Search results for: deep learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23116

Search results for: deep learning model

21826 The Effectiveness of Summative Assessment in Practice Learning

Authors: Abdool Qaiyum Mohabuth, Syed Munir Ahmad

Abstract:

Assessment enables students to focus on their learning, assessment. It engages them to work hard and motivates them in devoting time to their studies. Student learning is directly influenced by the type of assessment involved in the programme. Summative Assessment aims at providing measurement of student understanding. In fact, it is argued that summative assessment is used for reporting and reviewing, besides providing an overall judgement of achievement. While summative assessment is a well defined process for learning that takes place in the classroom environment, its application within the practice environment is still being researched. This paper discusses findings from a mixed-method study for exploring the effectiveness of summative assessment in practice learning. A survey questionnaire was designed for exploring the perceptions of mentors and students about summative assessment in practice learning. The questionnaire was administered to the University of Mauritius students and mentors who supervised students for their Work-Based Learning (WBL) practice at the respective placement settings. Some students, having undertaken their WBL practice, were interviewed, for capturing their views and experiences about the application of summative assessment in practice learning. Semi-structured interviews were also conducted with three experienced mentors who have assessed students on practice learning. The findings reveal that though learning in the workplace is entirely different from learning at the University, most students had positive experiences about their summative assessments in practice learning. They felt comfortable and confident to be assessed by their mentors in their placement settings and wished that the effort and time that they devoted to their learning be recognised and valued. Mentors on their side confirmed that the summative assessment is valid and reliable, enabling them to better monitor and coach students to achieve the expected learning outcomes.

Keywords: practice learning, judgement, summative assessment, knowledge, skills, workplace

Procedia PDF Downloads 341
21825 Identification of Vessel Class with Long Short-Term Memory Using Kinematic Features in Maritime Traffic Control

Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi

Abstract:

Preventing abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep, long short-term memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviors far from the expected one depending on the declared type.

Keywords: maritime surveillance, artificial intelligence, behavior analysis, LSTM

Procedia PDF Downloads 231
21824 Flow Characteristics around Rectangular Obstacles with the Varying Direction of Obstacles

Authors: Hee-Chang Lim

Abstract:

The study aims to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge on the top and side-face when the aspect ratio of bodies and the wind direction are changed, respectively. We carried out the wind tunnel measurement and numerical simulation around a series of rectangular bodies (40d×80w×80h, 80d×80w×80h, 160d×80w×80h, 80d×40w×80h and 80d×160w×80h in mm3) placed in a deep turbulent boundary layer. Based on a modern numerical platform, the Navier-Stokes equation with the typical 2-equation (k-ε model) and the DES (Detached Eddy Simulation) turbulence model has been calculated, and they are both compared with the measurement data. Regarding the turbulence model, the DES model makes a better prediction comparing with the k-ε model, especially when calculating the separated turbulent flow around a bluff body with sharp edged corner. In order to observe the effect of wind direction on the pressure variation around the cube (e.g., 80d×80w×80h in mm), it rotates at 0º, 10º, 20º, 30º, and 45º, which stands for the salient wind directions in the tunnel. The result shows that the surface pressure variation is highly dependent upon the approaching wind direction, especially on the top and the side-face of the cube. In addition, the transverse width has a substantial effect on the variation of surface pressure around the bodies, while the longitudinal length has little or no influence.

Keywords: rectangular bodies, wind direction, aspect ratio, surface pressure distribution, wind-tunnel measurement, k-ε model, DES model, CFD

Procedia PDF Downloads 236
21823 Correlation Analysis to Quantify Learning Outcomes for Different Teaching Pedagogies

Authors: Kanika Sood, Sijie Shang

Abstract:

A fundamental goal of education includes preparing students to become a part of the global workforce by making beneficial contributions to society. In this paper, we analyze student performance for multiple courses that involve different teaching pedagogies: a cooperative learning technique and an inquiry-based learning strategy. Student performance includes student engagement, grades, and attendance records. We perform this study in the Computer Science department for online and in-person courses for 450 students. We will perform correlation analysis to study the relationship between student scores and other parameters such as gender, mode of learning. We use natural language processing and machine learning to analyze student feedback data and performance data. We assess the learning outcomes of two teaching pedagogies for undergraduate and graduate courses to showcase the impact of pedagogical adoption and learning outcome as determinants of academic achievement. Early findings suggest that when using the specified pedagogies, students become experts on their topics and illustrate enhanced engagement with peers.

