city, we sought to identify which factors, qualitative or not, define the different territorial expressions on a local, national and international scale, with emphasis on the socioeconomic profile of the population, the religious path of the believers, the religious group they belong to and the external interferences, religious or not. The analysis of these factors allows us to categorize the communities of the city of Coimbra and, for each typology or category, to identify the specific elements that unite the believers to the sacred places, the networks and religious territories that structure the religious practice and experience and also the non-representational landscape that unifies and creates memory. We conclude that an apparently homogeneous group, the Catholic community, incorporates multitemporalities and multiterritorialities that are necessary to understand the history and geography of a whole country and of the Catholic communities in particular.Keywords: geography of religion, sacred places, territoriality, Catholic Church
Procedia PDF Downloads 32316951 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 43816950 Comparison of Depth of Cure and Degree of Conversion between Opus Bulk Fill and X-Tra Fill Bulk Fill Composites
Authors: Yasaman Samani, Ali Golmohammadi
Abstract:
Introduction: The degree of conversion and depth of cure affects the clinical success of resin composite restorations directly. One of the main challenges in achieving a successful composite restoration is the achievement of sufficient depth of cure. The insufficient polymerization may lead to a decrease in the physical/mechanical and biological properties of resin composites and, as a result of that, unsuccessful composite restoration. Thus, because of the importance of studying and evaluating the depth of cure and degree of conversion in bulk-fill composites, we decided to evaluate and compare the degree of conversion and depth of cure in two bulk-fill composites; x-tra fill (Voco, Germany) and Opus Bulk fill APS (FGM, Brazil). Materials and Methods: Composite resin specimens (n=10) per group were prepared as cylinder blocks (4×8 mm) with bulk-fill composites, x-tra fil (Voco, Germany) designated as Group A, and Opus Bulk fill APS (FGM, Brazil) designated as Group B. Depth of cure was determined according to “ISO 4049; Depth of Cure” method, In which each specimen were cured (iLED, Woodpecker, China) 40 seconds and FTIR spectroscopy method was used to estimate the degree of conversion of both the bulk-fill composites. The degree of conversion of monomer to polymer was estimated individually in the coronal half (Group A1 and B1) and pulpal half (Group A2 and Group B2) by dividing each specimen into two halves. The data were analyzed using a Student’s t-test and one-way ANOVA at a 5% level of significance. Results: The mean depth of cure in x-tra fil (Voco, Germany) was 3.99 (±0.16), and for Opus Bulk fill, APS (FGM, Brazil) was 2.14 (±0.3). The degree of conversion percentage in Group A1 was 82.7 (±6.1), in group A2 was 73.4 (±5.2), in group B1 was 63.3 (±4.7) and in Group B2 was 56.5 (±7.7). Statistical analysis revealed a significant difference in the depth of cure between the two bulk-fill composites with x-tra fil (Voco, Germany) higher than Opus Bulk fill APS (FGM, Brazil) (P<0.001). The degree of conversion percentage also showed a significant difference, Group A1 being higher than A2 (P=0.0085), B1, and B2 (P<0.001). Group A2 was also higher than B1 (P=0.003) and B2 (P<0.001). There was no significant difference between B1 and B2 (P=0.072). Conclusion: The results indicate that x-tra fill has more depth of cure and a higher percentage of the degree of conversion than Opus Bulk fill APS. The coronal half of x-tra fil had the highest depth of cure percentage (82.66%), and the pulpal half of Opus Bulk fill APS had the lowest percentage (56.45%). Even though both bulk-fill composite materials had an acceptable degree of conversion (55% and higher), x-tra fill has shown better results.Keywords: depth of cure, degree of conversion, bulk-fill composite, FTIR
Procedia PDF Downloads 10216949 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 16716948 Efficacy Of Tranexamic Acid On Blood Loss After Primary Total Hip Replacement : A Case-control Study In 154 Patients
Authors: Fedili Benamar, Belloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir
Abstract:
