Search results for: multiple chronic conditions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14855

Search results for: multiple chronic conditions

13565 Autonomous Strategic Aircraft Deconfliction in a Multi-Vehicle Low Altitude Urban Environment

Authors: Loyd R. Hook, Maryam Moharek

Abstract:

With the envisioned future growth of low altitude urban aircraft operations for airborne delivery service and advanced air mobility, strategies to coordinate and deconflict aircraft flight paths must be prioritized. Autonomous coordination and planning of flight trajectories is the preferred approach to the future vision in order to increase safety, density, and efficiency over manual methods employed today. Difficulties arise because any conflict resolution must be constrained by all other aircraft, all airspace restrictions, and all ground-based obstacles in the vicinity. These considerations make pair-wise tactical deconfliction difficult at best and unlikely to find a suitable solution for the entire system of vehicles. In addition, more traditional methods which rely on long time scales and large protected zones will artificially limit vehicle density and drastically decrease efficiency. Instead, strategic planning, which is able to respond to highly dynamic conditions and still account for high density operations, will be required to coordinate multiple vehicles in the highly constrained low altitude urban environment. This paper develops and evaluates such a planning algorithm which can be implemented autonomously across multiple aircraft and situations. Data from this evaluation provide promising results with simulations showing up to 10 aircraft deconflicted through a relatively narrow low-altitude urban canyon without any vehicle to vehicle or obstacle conflict. The algorithm achieves this level of coordination beginning with the assumption that each vehicle is controlled to follow an independently constructed flight path, which is itself free of obstacle conflict and restricted airspace. Then, by preferencing speed change deconfliction maneuvers constrained by the vehicles flight envelope, vehicles can remain as close to the original planned path and prevent cascading vehicle to vehicle conflicts. Performing the search for a set of commands which can simultaneously ensure separation for each pair-wise aircraft interaction and optimize the total velocities of all the aircraft is further complicated by the fact that each aircraft's flight plan could contain multiple segments. This means that relative velocities will change when any aircraft achieves a waypoint and changes course. Additionally, the timing of when that aircraft will achieve a waypoint (or, more directly, the order upon which all of the aircraft will achieve their respective waypoints) will change with the commanded speed. Put all together, the continuous relative velocity of each vehicle pair and the discretized change in relative velocity at waypoints resembles a hybrid reachability problem - a form of control reachability. This paper proposes two methods for finding solutions to these multi-body problems. First, an analytical formulation of the continuous problem is developed with an exhaustive search of the combined state space. However, because of computational complexity, this technique is only computable for pairwise interactions. For more complicated scenarios, including the proposed 10 vehicle example, a discretized search space is used, and a depth-first search with early stopping is employed to find the first solution that solves the constraints.

Keywords: strategic planning, autonomous, aircraft, deconfliction

Procedia PDF Downloads 81
13564 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 108
13563 The Sexual Knowledge, Attitudes and Behaviors of College Students from Only-Child Families: A National Survey in China

Authors: Jiashu Shen

Abstract:

This study aims at exploring the characteristics of sexual knowledge, attitudes, and behaviors of Chinese college students from the 'one-child' families compared with those with siblings. This study utilized the data from the 'National College Student Survey on Sexual and Reproductive Health 2019'. Multiple logistic regression analyses were used to assess the association between the 'only-child' and their sexual knowledge, sexual attitudes, sexual behaviors, and risky sexual behaviors (RSB) stratified by sex and home regions, respectively. Compared with students with siblings, the 'only-child' students scored higher in sex-related knowledge (only-child students: 4.49 ± 2.28, students with siblings: 3.60 ± 2.27). Stronger associations between only-child and more liberal sexual attitudes were found in urban areas, including the approval of premarital sexual intercourse (OR: 1.51, 95% CI: 1.50-1.65) and multiple sexual partners (OR: 1.85, 95% CI: 1.72-1.99). For risky sexual behaviors, being only-child is more likely to use condoms in first sexual intercourse, especially among male students (OR: 0.68, 95% CI: 0.58-0.80). Only-child students are more likely to have more sexual knowledge, more liberal sexual attitude, and less risky sexual behavior. Further health policy and sex education should focus more on students with siblings.