Keywords: bag-of-words, cooperative learning, education, inquiry-based learning, in-person learning, natural language processing, online learning, sentiment analysis, teaching pedagogy

Procedia PDF Downloads 77
21822 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 136
21821 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 70
21820 Educatronic Prototype for Learning Geometry, Based on a Multitouch Surface

Authors: Vicario Marina, Bustos Freddy, Olivares Jesús, Gómez Pilar

Abstract:

This paper presents a didactic model and a tool as educational resources to support the learning of geometry; they focus on topics difficult to understand. The target population is elementary school students. The tool is based on a collaborative educational approach using multi-touch devices. The proposal is based on the challenges found in the instructional design and prototype implementation. Traditionally, elementary students have had many problems assimilating mathematical topics; this new Educatronic prototype facilitates the learning experience using exercises and they were tested with different children demonstrating the benefits of the prototype by improving their mathematical skills.

Keywords: educatronic prototype, geometry, multitouch surface, educational computing, primary school, mathematics, educational informatics

Procedia PDF Downloads 319
21819 Social Media as an Interactive Learning Tool Applied to Faculty of Tourism and Hotels, Fayoum University

Authors: Islam Elsayed Hussein

Abstract:

The aim of this paper is to discover the impact of students’ attitude towards social media and the skills required to adopt social media as a university e-learning (2.0) platform. In addition, it measures the effect of social media adoption on interactive learning effectiveness. The population of this study was students at Faculty of tourism and Hotels, Fayoum University. A questionnaire was used as a research instrument to collect data from respondents, which had been selected randomly. Data had been analyzed using quantitative data analysis method. Findings showed that the students have a positive attitude towards adopting social networking in the learning process and they have also good skills for effective use of social networking tools. In addition, adopting social media is effectively affecting the interactive learning environment.

Keywords: attitude, skills, e-learning 2.0, interactive learning, Egypt

Procedia PDF Downloads 524
21818 Innovative Predictive Modeling and Characterization of Composite Material Properties Using Machine Learning and Genetic Algorithms

Authors: Hamdi Beji, Toufik Kanit, Tanguy Messager

Abstract:

This study aims to construct a predictive model proficient in foreseeing the linear elastic and thermal characteristics of composite materials, drawing on a multitude of influencing parameters. These parameters encompass the shape of inclusions (circular, elliptical, square, triangle), their spatial coordinates within the matrix, orientation, volume fraction (ranging from 0.05 to 0.4), and variations in contrast (spanning from 10 to 200). A variety of machine learning techniques are deployed, including decision trees, random forests, support vector machines, k-nearest neighbors, and an artificial neural network (ANN), to facilitate this predictive model. Moreover, this research goes beyond the predictive aspect by delving into an inverse analysis using genetic algorithms. The intent is to unveil the intrinsic characteristics of composite materials by evaluating their thermomechanical responses. The foundation of this research lies in the establishment of a comprehensive database that accounts for the array of input parameters mentioned earlier. This database, enriched with this diversity of input variables, serves as a bedrock for the creation of machine learning and genetic algorithm-based models. These models are meticulously trained to not only predict but also elucidate the mechanical and thermal conduct of composite materials. Remarkably, the coupling of machine learning and genetic algorithms has proven highly effective, yielding predictions with remarkable accuracy, boasting scores ranging between 0.97 and 0.99. This achievement marks a significant breakthrough, demonstrating the potential of this innovative approach in the field of materials engineering.

