Search results for: blood-cerebrospinal fluid barrier
1587 Simplified Modelling of Visco-Elastic Fluids for Use in Recoil Damping Systems
Authors: Prasad Pokkunuri
Abstract:
Visco-elastic materials combine the stress response properties of both solids and fluids and have found use in a variety of damping applications – both vibrational and acoustic. Defense and automotive applications, in particular, are subject to high impact and shock loading – for example: aircraft landing gear, firearms, and shock absorbers. Field responsive fluids – a class of smart materials – are the preferred choice of energy absorbents because of their controllability. These fluids’ stress response can be controlled by the application of a magnetic or electric field, in a closed loop. Their rheological properties – elasticity, plasticity, and viscosity – can be varied all the way from that of a liquid such as water to a hard solid. This work presents a simplified model to study the impulse response behavior of such fluids for use in recoil damping systems. The well-known Burger’s equation, in conjunction with various visco-elastic constitutive models, is used to represent fluid behavior. The Kelvin-Voigt, Upper Convected Maxwell (UCM), and Oldroyd-B constitutive models are implemented in this study. Using these models in a one-dimensional framework eliminates additional complexities due to geometry, pressure, body forces, and other source terms. Using a finite difference formulation to numerically solve the governing equation(s), the response to an initial impulse is studied. The disturbance is confined within the problem domain with no-inflow, no-outflow boundary conditions, and its decay characteristics studied. Visco-elastic fluids typically involve a time-dependent stress relaxation which gives rise to interesting behavior when subjected to an impulsive load. For particular values of viscous damping and elastic modulus, the fluid settles into a stable oscillatory state, absorbing and releasing energy without much decay. The simplified formulation enables a comprehensive study of different modes of system response, by varying relevant parameters. Using the insights gained from this study, extension to a more detailed multi-dimensional model is considered.Keywords: Burgers Equation, Impulse Response, Recoil Damping Systems, Visco-elastic Fluids
Procedia PDF Downloads 2891586 Prompting and Encouraging Community Hydration through Education: A Realist Review and Evaluation Exploring Hydration in a Population at Risk of Frailty
Authors: Mark Davies, Carolyn Wallace, Christina Lloydwin, Tom Powell
Abstract:
Background: Frailty is increasingly recognized as a public health problem within an aging population. It is often characterized as an accumulation of clinical symptoms with progressive decline. We contend that dehydration is potentially the missing link driving the cycle of frailty; it contributes to malnutrition and cognitive decline and is a risk factor for other conditions. Frailty may also impact on fluid intake in cognitively intact older adults, indicating the cyclical nature of dehydration contributing to increasing frailty. Aim: To examine the relationships between fluid, hydration, and frailty in older adults in order to determine what works, for whom, how, why, and in what circumstances. Methods: A Realist Synthesis was first undertaken with n=50 studies, leading to the development of a Refined Programme Theory (RPT) articulating what hydration interventions work, for whom, to what degree, in what contexts, and how & why. Within the subsequent evaluation, the RPT was further confirmed/refuted/refined following semi-structured interviews with n=8 participants (healthcare professionals and patients). The RAMESES Quality Standards were followed throughout the study. Results: The Refined Programme Theory (RPT) highlighted three factors that result in optimized hydration for frail older people, i.e., Developing an Understanding Around Hydration, Empowering Participation, and System Reconfiguration. Our RPT indicates that hydration interventions work by developing an understanding of the importance of hydration, mitigating physical & cognitive barriers, increasing the agency of the patient, using a prompting process to reinforce drinking behavior, and routinizing hydration as a dimension of overall care. Conclusion: The study indicates that a greater understanding of the importance of hydration is required for all parties. Patients also require physical and psychological support if they are to be active agents in meeting their hydration needs. At a wider ‘system’ level, organizations must work in an integrated manner introducing processes that enable continuing professional development (CPD), encourage ongoing holistic assessment, and routinize hydration support.Keywords: frailty, dehydration, older adults, realist review, realist evaluation
Procedia PDF Downloads 741585 Gas Flaring in the Niger Delta Nigeria: An Act of Inhumanity to Man and His Environment
Authors: Okorowo Cyril Agochi
Abstract:
The Niger Delta Region of Nigeria is home to about 20 million people and 40 different ethnic groups. The region has an area of seventy thousand square kilometers (70,000 KM2) of wetlands, formed primarily by sediments deposition and makes up 7.5 percent of Nigeria's total landmass. The notable ecological zones in this region includes: coastal barrier islands; mangrove swamp forests; fresh water swamps; and lowland rainforests. This incredibly naturally-endowed ecosystem region, which contains one of the highest concentrations of biodiversity on the planet, in addition to supporting abundant flora and fauna, is threatened by the inhuman act known as gas flaring. Gas flaring is the combustion of natural gas that is associated with crude oil when it is pumped up from the ground. In petroleum-producing areas such as the Niger Delta region of Nigeria where insufficient investment was made in infrastructure to utilize natural gas, flaring is employed to dispose of this associated gas. This practice has impoverished the communities where it is practiced, with attendant environmental, economic and health challenges. This paper discusses the adverse environmental and health implication associated with the practice, the role of Government, Policy makers, Oil companies and the Local communities aimed at bring this inhuman practice to a prompt end.Keywords: natural combustion, emission, environment, flaring, gas, health, Niger Delta
Procedia PDF Downloads 2621584 Modelling of Solidification in a Latent Thermal Energy Storage with a Finned Tube Bundle Heat Exchanger Unit