Keywords: attitudes and behaviors, only-child students, sexual knowledge, students with siblings

Procedia PDF Downloads 171
13562 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation

Authors: Yang Yang, Dan Liu

Abstract:

Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.

Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning

Procedia PDF Downloads 105
13561 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials

Authors: Barry Hojjatie

Abstract:

Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.

Keywords: ceramis, biaxial, flexure test, uniaxial

Procedia PDF Downloads 138
13560 Software Quality Assurance in 5G Technology-Redefining Wireless Communication: A Comprehensive Survey

Authors: Sumbal Riaz, Sardar-un-Nisa, Mehreen Sirshar

Abstract:

5G - The 5th generation of mobile phone and data communication standards is the next edge of innovation for whole mobile industry. 5G is Real Wireless World System and it will provide a totally wireless communication system all over the world without limitations. 5G uses many 4g technologies and it will hit the market in 2020. This research is the comprehensive survey on the quality parameters of 5G technology.5G provide High performance, Interoperability, easy roaming, fully converged services, friendly interface and scalability at low cost. To meet the traffic demands in future fifth generation wireless communications systems will include i) higher densification of heterogeneous networks with massive deployment of small base stations supporting various Radio Access Technologies (RATs), ii) use of massive Multiple Input Multiple Output (MIMO) arrays, iii) use of millimetre Wave spectrum where larger wider frequency bands are available, iv) direct device to device (D2D) communication, v) simultaneous transmission and reception, vi) cognitive radio technology.

Keywords: 5G, 5th generation, innovation, standard, wireless communication

Procedia PDF Downloads 431
13559 Measuring Delay Using Software Defined Networks: Limitations, Challenges, and Suggestions for Openflow

Authors: Ahmed Alutaibi, Ganti Sudhakar

Abstract:

Providing better Quality-of-Service (QoS) to end users has been a challenging problem for researchers and service providers. Building applications relying on best effort network protocols hindered the adoption of guaranteed service parameters and, ultimately, Quality of Service. The introduction of Software Defined Networking (SDN) opened the door for a new paradigm shift towards a more controlled programmable configurable behavior. Openflow has been and still is the main implementation of the SDN vision. To facilitate better QoS for applications, the network must calculate and measure certain parameters. One of those parameters is the delay between the two ends of the connection. Using the power of SDN and the knowledge of application and network behavior, SDN networks can adjust to different conditions and specifications. In this paper, we use the capabilities of SDN to implement multiple algorithms to measure delay end-to-end not only inside the SDN network. The results of applying the algorithms on an emulated environment show that we can get measurements close to the emulated delay. The results also show that depending on the algorithm, load on the network and controller can differ. In addition, the transport layer handshake algorithm performs best among the tested algorithms. Out of the results and implementation, we show the limitations of Openflow and develop suggestions to solve them.

Keywords: software defined networking, quality of service, delay measurement, openflow, mininet

Procedia PDF Downloads 152
13558 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 393
13557 Anatomical-Bodied and Psyche Represented in Contemporary Art: A Conceptual Study for A Curatorial Practice

Authors: Dumith Kulasekara

Abstract:

This paper examines the representation of the body that particularly stresses the anatomical organs and the psychic conditions in contemporary art. The paper looks closely at the works that address personal and social meanings implying psychic conditions by bringing the internal hidden anatomical organs of the body to the surface of the visual language. The paper argues that contemporary artists conceptualize the idea of the body as a site of generating psychic conditions by excavating the body as material, subject, and object in art practice. The paper conceptualizes this excavating process of the body acts similarly to the idea of dissecting the corporeal body to understand its internal organism that again shapes the materiality of the surface of the body. In doing so, the paper brings together this argument, knowledge produced in the historical and contemporary anatomical education in art and science, and psychoanalytical approaches to the theme to develop new interpretations of representing psyche in the anatomical-bodied. The present paper defines this new form of body conceptually and materially addresses the issues related to psychic conditions: sexual desires, gender, traumas, and memories. The paper suggests that representation of the anatomical-bodied brings a new direction of the multidisciplinary approach introduced by artists to visualize the body and psyche in the contemporary context. The paper also presents an in-depth- discussion on technological, scientific, and philosophical knowledge employed in representing the idea of the body in addressing different psychic conditions to challenge the experiencing the body in contemporary art. Therefore, the paper focuses on examining the theme in the different forms of visual language and contexts in contemporary art. Finally, this research aims to offer a theoretical and conceptual background to curate an exhibition on the title of the anatomical-bodied and psyche in contemporary art with the body of work discussed in this paper.