Keywords: machine learning, composite materials, genetic algorithms, mechanical and thermal proprieties

Procedia PDF Downloads 54
21817 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 130
21816 Emotion Recognition in Video and Images in the Wild

Authors: Faizan Tariq, Moayid Ali Zaidi

Abstract:

Facial emotion recognition algorithms are expanding rapidly now a day. People are using different algorithms with different combinations to generate best results. There are six basic emotions which are being studied in this area. Author tried to recognize the facial expressions using object detector algorithms instead of traditional algorithms. Two object detection algorithms were chosen which are Faster R-CNN and YOLO. For pre-processing we used image rotation and batch normalization. The dataset I have chosen for the experiments is Static Facial Expression in Wild (SFEW). Our approach worked well but there is still a lot of room to improve it, which will be a future direction.

Keywords: face recognition, emotion recognition, deep learning, CNN

Procedia PDF Downloads 187
21815 Large-Scale Electroencephalogram Biometrics through Contrastive Learning

Authors: Mostafa ‘Neo’ Mohsenvand, Mohammad Rasool Izadi, Pattie Maes

Abstract:

EEG-based biometrics (user identification) has been explored on small datasets of no more than 157 subjects. Here we show that the accuracy of modern supervised methods falls rapidly as the number of users increases to a few thousand. Moreover, supervised methods require a large amount of labeled data for training which limits their applications in real-world scenarios where acquiring data for training should not take more than a few minutes. We show that using contrastive learning for pre-training, it is possible to maintain high accuracy on a dataset of 2130 subjects while only using a fraction of labels. We compare 5 different self-supervised tasks for pre-training of the encoder where our proposed method achieves the accuracy of 96.4%, improving the baseline supervised models by 22.75% and the competing self-supervised model by 3.93%. We also study the effects of the length of the signal and the number of channels on the accuracy of the user-identification models. Our results reveal that signals from temporal and frontal channels contain more identifying features compared to other channels.

Keywords: brainprint, contrastive learning, electroencephalo-gram, self-supervised learning, user identification

Procedia PDF Downloads 157
21814 Co-Creating an International Flipped Faculty Development Model: A US-Afghan Case Study

Authors: G. Alex Ambrose, Melissa Paulsen, Abrar Fitwi, Masud Akbari

Abstract:

In 2016, a U.S. business college was awarded a sub grant to work with FHI360, a nonprofit human development organization, to support a university in Afghanistan funded by the State Department’s U.S. Agency for International Development (USAID). A newly designed Master’s Degree in Finance and Accounting is being implemented to support Afghanistan’s goal of 20% females in higher education and industry by 2020 and to use finance and accounting international standards to attract capital investment for economic development. This paper will present a case study to describe the co-construction of an approach to an International Flipped Faculty Development Model grounded in blended learning theory. Like education in general, faculty development is also evolving from the traditional face to face environment and interactions to the fully online and now to a best of both blends. Flipped faculty development is both a means and a model for careful integration of the strengths of the synchronous and asynchronous dynamics and technologies with the combination of intentional sequencing to pre-online interactions that prepares and enhances the face to face faculty development and mentorship residencies with follow-up post-online support. Initial benefits from this model include giving the Afghan faculty an opportunity to experience and apply modern teaching and learning strategies with technology in their own classroom. Furthermore, beyond the technological and pedagogical affordances, the reciprocal benefits gained from the mentor-mentee, face-to-face relationship will be explored. Evidence to support this model includes: empirical findings from pre- and post-Faculty Mentor/ Mentee survey results, Faculty Mentorship group debriefs, Faculty Mentorship contact logs, and student early/end of semester feedback. In addition to presenting and evaluating this model, practical challenges and recommendations for replicating international flipped faculty development partnerships will be provided.

Keywords: educational development, faculty development, international development, flipped learning

Procedia PDF Downloads 189
21813 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
21812 Fuzzy Optimization Multi-Objective Clustering Ensemble Model for Multi-Source Data Analysis

Authors: C. B. Le, V. N. Pham

Abstract:

In modern data analysis, multi-source data appears more and more in real applications. Multi-source data clustering has emerged as a important issue in the data mining and machine learning community. Different data sources provide information about different data. Therefore, multi-source data linking is essential to improve clustering performance. However, in practice multi-source data is often heterogeneous, uncertain, and large. This issue is considered a major challenge from multi-source data. Ensemble is a versatile machine learning model in which learning techniques can work in parallel, with big data. Clustering ensemble has been shown to outperform any standard clustering algorithm in terms of accuracy and robustness. However, most of the traditional clustering ensemble approaches are based on single-objective function and single-source data. This paper proposes a new clustering ensemble method for multi-source data analysis. The fuzzy optimized multi-objective clustering ensemble method is called FOMOCE. Firstly, a clustering ensemble mathematical model based on the structure of multi-objective clustering function, multi-source data, and dark knowledge is introduced. Then, rules for extracting dark knowledge from the input data, clustering algorithms, and base clusterings are designed and applied. Finally, a clustering ensemble algorithm is proposed for multi-source data analysis. The experiments were performed on the standard sample data set. The experimental results demonstrate the superior performance of the FOMOCE method compared to the existing clustering ensemble methods and multi-source clustering methods.

Keywords: clustering ensemble, multi-source, multi-objective, fuzzy clustering

Procedia PDF Downloads 189
21811 The Perspectives of Adult Learners Towards Online Learning

Authors: Jacqueline Żammit

Abstract:

Online learning has become more popular as a substitute for traditional classroom instruction because of the COVID-19 epidemic. The study aimed to investigate how adult Maltese language learners evaluated the benefits and drawbacks of online instruction. 35 adult participants provided data through semi-structured interviews with open-ended questions. NVivo software was used to analyze the interview data using the thematic analysis method in order to find themes and group the data based on common responses. The advantages of online learning that the participants mentioned included accessing subject content even without live learning sessions, balancing learning with household duties, and lessening vulnerability to problems like fatigue, time-wasting traffic, school preparation, and parking space constraints. Conversely, inadequate Internet access, inadequate IT expertise, a shortage of personal computers, and domestic distractions adversely affected virtual learning. Lack of an Internet connection, IT expertise, a personal computer, or a phone with Internet access caused inequality in access to online learning sessions. Participants thought online learning was a way to resume academic activity, albeit with drawbacks. In order to address the challenges posed by online learning, several solutions are proposed in the research's conclusion.

Keywords: adult learners, online education, e-learning, challenges of online learning, benefits ofonline learning

Procedia PDF Downloads 60
21810 Academic Staff Perspective of Adoption of Augmented Reality in Teaching Practice to Support Students Learning Remotely in a Crisis Time in Higher

Authors: Ebtisam Alqahtani

Abstract:

The purpose of this study is to investigate academic staff perspectives on using Augmented Reality in teaching practice to support students learning remotely during the COVID pandemic. the study adopted the DTPB theoretical model to guide the identification of key potential factors that could motivate academic staff to use or not use AR in teaching practices. A mixing method design was adopted for a better understanding of the study problem. A survey was completed by 851 academic staff, and this was followed by interviews with 20 academic staff. Statistical analyses were used to assess the survey data, and thematic analysis was used to assess the interview data. The study finding indicates that 75% of academic staff were aware of AR as a pedagogical tool, and they agreed on the potential benefits of AR in teaching and learning practices. However, 36% of academic staff use it in teaching and learning practice, and most of them agree with most of the potential barriers to adopting AR in educational environments. In addition, the study results indicate that 91% of them are planning to use it in the future. The most important factors that motivated them to use it in the future are the COVID pandemic factor, hedonic motivation factor, and academic staff attitude factor. The perceptions of academic staff differed according to the universities they attended, the faculties they worked in, and their gender. This study offers further empirical support for the DTPB model, as well as recommendations to help higher education implement technology in its educational environment based on the findings of the study. It is unprecedented the study the necessity of the use of AR technologies in the time of Covid-19. Therefore, the contribution is both theoretical and practice

Keywords: higher education, academic staff, AR technology as pedological tools, teaching and learning practice, benefits of AR, barriers of adopting AR, and motivating factors to adopt AR

Procedia PDF Downloads 127
21809 Approaches and Strategies Used to Increase Student Engagement in Blended Learning Courses

Authors: Pinar Ozdemir Ayber, Zeina Hojeij

Abstract:

Blended Learning (BL) is a rapidly growing teaching and learning approach, which brings together the best of both face-to-face and online learning to expand learning opportunities for students. However, there is limited research on the practices, opportunities and quality of instruction in Blended Classrooms, and on the role of the teaching faculty as well as the learners in these types of classes. This paper will highlight the researchers’ experiences and reflections on blending their classes. It will focus on the importance of designing effective lesson plans that emphasize learner engagement and motivation in alignment with course learning outcomes. In addition, it will identify the changing roles of the teacher and the learners and suggest appropriate variations to the traditional classroom setting taking into consideration the benefits and the challenges of the Blended Classroom. It is hoped that this paper would provide sufficient input for participants to reflect on ways they can blend their own lessons to promote ubiquitous learning and student autonomy. Practical tips and ideas will be shared with the participants on various strategies and technologies that were used in the researchers’ classes.

Keywords: blended learning, learner autonomy, learner engagement, learner motivation, mobile learning tools

Procedia PDF Downloads 303
21808 Improving Music Appreciation and Narrative Abilities of Students with Intellectual Disabilities through a College Service-Learning Model

Authors: Shan-Ken Chien

Abstract:

This research aims to share the application of the Music and Narrative Curriculum developed through a college community service-learning course to a special education classroom in a local secondary school. The development of the Music and Narrative Curriculum stems from the music appreciation courses that the author has taught at the university. The curriculum structure consists of three instructional phases, each with three core literacy. This study will show the implementation of an eighteen-week general music education course, including classroom training on the university campus and four intervention music lessons in a special education classroom. Students who participated in the Music and Narrative Curriculum came from two different parts. One is twenty-five college students enrolling in Music Literacy and Community Service-Learning, and the other one is nine junior high school students with intellectual disabilities (ID) in a special education classroom. This study measures two parts. One is the effectiveness of the Music and Narrative Curriculum in applying four interventions in music lessons in a special education classroom, and the other is measuring college students' service-learning experiences and growth outcomes.

Keywords: college service-learning, general music education, music literacy, narrative skills, students with special needs

Procedia PDF Downloads 81
21807 Integrations of the Instructional System Design for Students Learning Achievement Motives and Science Attitudes with Stem Educational Model on Stoichiometry Issue in Chemistry Classes with Different Genders

Authors: Tiptunya Duangsri, Panwilai Chomchid, Natchanok Jansawang

Abstract:

This research study was to investigate of education decisions must be made which a part of it should be passed on to future generations as obligatory for all members of a chemistry class for students who will prepare themselves for a special position. The descriptions of instructional design were provided and the recent criticisms are discussed. This research study to an outline of an integrative framework for the description of information and the instructional design model give structure to negotiate a semblance of conscious understanding. The aims of this study are to describe the instructional design model for comparisons between students’ genders of their effects on STEM educational learning achievement motives to their science attitudes and logical thinking abilities with a sample size of 18 students at the 11th grade level with the cluster random sampling technique in Mahawichanukul School were designed. The chemistry learning environment was administered with the STEM education method. To build up the 5-instrument lesson instructional plan issues were instructed innovations, the 30-item Logical Thinking Test (LTT) on 5 scales, namely; Inference, Recognition of Assumptions, Deduction, Interpretation and Evaluation scales was used. Students’ responses of their perceptions with the Test Of Chemistry-Related Attitude (TOCRA) were assessed of their attitude in science toward chemistry. The validity from Index Objective Congruence value (IOC) checked by five expert specialist educator in two chemistry classroom targets in STEM education, the E1/E2 process were equaled evidence of 84.05/81.42 which results based on criteria are higher than of 80/80 standard level with the IOC from the expert educators. Comparisons between students’ learning achievement motives with STEM educational model on stoichiometry issue in chemistry classes with different genders were differentiated at evidence level of .05, significantly. Associations between students’ learning achievement motives on their posttest outcomes and logical thinking abilities, the predictive efficiency (R2) values indicate that 69% and 70% of the variances in different male and female student groups of their logical thinking abilities. The predictive efficiency (R2) values indicate that 73%; and 74% of the variances in different male and female student groups of their science attitudes toward chemistry were associated. Statistically significant on students’ perceptions of their chemistry learning classroom environment and their science attitude toward chemistry when using the MCI and TOCRA, the predictive efficiency (R2) values indicated that 72% and 74% of the variances in different male and female student groups of their chemistry classroom climate, consequently. Suggestions that supporting chemistry or science teachers from science, technology, engineering and mathematics (STEM) in addressing complex teaching and learning issues related instructional design to develop, teach, and assess traditional are important strategies with a focus on STEM education instructional method.