Introduction: Perioperative blood loss is a frequent cause of complications in total hip replacement (THR). The present prospective study assessed the efficacy of tranexamic acid (Exacyl(®)) in reducing blood loss in primary THR. Hypothesis: Tranexamic acid reduces blood loss in THR. Material and method: -This is a prospective randomized study on the effectiveness of Exacyl (tranexamic acid) in total hip replacement surgery performed on a standardized technique between 2019 and September 2022. -It involved 154 patients, of which 84 received a single injection of Exacyl (group 1) at a dosage of 10 mg/kg over 20 minutes during the perioperative period. -All patients received postoperative thromboprophylaxis with enoxaparin 0.4 ml subcutaneously. -All patients were admitted to the post-interventional intensive care unit for a duration of 24 hours for monitoring and pain management as per the service protocol. Results: 154 patients, of which 84 received a single injection of Exacyl (group 1) and 70 patients patients who did not receive Exacyl perioperatively : (Group 2 ) The average age is 57 +/- 15 years The distribution by gender was nearly equal with 56% male and 44% female; "The distribution according to the ASA score was as follows: 20.2% ASA1, 82.3% ASA2, and 17.5% ASA3. "There was a significant difference in the average volume of intraoperative and postoperative bleeding during the 48 hours." The average bleeding volume for group 1 (received Exacyl) was 614 ml +/- 228, while the average bleeding volume for group 2 was 729 +/- 300, with a chi-square test of 6.35 and a p-value < 0.01, which is highly significant. The ANOVA test showed an F-statistic of 7.11 and a p-value of 0.008. A Bartlett test revealed a chi-square of 6.35 and a p-value < 0.01." "In Group 1 (patients who received Exacyl), 73% had bleeding less than 750 ml (Group A), and 26% had bleeding exceeding 750 ml (Group B). In Group 2 (patients who did not receive Exacyl perioperatively), 52% had bleeding less than 750 ml (Group A), and 47% had bleeding exceeding 750 ml (Group B). "Thus, the use of Exacyl reduced perioperative bleeding and specifically decreased the risk of severe bleeding exceeding 750 ml by 43% with a relative risk (RR) of 1.37 and a p-value < 0.01. The transfusion rate was 1.19% in the population of Group 1 (Exacyl), whereas it was 10% in the population of Group 2 (no Exacyl). It can be stated that the use of Exacyl resulted in a reduction in perioperative blood transfusion with an RR of 0.1 and a p-value of 0.02. Conclusions: The use of Exacyl significantly reduced perioperative bleeding in this type of surgery.Keywords: acid tranexamic, blood loss, anesthesia, total hip replacement, surgery
Procedia PDF Downloads 7716947 Study of the Thermomechanical Behavior of a Concrete Element
Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir
Abstract:
The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength
Procedia PDF Downloads 30916946 Characterization of Number of Subgroups of Finite Groups
Authors: Khyati Sharma, A. Satyanarayana Reddy
Abstract:
The topic of how many subgroups exist within a certain finite group naturally arises in the study of finite groups. Over the years, different researchers have investigated this issue from a variety of angles. The significant contributions of the key mathematicians over the time have been summarized in this article. To this end, we classify finite groups into three categories viz. (a) Groups for which the number of subgroups is less than |G|, (b) equals to |G|, and finally, (c) greater than |G|. Because every element of a finite group generates a cyclic subgroup, counting cyclic subgroups is the most important task in this endeavor. A brief survey on the number of cyclic subgroups of finite groups is also conducted by us. Furthermore, we also covered certain arithmetic relations between the order of a finite group |G| and the number of its distinct cyclic subgroups |C(G)|. In order to provide pertinent context and possibly reveal new novel areas of potential research within the field of research on finite groups, we finally pose and solicit a few open questions.Keywords: abstract algebra, cyclic subgroup, finite group, subgroup
Procedia PDF Downloads 12016945 Carotid Intima-Media Thickness and Ankle-Brachial Index as Predictors of the Severity of Coronary Artery Disease
Authors: Ali Kassem, Yaser Kamal, Mohamed Abdel Wahab, Mohamed Hussen
Abstract:
Introduction: Atherosclerosis is one of the leading causes of death all over the world. Recently, there is an increasing interest in Carotid Intima-Medial Thickness (CIMT) and Ankle Brachial Index (ABI) as non-invasive tools for identifying subclinical atherosclerosis. We aim to examine the role of CIMT and ABI as predictors of the severity of angiographically documented coronary artery disease (CAD). Methods: A cross-sectional study conducted on 60 patients who were investigated by coronary angiography at Sohag University Hospital, Egypt. CIMT: After the carotid arteries were located by transverse scans, the probe was rotated 90 ° to obtain and record longitudinal images of bilateral carotid arteries ABI: Each patient was evaluated in the supine position after resting for 5 min. ABI was measured in each leg using a Doppler Ultrasound while the patient remained in the same position. The lowest ABI obtained for either leg was taken as the ABI measurement for the patient. Results: Patients with carotid mean IMT ≥ 0.9 mm had significantly more severe coronary artery disease than patients without thickening (mean IMT > 