Keywords: anatomy, body, contemporary art, psyche, psychoanalysis, representation, trauma

Procedia PDF Downloads 131
13556 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 369
13555 An Integrated Web-Based Workflow System for Design of Computational Pipelines in the Cloud

Authors: Shuen-Tai Wang, Yu-Ching Lin

Abstract:

With more and more workflow systems adopting cloud as their execution environment, it presents various challenges that need to be addressed in order to be utilized efficiently. This paper introduces a method for resource provisioning based on our previous research of dynamic allocation and its pipeline processes. We present an abstraction for workload scheduling in which independent tasks get scheduled among various available processors of distributed computing for optimization. We also propose an integrated web-based workflow designer by taking advantage of the HTML5 technology and chaining together multiple tools. In order to make the combination of multiple pipelines executing on the cloud in parallel, we develop a script translator and an execution engine for workflow management in the cloud. All information is known in advance by the workflow engine and tasks are allocated according to the prior knowledge in the repository. This proposed effort has the potential to provide support for process definition, workflow enactment and monitoring of workflow processes. Users would benefit from the web-based system that allows creation and execution of pipelines without scripting knowledge.

Keywords: workflow systems, resources provisioning, workload scheduling, web-based, workflow engine

Procedia PDF Downloads 142
13554 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 280
13553 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 299
13552 University Students Sport’s Activities Assessment in Harsh Weather Conditions

Authors: Ammar S. M. Moohialdin, Bambang T. Suhariadi, Mohsin Siddiqui

Abstract:

This paper addresses the application of physiological status monitoring (PSM) for assessing the impact of harsh weather conditions on sports activities in universities in Saudi Arabia. Real sports measurement was conducted during sports activities such that the physiological status (HR and BR) of five students were continuously monitored by using Zephyr BioHarnessTM 3.0 sensors in order to identify the physiological bonds and zones. These bonds and zones were employed as indicators of the associated physiological risks of the performed sports activities. Furthermore, a short yes/no questionnaire was applied to collect information on participants’ health conditions and opinions of the applied PSM sensors. The results show the absence of a warning system as a protective aid for the hazardous levels of extremely hot and humid weather conditions that may cause dangerous and fatal circumstances. The applied formulas for estimating maximum HR provides accurate estimations for Maximum Heart Rate (HRmax). The physiological results reveal that the performed activities by the participants are considered the highest category (90–100%) in terms of activity intensity. This category is associated with higher HR, BR and physiological risks including losing the ability to control human body behaviors. Therefore, there is a need for immediate intervention actions to reduce the intensity of the performed activities to safer zones. The outcomes of this study assist the safety improvement of sports activities inside universities and athletes performing their sports activities. To the best of our knowledge, this is the first paper to represent a special case of the application of PSM technology for assessing sports activities in universities considering the impacts of harsh weather conditions on students’ health and safety.