Keywords: development, the instructional design model, students learning achievement motives, science attitudes with STEM educational model, stoichiometry issue, chemistry classes, genders

Procedia PDF Downloads 274
21806 A Study of EFL Learners with Different Goal Orientations in Response to Cognitive Diagnostic Reading Feedback

Authors: Yuxuan Tang

Abstract:

Cognitive diagnostic assessment has received much attention in second language education, and assessment for it can provide pedagogically useful feedback for language learners. However, there is a lack of research on how students interpret and use cognitive diagnostic feedback. Thus the present study aims to adopt a mixed-method approach mainly to explore the relationship between the goal-orientation and students' response to cognitive diagnostic feedback. Almost 200 Chinese undergraduates from two universities in Xi'an, China, will be invited to do a cognitive diagnostic reading test, and each student will receive specialized cognitive diagnostic feedback, comprising of students' reading attributes mastery level generated by applying a well-selected cognitive diagnostic model, students' perceived reading ability assessed by a self-assessing questionnaire and students’ level position in the whole class. And a goal-orientation questionnaire and a self-generated questionnaire on the perception of feedback will be given to students the moment they receive feedback. In addition, interviews of students will be conducted on their future plans to see whether they have awareness of carrying out studying plans. The study aims to find a new perspective towards how students use and interpret cognitive diagnostic feedback in terms of their different goal-orientation (self-based, task-based, and other-based goals) by applying the newest goal orientation model, which is an important construct of motivation in psychology, seldom researched under language learning area. And the study is expected to provide evidence on how diagnostic feedback promotes students' learning under the educational belief of assessment for learning. Practically speaking, according to the personalized diagnostic feedback, students can take remedial self-learning more purposefully, and teachers can target students' weaknesses to adjust teaching methods and carry out tailored teaching.

Keywords: assessment for learning, cognitive diagnostic assessment, goal-orientation, personalized feedback

Procedia PDF Downloads 133
21805 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
21804 The Use of Relaxation Training in Special Schools for Children With Learning Disabilities

Authors: Birgit Heike Spohn

Abstract:

Several authors (e.g., Krowatschek & Reid, 2011; Winkler, 1998) pronounce themselves in favor of the use of relaxation techniques in school because those techniques could help children to cope with stress, improve power of concentration, learning, and social behavior as well as class climate. Children with learning disabilities might profit from those techniques in a special way because they contribute to improved learning behavior. There is no study addressing the frequency of the use of relaxation techniques in special schools for children with learning disabilities in German speaking countries. The paper presents a study in which all teachers of special schools for children with learning disabilities in a district of South Germany (n = 625) were questioned about the use of relaxation techniques in school using a standardized questionnaire. Variables addressed were the use of these techniques in the classroom, aspects of their use (kind of relaxation technique, frequency, and regularity of their use), and potential influencing factors. The results are discussed, and implications for further research are drawn.

Keywords: special education, learning disabilities, relaxation training, concentration

Procedia PDF Downloads 108
21803 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 156
21802 Irbid National University Students’ Beliefs about English Language Learning

Authors: Khaleel Bader Bataineh

Abstract:

Past studies have maintained that the Arab learners' beliefs about language learning hold vital effects on their performance. Thus, this study was carried out to investigate the language learning beliefs of Irbid National University students. It aimed at identifying the language learning beliefs according to gender. This study is a descriptive design that employed survey questionnaire of Language Learning Beliefs Inventory (BALLI). The data were elicited from 83 English major students during the class sessions. The data were analyzed using an SPSS program in which frequency analysis and t-test were performed to examine the students’ responses. Thus, the major findings of this research indicated that there is a variation in responses with regards to the subjects’ beliefs about English learning. Also, the findings show significant differences in four questionnaire items according to gender. It is hoped that the findings provide valuable insights to educators about the learners’ beliefs which assist them to develop the teaching and learning English language process in Jordan universities.