0.9 mm). Similarly, patients with low ABI (< 0.9) had significantly more severe coronary artery disease than patients with ABI ≥ 0.9. When the patients were divided into 4 groups (group A, n = 15, mean IMT < 0.9 mm, ABI ≥ 0.9; group B, n = 25, mean IMT < 0.9 mm, low ABI; group C, n = 5, mean IMT ≥ 0.9 mm, ABI ≥ 0.9; group D, n = 19, mean IMT ≤ 0.9 mm, low ABI), the presence of significant coronary stenosis (> 50%) of the groups were significantly different (group A, n = 5: (33.3%); group B, n = 11: (52.4%); group C, n = 4: (60%); group D, n=15, (78.9%), P = 0.001). Conclusion: CIMT and ABI provide useful information on the severity of CAD. Early and aggressive intervention should be considered in patients with CAD and abnormalities in one or both of these non-invasive modalities.Keywords: ankle brachial index, carotid intima media thickness, coronary artery disease, predictors of severity
Procedia PDF Downloads 23216944 Measures of Reliability and Transportation Quality on an Urban Rail Transit Network in Case of Links’ Capacities Loss
Authors: Jie Liu, Jinqu Cheng, Qiyuan Peng, Yong Yin
Abstract:
Urban rail transit (URT) plays a significant role in dealing with traffic congestion and environmental problems in cities. However, equipment failure and obstruction of links often lead to URT links’ capacities loss in daily operation. It affects the reliability and transport service quality of URT network seriously. In order to measure the influence of links’ capacities loss on reliability and transport service quality of URT network, passengers are divided into three categories in case of links’ capacities loss. Passengers in category 1 are less affected by the loss of links’ capacities. Their travel is reliable since their travel quality is not significantly reduced. Passengers in category 2 are affected by the loss of links’ capacities heavily. Their travel is not reliable since their travel quality is reduced seriously. However, passengers in category 2 still can travel on URT. Passengers in category 3 can not travel on URT because their travel paths’ passenger flow exceeds capacities. Their travel is not reliable. Thus, the proportion of passengers in category 1 whose travel is reliable is defined as reliability indicator of URT network. The transport service quality of URT network is related to passengers’ travel time, passengers’ transfer times and whether seats are available to passengers. The generalized travel cost is a comprehensive reflection of travel time, transfer times and travel comfort. Therefore, passengers’ average generalized travel cost is used as transport service quality indicator of URT network. The impact of links’ capacities loss on transport service quality of URT network is measured with passengers’ relative average generalized travel cost with and without links’ capacities loss. The proportion of the passengers affected by links and betweenness of links are used to determine the important links in URT network. The stochastic user equilibrium distribution model based on the improved logit model is used to determine passengers’ categories and calculate passengers’ generalized travel cost in case of links’ capacities loss, which is solved with method of successive weighted averages algorithm. The reliability and transport service quality indicators of URT network are calculated with the solution result. Taking Wuhan Metro as a case, the reliability and transport service quality of Wuhan metro network is measured with indicators and method proposed in this paper. The result shows that using the proportion of the passengers affected by links can identify important links effectively which have great influence on reliability and transport service quality of URT network; The important links are mostly connected to transfer stations and the passenger flow of important links is high; With the increase of number of failure links and the proportion of capacity loss, the reliability of the network keeps decreasing, the proportion of passengers in category 3 keeps increasing and the proportion of passengers in category 2 increases at first and then decreases; When the number of failure links and the proportion of capacity loss increased to a certain level, the decline of transport service quality is weakened.Keywords: urban rail transit network, reliability, transport service quality, links’ capacities loss, important links
Procedia PDF Downloads 12816943 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 30316942 Light and Electron Study of Acrylamide–Induced Hypothalamic Changes
Authors: Keivan Jamshidi
Abstract:
Distal swelling and eventual degeneration of axon in the CNS and PNS have been considered to be the characteristic neuropathological effects of acrylamide (ACR) neuropathy. This study was conducted to determine the neurotoxic effects of different doses of ACR (0.5, 5, 50, 100, and 500 mg/kg per day × 11days i. p.) on hypothalamus of rat using the de Olmos amino cupric-silver stain and electron microscopy. For this purpose 60 adult male rats (Wistar, approximately 250 g) were randomly assigned in 5 treatment groups as A, B, C, D, E) exposed to 0.5, 5, 50, 100, and 500 mg/kg per dayx11days i. p. and one control group as F received daily i. p. injections of 0.9% saline (3ml/kg). As indices of developing neurotoxicity, weight gain, gait scores and landing hindlimb foot splay were determined. After 11 days, two rats for silver stain, and two rats for EM were randomly selected; dissected and proper samples were collected from hypothalamus. Results did show no neurological behavior in groups A, B and F were observed in group C. Rats in groups D and E died within 1-2 hours due to sever toxemia. In histopathological studies based on de Olmos technique no argyrophilic neurons or processes were observed in stained sections obtained from hypothalamus of rats belong to groups A, B, and F while moderate to severe argyrophilic changes were observed in different nuclei and regions of stained sections obtained from hypothalamus of rats belong to group C. In ultra-structural studies some variations in the myelin sheet of injured axons including decompactation, interlaminar space formation, disruption of the laminar sheet, accumulation of neurofilaments, vacculation, and clumping inside the axolem, and finally complete disappearance of laminar sheet were observed.Keywords: acrylamide, hypothalamus, rat, de Olmos amino cupric, silver stain, electron microscopy
Procedia PDF Downloads 52816941 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation Using Physics-Informed Neural Network
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics-informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on a strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary conditions to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of the Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful in studying various optical phenomena.Keywords: deep learning, optical soliton, physics informed neural network, partial differential equation
Procedia PDF Downloads 7016940 Two Day Ahead Short Term Load Forecasting Neural Network Based
Authors: Firas M. Tuaimah
Abstract:
This paper presents an Artificial Neural Network based approach for short-term load forecasting and exactly for two days ahead. Two seasons have been discussed for Iraqi power system, namely summer and winter; the hourly load demand is the most important input variables for ANN based load forecasting. The recorded daily load profile with a lead time of 1-48 hours for July and December of the year 2012 was obtained from the operation and control center that belongs to the Ministry of Iraqi electricity. The results of the comparison show that the neural network gives a good prediction for the load forecasting and for two days ahead.Keywords: short-term load forecasting, artificial neural networks, back propagation learning, hourly load demand
Procedia PDF Downloads 46416939 The Effect of Computer-Based Formative Assessment on Learning Outcome
Authors: Van Thien NGO
Abstract:
The purpose of the study is to examine the effect of student response systems in computer-based formative assessment on learning outcomes. The backward design course is a tool to be applied for collecting necessary assessment evidence. The quasi-experimental research design involves collecting pre and posttest data on students assigned to the control group and the experimental group. The sample group consists of 150 college students randomly selected from two of the eight classes of electrical and electronics students at Cao Thang Technical College in Ho Chi Minh City, Vietnam. Findings from this research revealed that the experimental group, in which student response systems were applied, got better results than the controlled group, who did not apply them. Results show that using student response systems for technology-based formative assessment is vital and meaningful not only for teachers but also for students in the teaching and learning process.Keywords: student response system, computer-based formative assessment, learning outcome, backward design course
Procedia PDF Downloads 13316938 A Comparison of Implant Stability between Implant Placed without Bone Graft versus with Bone Graft Using Guided Bone Regeneration (GBR) Technique: A Resonance Frequency Analysis
Authors: R. Janyaphadungpong, A. Pimkhaokham
Abstract:
This prospective clinical study determined the insertion torque (IT) value and monitored the changes in implant stability quotient (ISQ) values during the 12 weeks healing period from implant placement without bone graft (control group) and with bone graft using the guided bone regeneration (GBR) technique (study group). The relationship between the IT and ISQ values of the implants was also assessed. The control and study groups each consisted of 6 patients with 8 implants per group. The ASTRA TECH Implant System™ EV 4.2 mm in diameter was placed in the posterior mandibular region. In the control group, implants were placed in bone without bone graft, whereas in the study group implants were placed simultaneously with the GBR technique at favorable bone defect. IT (Ncm) of each implant was recorded when fully inserted. ISQ values were obtained from the Osstell® ISQ at the time of implant placement, and at 2, 4, 8, and 12 weeks. No difference in IT was found between groups (P = 0.320). The ISQ values in the control group were significantly higher than in the study group at the time of implant placement and at 4 weeks. There was no significant association between IT and ISQ values either at baseline or after the 12 weeks. At 12 weeks of healing, the control and study groups displayed different trends. Mean ISQ values for the control group decreased over the first 2 weeks and then started to increase. ISQ value increases were statistically significant at 8 weeks and later, whereas mean ISQ values in the study group decreased over the first 4 weeks and then started to increase, with statistical significance after 12 weeks. At 12 weeks, all implants achieved osseointegration with mean ISQ values over the threshold value (ISQ>70). These results indicated that implants, in which guided bone regeneration technique was performed during implant placement for treating favorable bone defects, were as predictable as implants placed without bone graft. However, loading in implants placed with the GBR technique for correcting favorable bone defects should be performed after 12 weeks of healing to ensure implant stability and osseointegration.Keywords: dental implant, favorable bone defect, guided bone regeneration technique, implant stability
Procedia PDF Downloads 29616937 Keypoint Detection Method Based on Multi-Scale Feature Fusion of Attention Mechanism
Authors: Xiaoxiao Li, Shuangcheng Jia, Qian Li
Abstract:
Keypoint detection has always been a challenge in the field of image recognition. This paper proposes a novelty keypoint detection method which is called Multi-Scale Feature Fusion Convolutional Network with Attention (MFFCNA). We verified that the multi-scale features with the attention mechanism module have better feature expression capability. The feature fusion between different scales makes the information that the network model can express more abundant, and the network is easier to converge. On our self-made street sign corner dataset, we validate the MFFCNA model with an accuracy of 97.8% and a recall of 81%, which are 5 and 8 percentage points higher than the HRNet network, respectively. On the COCO dataset, the AP is 71.9%, and the AR is 75.3%, which are 3 points and 2 points higher than HRNet, respectively. Extensive experiments show that our method has a remarkable improvement in the keypoint recognition tasks, and the recognition effect is better than the existing methods. Moreover, our method can be applied not only to keypoint detection but also to image classification and semantic segmentation with good generality.Keywords: keypoint detection, feature fusion, attention, semantic segmentation
Procedia PDF Downloads 11916936 Characterization of the Viscoelastic Behavior of Polymeric Composites
Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi
Abstract:
Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling
Procedia PDF Downloads 23316935 The Impact of Informal Care on Health Behavior among Older People with Chronic Diseases: A Study in China Using Propensity Score Matching
Abstract:
Improvement of health behavior among people with chronic diseases is vital for increasing longevity and enhancing quality of life. This paper researched the causal effects of informal care on the compliance with doctor’s health advices – smoking control, dietetic regulation, weight control and keep exercising – among older people with chronic diseases in China, which is facing the challenge of aging. We addressed the selection bias by using propensity score matching in the estimation process. We used the 2011-2012 national baseline data of the China Health and Retirement Longitudinal Study. Our results showed informal care can help improve health behavior of older people. First, informal care improved the compliance of smoking controls: whether smoke, frequency of smoking, and the time lag between wake up and the first cigarette was all lower for these older people with informal care; Second, for dietetic regulation, older people with informal care had more meals every day than older people without informal care; Third, three variables: BMI, whether gain weight and whether lose weight were used to measure the outcome of weight control. There were no significant difference between group with informal care and that without for BMI and the possibility of losing weight. Older people with informal care had lower possibility of gain weight than that without; Last, for the advice of keeping exercising, informal care increased the probability of walking exercise, however, the difference between groups for moderate