Keywords: physiological status monitoring (PSM), heart rate (HR), breathing rate (BR), Arabian Gulf

Procedia PDF Downloads 187
13551 Factors Associated with Acute Kidney Injury in Multiple Trauma Patients with Rhabdomyolysis

Authors: Yong Hwang, Kang Yeol Suh, Yundeok Jang, Tae Hoon Kim

Abstract:

Introduction: Rhabdomyolysis is a syndrome characterized by muscle necrosis and the release of intracellular muscle constituents into the circulation. Acute kidney injury is a potential complication of severe rhabdomyolysis and the prognosis is substantially worse if renal failure develops. We try to identify the factors that were predictive of AKI in severe trauma patients with rhabdomyolysis. Methods: This retrospective study was conducted at the emergency department of a level Ⅰ trauma center. Patients enrolled that initial creatine phosphokinase (CPK) levels were higher than 1000 IU with acute multiple trauma, and more than 18 years older from Oct. 2012 to June 2016. We collected demographic data (age, gender, length of hospital day, and patients’ outcome), laboratory data (ABGA, lactate, hemoglobin. hematocrit, platelet, LDH, myoglobin, liver enzyme, and BUN/Cr), and clinical data (Injury Mechanism, RTS, ISS, AIS, and TRISS). The data were compared and analyzed between AKI and Non-AKI group. Statistical analyses were performed using IMB SPSS 20.0 statistics for Window. Results: Three hundred sixty-four patients were enrolled that AKI group were ninety-six and non-AKI group were two hundred sixty-eight. The base excess (HCO3), AST/ALT, LDH, and myoglobin in AKI group were significantly higher than non-AKI group from laboratory data (p ≤ 0.05). The injury severity score (ISS), revised Trauma Score (RTS), Abbreviated Injury Scale 3 and 4 (AIS 3 and 4) were showed significant results in clinical data. The patterns of CPK level were increased from first and second day, but slightly decreased from third day in both group. Seven patients had received hemodialysis treatment despite the bleeding risk and were survived in AKI group. Conclusion: We recommend that HCO3, CPK, LDH, and myoglobin should be checked and be concerned about ISS, RTS, AIS with injury mechanism at the early stage of treatment in the emergency department.

Keywords: acute kidney injury, emergencies, multiple trauma, rhabdomyolysis

Procedia PDF Downloads 325
13550 The Sustainable Design Approaches of Vernacular Architecture in Anatolia

Authors: Mine Tanaç Zeren

Abstract:

The traditional architectural style or the vernacular architecture can be considered modern and permanent in terms of reflecting the community’s lifestyle, reasonable interpretation of the material and the structure, and the building and the environment relationship’s integrity. When vernacular architecture is examined, it is seen that sustainable building design approaches are achieved at the very beginning by adapting to climate conditions. The aim of the sustainable design approach is to maintain to adapt to the characteristics of the topography of the land and to the climatic conditions, minimizing the energy use by the building material and structural elements. Traditional Turkish House, as one of the representatives of the traditional and vernacular architecture in Anatolia, has a sustainable building design approach as well, which can be read both from the space organization, the section, the volume, and the building components and building details. The only effective factor that human beings cannot change and have to adapt their constructions and settlements to is climate. The vernacular settlements of vernacular architecture in Anatolia, “Traditional Turkish Houses,” are generally formed as concentric settlements in desert conditions and climates or separate and dependently formations according to the wind and the sun in moist areas. They obtain the sustainable building design criteria. This paper aims to put forward the sustainable building design approaches of vernacular architecture in Anatolia. There are four main different climatic conditions depending on the regional differentiations in Anatolia. Taking these different climatic and topographic conditions into account, it has been seen that the vernacular housing features shape and differentiate from each other due to the changing conditions. What is differentiating is the space organization, design of the shelter of the building, material, and structural system used. In this paper, the sustainable building design approaches of Anatolian vernacular architecture will be examined within these four different vernacular settlements located in Aegean Region, Marmara Region, Black Sea Region, and Eastern Region. These differentiated features and how these features differentiate in order to maintain the sustainability criteria will be the main discussion part of the paper. The methodology of this paper will briefly define these differentiations and the sustainable design criteria. The sustainable design approaches and these differentiated items will be read through the design criteria of the shelter of the building and the material selection criteria according to climatic conditions. The methods of preventing energy loss will be examined. At the end of this research, it is going to be seen that the houses located in different parts of Anatolia, depending on climate and topographic conditions to be able to adapt to the environment and maintain sustainability, differ from each other in terms of space organization, structural system, and material use, design of the shelter of the building