Keywords: foreign language, students’ beliefs, language learning, Arab students

Procedia PDF Downloads 488
21801 Artificial Intelligence as a Policy Response to Teaching and Learning Issues in Education in Ghana

Authors: Joshua Osondu

Abstract:

This research explores how Artificial Intelligence (AI) can be utilized as a policy response to address teaching and learning (TL) issues in education in Ghana. The dual (AI and human) instructor model is used as a theoretical framework to examine how AI can be employed to improve teaching and learning processes and to equip learners with the necessary skills in the emerging AI society. A qualitative research design was employed to assess the impact of AI on various TL issues, such as teacher workloads, a lack of qualified educators, low academic performance, unequal access to education and educational resources, a lack of participation in learning, and poor access and participation based on gender, place of origin, and disability. The study concludes that AI can be an effective policy response to TL issues in Ghana, as it has the potential to increase students’ participation in learning, increase access to quality education, reduce teacher workloads, and provide more personalized instruction. The findings of this study are significant for filling in the gaps in AI research in Ghana and other developing countries and for motivating the government and educational institutions to implement AI in TL, as this would ensure quality, access, and participation in education and help Ghana industrialize.

Keywords: artificial intelligence, teacher, learner, students, policy response

Procedia PDF Downloads 92
21800 The Analysis of a Learning Media Prototype as Web Learning in Distance Education

Authors: Yudi Efendi, Hasanuddin

Abstract:

Web-based learning program is the complementary of Printed Teaching Material (BMP) that serves and helps students clarify the parts that require additional explanation or illustration. This research attempts to analyze a prototype of web-based learning program. A prototype of web-based learning program which is interactive is completed with exercises and formative tests. Using qualitative descriptive method, the research presents the analysis from the content expert and media expert. Besides, the interviews from tutors of Political and Social Sciences will be presented. The research also analyzes questionnaires from the students of English and literature program in Jakarta. The questionnaire deals with the display of the content, the audio video, the usability, and the navigation. In the long run, it is expected that the program could be recommended to use by the university as an ideal program.

Keywords: web learning, prototype, content expert, media expert

Procedia PDF Downloads 247
21799 Influences Driving the Teachers’ Adoption of Mobile Learning

Authors: L. A. Alfarani, M. McPherson, N. Morris

Abstract:

The growth of mobile learning depends primarily on the participation of teachers and their belief in the possibilities that this technology has for enhancing learning. The need to integrate technology into education seems clear-cut, however, its acceptance in Saudi higher education remains low. Thus, determining the particular factors that affect faculty acceptance of technology is vital. This paper focuses on TAM which depends on two factors: perceived usefulness and perceived ease of use, this theory are used to predict faculty members’ behavioural intentions towards using mobile learning technology. 279 faculty members in one Saudi university have responded to the online questionnaire. The findings have revealed that there is a statistically significant difference in both usefulness and ease of using m-learning factors.

Keywords: TAM theory, mobile learning technology acceptance, usefulness, ease of use

Procedia PDF Downloads 524
21798 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 426
21797 Influencers of E-Learning Readiness among Palestinian Secondary School Teachers: An Explorative Study

Authors: Fuad A. A. Trayek, Tunku Badariah Tunku Ahmad, Mohamad Sahari Nordin, Mohammed AM Dwikat

Abstract:

This paper reports on the results of an exploratory factor analysis procedure applied on the e-learning readiness data obtained from a survey of four hundred and seventy-nine (N = 479) teachers from secondary schools in Nablus, Palestine. The data were drawn from a 23-item Likert questionnaire measuring e-learning readiness based on Chapnick's conception of the construct. Principal axis factoring (PAF) with Promax rotation applied on the data extracted four distinct factors supporting four of Chapnick's e-learning readiness dimensions, namely technological readiness, psychological readiness, infrastructure readiness and equipment readiness. Together these four dimensions explained 56% of the variance. These findings provide further support for the construct validity of the items and for the existence of these four factors that measure e-learning readiness.

Keywords: e-learning, e-learning readiness, technological readiness, psychological readiness, principal axis factoring

Procedia PDF Downloads 401