and vigorous exercise were not significant. Our results indicate policy makers who aim to decrease accidents should take informal care to elders into account and provide an appropriate policy to meet the demand of informal care. Our birth policy and postponed retirement policy may decrease the informal caregiving hours, so adjustments of these policies are important and urgent to meet the current situation of aged tendency of population. In addition, government could give more support to develop organizations to provide formal care, such as nursing home. We infer that formal care is also useful for health behavior improvements.Keywords: chronic diseases, compliance, CHARLS, health advice, informal care, older people, propensity score matching
Procedia PDF Downloads 40516934 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: unmanned aerial vehicle, object tracking, deep learning, collision avoidance
Procedia PDF Downloads 16016933 Experimental and Analytical Study to Investigate the Effect of Tension Reinforcement on Behavior of Reinforced Concrete Short Beams
Authors: Hakan Ozturk, Aydin Demir, Kemal Edip, Marta Stojmanovska, Julijana Bojadjieva
Abstract:
There are many factors that affect the behavior of reinforced concrete beams. These can be listed as concrete compressive and reinforcement yield strength, amount of tension, compression and confinement bars, and strain hardening of reinforcement. In the study, support condition of short beams is selected statically indeterminate to first degree. Experimental and numerical analysis are carried for reinforcement concrete (RC) short beams. Dimensions of cross sections are selected as 250mm width and 500 mm height. The length of RC short beams is designed as 2250 mm and these values are constant in all beams. After verifying accurately finite element model, a numerical parametric study is performed with varied diameter of tension reinforcement. Effect of change in diameter is investigated on behavior of RC short beams. As a result of the study, ductility ratios and failure modes are determined, and load-displacement graphs are obtained in order to understand the behavior of short beams. It is deduced that diameter of tension reinforcement plays very important role on the behavior of RC short beams in terms of ductility and brittleness.Keywords: short beam, reinforced concrete, finite element analysis, longitudinal reinforcement
Procedia PDF Downloads 21016932 Particle Filter Supported with the Neural Network for Aircraft Tracking Based on Kernel and Active Contour
Authors: Mohammad Izadkhah, Mojtaba Hoseini, Alireza Khalili Tehrani
Abstract:
In this paper we presented a new method for tracking flying targets in color video sequences based on contour and kernel. The aim of this work is to overcome the problem of losing target in changing light, large displacement, changing speed, and occlusion. The proposed method is made in three steps, estimate the target location by particle filter, segmentation target region using neural network and find the exact contours by greedy snake algorithm. In the proposed method we have used both region and contour information to create target candidate model and this model is dynamically updated during tracking. To avoid the accumulation of errors when updating, target region given to a perceptron neural network to separate the target from background. Then its output used for exact calculation of size and center of the target. Also it is used as the initial contour for the greedy snake algorithm to find the exact target's edge. The proposed algorithm has been tested on a database which contains a lot of challenges such as high speed and agility of aircrafts, background clutter, occlusions, camera movement, and so on. The experimental results show that the use of neural network increases the accuracy of tracking and segmentation.Keywords: video tracking, particle filter, greedy snake, neural network
Procedia PDF Downloads 34216931 Dynamic Performance Analysis of Distribution/ Sub-Transmission Networks with High Penetration of PV Generation
Authors: Cristian F.T. Montenegro, Luís F. N. Lourenço, Maurício B. C. Salles, Renato M. Monaro
Abstract:
More PV systems have been connected to the electrical network each year. As the number of PV systems increases, some issues affecting grid operations have been identified. This paper studied the impacts related to changes in solar irradiance on a distribution/sub-transmission network, considering variations due to moving clouds and daily cycles. Using MATLAB/Simulink software, a solar farm of 30 MWp was built and then implemented to a test network. From simulations, it has been determined that irradiance changes can have a significant impact on the grid by causing voltage fluctuations outside the allowable thresholds. This work discussed some local control strategies and grid reinforcements to mitigate the negative effects of the irradiance changes on the grid.Keywords: reactive power control, solar irradiance, utility-scale PV systems, voltage fluctuations