Keywords: sustainability of vernacular architecture, sustainable design criteria of traditional Turkish houses, Turkish houses, vernacular architecture

Procedia PDF Downloads 88
13549 Quantum Graph Approach for Energy and Information Transfer through Networks of Cables

Authors: Mubarack Ahmed, Gabriele Gradoni, Stephen C. Creagh, Gregor Tanner

Abstract:

High-frequency cables commonly connect modern devices and sensors. Interestingly, the proportion of electric components is rising fast in an attempt to achieve lighter and greener devices. Modelling the propagation of signals through these cable networks in the presence of parameter uncertainty is a daunting task. In this work, we study the response of high-frequency cable networks using both Transmission Line and Quantum Graph (QG) theories. We have successfully compared the two theories in terms of reflection spectra using measurements on real, lossy cables. We have derived a generalisation of the vertex scattering matrix to include non-uniform networks – networks of cables with different characteristic impedances and propagation constants. The QG model implicitly takes into account the pseudo-chaotic behavior, at the vertices, of the propagating electric signal. We have successfully compared the asymptotic growth of eigenvalues of the Laplacian with the predictions of Weyl law. We investigate the nearest-neighbour level-spacing distribution of the resonances and compare our results with the predictions of Random Matrix Theory (RMT). To achieve this, we will compare our graphs with the generalisation of Wigner distribution for open systems. The problem of scattering from networks of cables can also provide an analogue model for wireless communication in highly reverberant environments. In this context, we provide a preliminary analysis of the statistics of communication capacity for communication across cable networks, whose eventual aim is to enable detailed laboratory testing of information transfer rates using software defined radio. We specialise this analysis in particular for the case of MIMO (Multiple-Input Multiple-Output) protocols. We have successfully validated our QG model with both TL model and laboratory measurements. The growth of Eigenvalues compares well with Weyl’s law and the level-spacing distribution agrees so well RMT predictions. The results we achieved in the MIMO application compares favourably with the prediction of a parallel on-going research (sponsored by NEMF21.)

Keywords: eigenvalues, multiple-input multiple-output, quantum graph, random matrix theory, transmission line

Procedia PDF Downloads 157
13548 Palygorskite Bearing Calcic-Soils from Western Thar Desert: Implications for Late Quaternary Monsoonal Fluctuations

Authors: A. Hameed, N. Upreti, P. Srivastava

Abstract:

Main objective the present study is to investigate microscopic, sub-microscopic, clay mineralogical and geochemical characteristics of three calcic soil profiles from the western Thar Desert for the last 30 ka paleoclimatic information. Thin-sections of the soils show weakly to moderately developed pedofeatures dominated by powdery to well-indurated pedogenic calcium carbonate. Sub-microscopy of the representative calcretes show extensive growth of fibrous palygorskite in pore spaces of micritic and sparitic nodules. XRD of the total clay ( < 2 µm) and fine clay ( < 0.2 µm) fractions of the soils show dominance of smectite, palygorskite, chlorite, mica, kaolinite and small amounts of quartz and feldspar. Formation of the palygorskite is attributed to pedogenic processes associated with Bw, Bss and Bwk horizons during drier conditions over the last 30 ka. Formation of palygorskite was mainly favoured by strongly evaporating percolating water and precipitation of secondary calcite, high pH (9-10), high Mg, Si and low Al activities during pedogenesis. Age estimate and distribution of calcretes, palygorskite, and illuvial features indicate fluctuating monsoonal strength during MIS3-MIS1 stages. The pedogenic features in calcic soils of western Thar suggest relatively arid conditions during MIS3-MIS2 transition and LGM time that changed to relatively wetter conditions during post LGM time and again returned to dry conditions at ~4 ka in MIS1.

Keywords: palygorskite, clay minerals, Thar, aridisol, late quaternary

Procedia PDF Downloads 153
13547 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 222
13546 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 54
13545 Road Condition Monitoring Using Built-in Vehicle Technology Data, Drones, and Deep Learning

Authors: Judith Mwakalonge, Geophrey Mbatta, Saidi Siuhi, Gurcan Comert, Cuthbert Ruseruka

Abstract:

Transportation agencies worldwide continuously monitor their roads' conditions to minimize road maintenance costs and maintain public safety and rideability quality. Existing methods for carrying out road condition surveys involve manual observations of roads using standard survey forms done by qualified road condition surveyors or engineers either on foot or by vehicle. Automated road condition survey vehicles exist; however, they are very expensive since they require special vehicles equipped with sensors for data collection together with data processing and computing devices. The manual methods are expensive, time-consuming, infrequent, and can hardly provide real-time information for road conditions. This study contributes to this arena by utilizing built-in vehicle technologies, drones, and deep learning to automate road condition surveys while using low-cost technology. A single model is trained to capture flexible pavement distresses (Potholes, Rutting, Cracking, and raveling), thereby providing a more cost-effective and efficient road condition monitoring approach that can also provide real-time road conditions. Additionally, data fusion is employed to enhance the road condition assessment with data from vehicles and drones.

Keywords: road conditions, built-in vehicle technology, deep learning, drones

Procedia PDF Downloads 104
13544 Contactless and Multiple Space Debris Removal by Micro to Nanno Satellites

Authors: Junichiro Kawaguchi

Abstract:

Space debris problems have emerged and threatened the use of low earth orbit around the Earth owing to a large number of spacecraft. In debris removal, a number of research and patents have been proposed and published so far. They assume servicing spacecraft, robots to be built for accessing the target debris objects. The robots should be sophisticated enough automatically to access the debris articulating the attitude and the translation motion with respect to the debris. This paper presents the idea of using the torpedo-like third unsophisticated and disposable body, in addition to the first body of the servicing robot and the second body of the target debris. The third body is launched from the first body from a distance farer than the size of the second body. This paper presents the method and the system, so that the third body is launched from the first body. The third body carries both a net and an inflatable or extendible drag deceleration device and is built small and light. This method enables even a micro to nano satellite to perform contactless and multiple debris removal even via a single flight.

Keywords: ballute, debris removal, echo satellite, gossamer, gun-net, inflatable space structure, small satellite, un-cooperated target

Procedia PDF Downloads 104
13543 Time-Course Lipid Accumulation and Transcript Analyses of Lipid Biosynthesis Gene of Chlorella sp.3 under Nitrogen Limited Condition

Authors: Jyoti Singh, Swati Dubey, Mukta Singh, R. P. Singh

Abstract:

The freshwater microalgae Chlorella sp. is alluring considerable interest as a source for biofuel production due to its fast growth rate and high lipid content. Under nitrogen limited conditions, they can accumulate significant amounts of lipids. Thus, it is important to gain insight into the molecular mechanism of their lipid metabolism. In this study under nitrogen limited conditions, regular pattern of growth characteristics lipid accumulation and gene expression analysis of key regulatory genes of lipid biosynthetic pathway were carried out in microalgae Chlorella sp 3. Our results indicated that under nitrogen limited conditions there is a significant increase in the lipid content and lipid productivity, achieving 44.21±2.64 % and 39.34±0.66 mg/l/d at the end of the cultivation, respectively. Time-course transcript patterns of lipid biosynthesis genes i.e. acetyl coA carboxylase (accD) and diacylglycerol acyltransferase (dgat) showed that during late log phase of microalgae Chlorella sp.3 both the genes were significantly up regulated as compared to early log phase. Moreover, the transcript level of the dgat gene is two-fold higher than the accD gene. The results suggested that both the genes responded sensitively to the nitrogen limited conditions during the late log stage, which proposed their close relevance to lipid biosynthesis. Further, this transcriptome data will be useful for engineering microalgae species by targeting these genes for genetic modification to improve microalgal biofuel quality and production.

Keywords: biofuel, gene, lipid, microalgae

Procedia PDF Downloads 290
13542 Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method

Authors: N. Alias, W. Z. W. Muhammad, M. N. M. Ibrahim, M. Mohamed, H. F. S. Saipol, U. N. Z. Ariffin, N. A. Zakaria, M. S. Z. Suardi

Abstract:

This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped.