Procedia PDF Downloads 46016930 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder
Authors: Fu-Chien Hung, Chi‐Wen Liang
Abstract:
Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis
Procedia PDF Downloads 45716929 Self-Reliance Support and Environment Interaction in Long-Term Care
Authors: Chen-Yuan Hsu
Abstract:
Introduction Elderly is growing and results to live in the long-term care (LTC) and then due to the routine of the facilities in Taiwan, also resulted to losing of those people with environment interaction, so, the self-reliance support (SRS) for those people to experience environment interaction is an essential. Methods This study was recruited samples of a LTC in the central of Taiwan. There was a following research on the SRS group with 20 samples collected and routine care group with 20 samples. A structured questionnaire as the Environment Interaction Dimension, as data collection included demographic information and the dimensions of environment interaction. Data analysis used SPSS 22.0 for Window 2000 to report the finding. Results The Environment Interaction Dimension for Taiwanese is a Chinese version of the containing 8 items. The result of t-test analysis found that environment interaction showed a significant difference between groups (p<.05), the result recommended that there was a higher score of environment interaction dimension on the SRS group (29.90±5.56) comparing with the routine care group (22.1±5.53). Conclusion This study showed that the SRS group was higher than the routine care group on the environment interaction dimension for Taiwanese elderly living in the LTC. The results can also provide the reference for LTC, to encourage those people to participate in SRS in LTC, and therefore also improving their environment interaction.Keywords: self-reliance support, environment interaction, long-term care, elderly
Procedia PDF Downloads 10616928 Optimization of Multi-Disciplinary Expertise and Resource for End-Stage Renal Failure (ESRF) Patient Care
Authors: Mohamed Naser Zainol, P. P. Angeline Song
Abstract:
Over the years, the profile of end-stage renal patients placed under The National Kidney Foundation Singapore (NKFS) dialysis program has evolved, with a gradual incline in the number of patients with behavior-related issues. With these challenging profiles, social workers and counsellors are often expected to oversee behavior management, through referrals from its partnering colleagues. Due to the segregation of tasks usually found in many hospital-based multi-disciplinary settings, social workers’ and counsellors’ interventions are often seen as an endpoint, limiting other stakeholders’ involvement that could otherwise be potentially crucial in managing such patients. While patients’ contact in local hospitals often leads to eventual discharge, NKFS patients are mostly long term. It is interesting to note that these patients are regularly seen by a team of professionals that includes doctors, nurses, dietitians, exercise specialists in NKFS. The dynamism of relationships presents an opportunity for any of these professionals to take ownership of their potentials in leading interventions that can be helpful to patients. As such, it is important to have a framework that incorporates the strength of these professionals and also channels empowerment across the multi-disciplinary team in working towards wholistic patient care. This paper would like to suggest a new framework for NKFS’s multi-disciplinary team, where the group synergy and dynamics are used to encourage ownership and promote empowerment. The social worker and counsellor use group work skills and his/her knowledge of its members’ strengths, to generate constructive solutions that are centered towards patient’s growth. Using key ideas from Karl’s Tomm Interpersonal Communications, the Communication Management of Meaning and Motivational Interviewing, the social worker and counsellor through a series of guided meeting with other colleagues, facilitates the transmission of understanding, responsibility sharing and tapping on team resources for patient care. As a result, the patient can experience personal and concerted approach and begins to flow in a direction that is helpful for him. Using seven case studies of identified patients with behavioral issues, the social worker and counsellor apply this framework for a period of six months. Patient’s overall improvement through interventions as a result of this framework are recorded using the AB single case design, with baseline measured three months before referral. Interviews with patients and their families, as well as other colleagues that are not part of the multi-disciplinary team are solicited at mid and end points to gather their experiences about patient’s progress as a by-product of this framework. Expert interviews will be conducted on each member of the multi-disciplinary team to study their observations and experience in using this new framework. Hence, this exploratory framework hopes to identify the inherent usefulness in managing patients with behavior related issues. Moreover, it would provide indicators in improving aspects of the framework when applied to a larger population.Keywords: behavior management, end-stage renal failure, satellite dialysis, multi-disciplinary team