Keywords: performance comparison, 2D visualization, COMSOL multiphysic, MATLAB, Fortran, modelling and simulation, boundary element method, reservoir pressure

Procedia PDF Downloads 477
13541 Operation Strategy of Multi-Energy Storage System Considering Power System Reliability

Authors: Wook-Won Kim, Je-Seok Shin, Jin-O Kim

Abstract:

As the penetration of Energy Storage System (ESS) increases in the power system due to higher performance and lower cost than ever, ESS is expanding its role to the ancillary service as well as the storage of extra energy from the intermittent renewable energy resources. For multi-ESS with different capacity and SOC level each other, it is required to make the optimal schedule of SOC level use the multi-ESS effectively. This paper proposes the energy allocation method for the multiple battery ESS with reliability constraint, in order to make the ESS discharge the required energy as long as possible. A simple but effective method is proposed in this paper, to satisfy the power for the spinning reserve requirement while improving the system reliability. Modelling of ESS is also proposed, and reliability is evaluated by using the combined reliability model which includes the proposed ESS model and conventional generation one. In the case study, it can be observed that the required power is distributed to each ESS adequately and accordingly, the SOC is scheduled to improve the reliability indices such as Loss of Load Probability (LOLP) and Loss of Load Expectation (LOLE).

Keywords: multiple energy storage system (MESS), energy allocation method, SOC schedule, reliability constraints

Procedia PDF Downloads 352
13540 Cost-Effectiveness of a Certified Service or Hearing Dog Compared to a Regular Companion Dog

Authors: Lundqvist M., Alwin J., Levin L-A.

Abstract:

Background: Assistance dogs are dogs trained to assist persons with functional impairment or chronic diseases. The assistance dog concept includes different types: guide dogs, hearing dogs, and service dogs. The service dog can further be divided into subgroups of physical services dogs, diabetes alert dogs, and seizure alert dogs. To examine the long-term effects of health care interventions, both in terms of resource use and health outcomes, cost-effectiveness analyses can be conducted. This analysis can provide important input to decision-makers when setting priorities. Little is known when it comes to the cost-effectiveness of assistance dogs. The study aimed to assess the cost-effectiveness of certified service or hearing dogs in comparison to regular companion dogs. Methods: The main data source for the analysis was the “service and hearing dog project”. It was a longitudinal interventional study with a pre-post design that incorporated fifty-five owners and their dogs. Data on all relevant costs affected by the use of a service dog such as; municipal services, health care costs, costs of sick leave, and costs of informal care were collected. Health-related quality of life was measured with the standardized instrument EQ-5D-3L. A decision-analytic Markov model was constructed to conduct the cost-effectiveness analysis. Outcomes were estimated over a 10-year time horizon. The incremental cost-effectiveness ratio expressed as cost per gained quality-adjusted life year was the primary outcome. The analysis employed a societal perspective. Results: The result of the cost-effectiveness analysis showed that compared to a regular companion dog, a certified dog is cost-effective with both lower total costs [-32,000 USD] and more quality-adjusted life-years [0.17]. Also, we will present subgroup results analyzing the cost-effectiveness of physicals service dogs and diabetes alert dogs. Conclusions: The study shows that a certified dog is cost-effective in comparison with a regular companion dog for individuals with functional impairments or chronic diseases. Analyses of uncertainty imply that further studies are needed.

Keywords: service dogs, hearing dogs, health economics, Markov model, quality-adjusted, life years

Procedia PDF Downloads 135
13539 Use of PACER Application as Physical Activity Assessment Tool: Results of a Reliability and Validity Study

Authors: Carine Platat, Fatima Qshadi, Ghofran Kayed, Nour Hussein, Amjad Jarrar, Habiba Ali

Abstract:

Nowadays, smartphones are very popular. They are offering a variety of easy-to-use and free applications among which step counters and fitness tests. The number of users is huge making of such applications a potentially efficient new strategy to encourage people to become more active. Nonetheless, data on their reliability and validity are very scarce and when available, they are often negative and contradictory. Besides, weight status, which is likely to introduce a bias in the physical activity assessment, was not often considered. Hence, the use of these applications as motivational tool, assessment tool and in research is questionable. PACER is one of the free step counters application. Even though it is one of the best rated free application by users, it has never been tested for reliability and validity. Prior any use of PACER, this remains to be investigated. The objective of this work is to investigate the reliability and validity of the smartphone application PACER in measuring the number of steps and in assessing the cardiorespiratory fitness by the 6 minutes walking test. 20 overweight or obese students (10 male and 10 female) were recruited at the United Arab Emirate University, aged between 18 and 25 years old. Reliability and validity were tested in real life conditions and in controlled conditions by using a treadmill. Test-retest experiments were done with PACER on 2 days separated by a week in real life conditions (24 hours each time) and in controlled conditions (30 minutes on treadmill, 3km/h). Validity was tested against the pedometer OMRON in the same conditions. During treadmill test, video was recorded and steps numbers were compared between PACER, pedometer and video. The validity of PACER in estimating the cardiorespiratory fitness (VO2max) as part of the 6 minutes walking test (6MWT) was studied against the 20m shuttle running test. Reliability was studied by calculating intraclass correlation coefficients (ICC), 95% confidence interval (95%CI) and by Bland-Altman plots. Validity was studied by calculating Spearman correlation coefficient (rho) and Bland-Altman plots. PACER reliability was good in both male and female in real life conditions (p≤10-3) but only in female in controlled conditions (p=0.01). PACER was valid against OMRON pedometer in male and female in real life conditions (rho=0.94, p≤10-3 ; rho=0.64, p=0.01, in male and female respectively). In controlled conditions, PACER was not valid against pedometer. But, PACER was valid against video in female (rho=0.72, p≤10-3). PACER was valid against the shuttle run test in male and female (rho-=0.66, p=0.01 ; rho=0.51, p=0.04) to estimate VO2max. This study provides data on the reliability and viability of PACER in overweight or obese male and female young adults. Globally, PACER was shown as reliable and valid in real life conditions in overweight or obese male and female to count steps and assess fitness. This supports the use of PACER to assess and promote physical activity in clinical follow-up and community interventions.

Keywords: smartphone application, pacer, reliability, validity, steps, fitness, physical activity

Procedia PDF Downloads 433
13538 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure

Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad

Abstract:

One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.

Keywords: classrooms, concentration, humidity, particulate matters, regression

Procedia PDF Downloads 320
13537 Effect of Early Therapeutic Intervention for the Children With Autism Spectrum Disorders: A Quasi Experimental Design

Authors: Sultana Razia

Abstract:

The number of children whose social, communication and behavior pattern is affected due to mental and developmental conditions is on the rise. Most of these conditions develop to uncontrollable levels because of ignorance and unaware about their child’s condition. The many myths surrounding mental or developmental conditions are a major cause of families of affected children to develop bitterness and to shy off from seeking appropriate help in time. Several early intervention programs have been put in place, and the number of beneficiaries of these programs is increasing by the day. This research seeks to look into early intervention programs and their effectiveness. The purpose of this study was to investigate the effect of early therapeutic intervention for the children with autism spectrum disorder. Participants were 140 children with autism spectrum disorder from Autism Corner in a selected rehabilitation center of Bangladesh. This study included children who are at age of 18-month to 36-month and who were taking occupational therapy and speech and language therapy from the autism center. They were primarily screened using M-CHAT; however, children with other physical disability or medical conditions excluded. 3-months interventions of 6 sessions per week are a minimum of 45-minutes long per session, one to one interaction followed by parent-led structured home-based therapy were provided. The results indicated that early intensive therapeutic intervention improve understanding, social skills and sensory skills. It can be concluded that therapeutic early intervention a positive effect on diminishing symptoms of Autism Spectrum Disorder.

Keywords: M-CHAT, ASD, sensory cheeklist, OT

Procedia PDF Downloads 50
13536 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 93