Procedia PDF Downloads 14616927 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa
Authors: Olumuyiwa Ojo, Masengo Ilunga
Abstract:
Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.Keywords: ANN, artificial neural network, wastewater treatment, model, development
Procedia PDF Downloads 14916926 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 15216925 A Study on How Domestic Cats' Nutritional Behavior is Affected by Adjustment Stress
Authors: Maria Magdy Danial Riad
Abstract:
The hypothalamic-pituitary-adrenal axis is activated by the adaptation stress, and this might result in the alteration of certain behavioral signs. The primary purpose of this paper is the adaptive stress effect on dietary behavior, which is directly correlated with changes in plasma cortisol levels. Physiological factors have a role in systems of adaptation and stress. Objectives: Ten clinically healthy cats were included in the study, and they were all kept in the same setting. Methods: On days 1, 5, 9, and 10 of the stay, each cat's behavior was observed through ethograms, and the serum cortisol levels were also measured at the same time. Significant behavioral changes in terms of nutrition were seen on the first day, with 50% of the participants not feeding and all participants not watering. Toward the study's conclusion, between days 5 and 9, there were no longer any discernible changes in the dietary habits, which might be attributed to the adaptation to the new living conditions. Cortisol variations in serological levels were consistent with behavioral changes; in 50% of the participants under observation, there was a substantial increase in values (p<0.05), which gradually declined as the study came to an end.Keywords: domestic cats, ewes, nutritional behavior, adjustment stress, plasma cortisol levels
Procedia PDF Downloads 4116924 A Comparative Study of Anti-Diabetic Activity of Cinnamomum zeylanicum and Artemisia absinthium and Combination with Difference Ratio
Authors: Ikram Mohamed Eltayeb, Ustina Saeed Barsoumbolice
Abstract:
Cinnamomum zeylanicum belong to the family Lauraceae and Artemisia absinthium belong to the family Asteraceae. Both were traditionally used as antiemetic, anti-inflammatory and antidiabetic. In Sudan, the mixtures of the two plants were traditionally used for the treatment of diabetes. Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia. It is mainly classified into two major groups, type-1 and type-2. Type-2 is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. The treatment of type-2 diabetes mellitus (DM) with synthetic drugs have many side effects so many researches were conducted to overcome or reduce this side effects by using alternative medicine. The objective of this study is to investigate and compare the anti-diabetic activity of C. zeylanicum and A. absinthium and their combination with difference ratio. C. zeylanicum and A. absinthium were extracted by 96% ethanol using Soxhlet apparatus. Thirty-two rats were divided into eight groups; each group contains four rats. 1st group was administered with distilled water at dose of 10ml/kg, 2nd group had received glucose only at dose of 2g/kg intraperitoneal, the standard group (3rd group) had received Glibenclamide orally at dose of 0.45mg/kg, 4th group received 100 mg C. zeylanicum + 300 mg A. absinthium with a ratio of (25:75), 5th group received 300 mg C. zeylanicum + 100 mg A. absinthium with a ratio of (75:25), 6th group received 200 mg C. zeylanicum + 200 mg A. absinthiumwith a ratio of (50:50), 7th group received 400 mg of A. absinthium, 8th group received 400 mg of C. zeylanicum. Then the blood samples were taken Retro-orbitally at 0, 1, 2 and 4 hours and the glucose level was measured. Each plant alone and their combination with different ratios shows antidiabetic effect. The significant activity was shown by A. absinthium extract (400 mg/kg), combination of ratio of (75:25) A. absinthium: C. zeylanicum(400mg/kg) and then C. zeylanicum(400mg/kg) with p-value 0.001, 0.022, 0.030 respectively, the activity was found to be increased with time. The other combinations showed less activity with p-value > 0.05. The result concludes that the good antidiabetic activity was performed by A. absinthium alone and its activity decreased by increase combination ratio with C. zeylanicum. Which maybe explains by the antagonistic effect between the compounds of C. zeylanicum and A. absinthium.Keywords: antidiabetic, Artemisia absinthium , cinnamomum zeylanicum, combination
Procedia PDF Downloads 20016923 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 105