Authors: Remo Waser, Simon Maranda, Anastasia Stamatiou, Ludger J. Fischer, Joerg Worlitschek
Abstract:
In latent heat storage, a phase change material (PCM) is used to store thermal energy. The heat transfer rate during solidification is limited and considered as a key challenge in the development of latent heat storages. Thus, finned heat exchangers (HEX) are often utilized to increase the heat transfer rate of the storage system. In this study, a new modeling approach to calculating the heat transfer rate in latent thermal energy storages with complex HEX geometries is presented. This model allows for an optimization of the HEX design in terms of costs and thermal performance of the system. Modeling solidification processes requires the calculation of time-dependent heat conduction with moving boundaries. Commonly used computational fluid dynamic (CFD) methods enable the analysis of the heat transfer in complex HEX geometries. If applied to the entire storage, the drawback of this approach is the high computational effort due to small time steps and fine computational grids required for accurate solutions. An alternative to describe the process of solidification is the so-called temperature-based approach. In order to minimize the computational effort, a quasi-stationary assumption can be applied. This approach provides highly accurate predictions for tube heat exchangers. However, it shows unsatisfactory results for more complex geometries such as finned tube heat exchangers. The presented simulation model uses a temporal and spatial discretization of heat exchanger tube. The spatial discretization is based on the smallest possible symmetric segment of the HEX. The heat flow in each segment is calculated using finite volume method. Since the heat transfer fluid temperature can be derived using energy conservation equations, the boundary conditions at the inner tube wall is dynamically updated for each time step and segment. The model allows a prediction of the thermal performance of latent thermal energy storage systems using complex HEX geometries with considerably low computational effort.Keywords: modelling of solidification, finned tube heat exchanger, latent thermal energy storage
Procedia PDF Downloads 2651583 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System
Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim
Abstract:
General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms
Procedia PDF Downloads 3881582 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco
Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad
Abstract:
The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility
Procedia PDF Downloads 1761581 The Reef as Multiple: Coral Reefs between Exploitation and Protection along the Mexican Riviera Maya
Authors: Laura Otto
Abstract:
Sargasso algae currently threatens both livelihoods and marine eco systems along the Riviera Maya in Mexico. While the area was previously known for its white beaches, pristine waters, and intact, colorful reefs, the algae has turned the beaches into ‘stinky stretches of sand,’ made the water brown, and has led to reef degradation causing coral colonies to die off in vast amounts. Drawing on ethnographic research in the area, this paper shows how the reef was exploited for tourism before the Sargasso algae landed, and reef protection played a minor role among hoteliers, tourists, and tour operators. However, since Sargasso began arriving in large quantities, the reef has taken on new significance. Both natural science research and the everyday handling of Sargasso along the coast show that an intact reef provides a natural barrier for the algae and keeps them from reaching the beaches. Clean beaches are important to various local actors–among them, hotel operators, tourists, environmentalists – and against the backdrop of beach commodification, reefs are now taking on new meaning. The paper consequently discusses the commodification of beaches as more-than-human entanglements and illuminates which new human-environment relationships are currently emerging in the Anthropocene.Keywords: anthropocene, human-environment-relations, fieldwork, mexico
Procedia PDF Downloads 2171580 A Solar Heating System Performance on the Microclimate of an Agricultural Greenhouse
Authors: Nora Arbaoui, Rachid Tadili
Abstract:
The experiment adopted a natural technique of heating and cooling an agricultural greenhouse to reduce the fuel consumption and CO2 emissions based on the heating of a transfer fluid that circulates inside the greenhouse through a solar copper coil positioned at the roof of the greenhouse. This experimental study is devoted to the performance evaluation of a solar heating system to improve the microclimate of a greenhouse during the cold period, especially in the Mediterranean climate. This integrated solar system for heating has a positive impact on the quality and quantity of the products under the study greenhouse.Keywords: solar system, agricultural greenhouse, heating, storage
Procedia PDF Downloads 751579 Physico-chemical And Biological Characterization Of Urban Municipal Landfill Leachate And Treatment By Ozone Process
Authors: Ramdani Nadia, Kheddaoui Abdelkrim, Nemmich Said, Tilmatine Amar
Abstract:
The waste production nationwide is increasing every year, on account of therapid urbanization and growing populations, also consumption modes. Algerian political authorities have chosen Technical Landfill Centres (TLC) as a competitive and safe technique of waste management. However, storing these wastes in a bad way poses several environmental challenges, especially in the Department of Saïda, the latter have significant groundwaters. The major problem registered on this Landfill is the leachate resulting from the degradation of buried wastes which were disposed off the outside of the leachate basin and present a source of pollution for the local groundwaters by heavy metals and pathogenic germs. The present paper investigates the leachate treatment ozone process produced by Dielectric Barrier Discharge (DBD) under high potential. The experimental results obtained allowed us to show the efficiency of the treatment process by ozone based on the micro pollutant analysis (DCO, DBO5 , COT, heavy metals) and microbial analysis, after ozonation treatment. The results show that 80% of micro pollutants are eliminated and 100% destruction of all bacteria which reveals the high efficiency of the process.Keywords: landfill, leachate, treatment, ozone, polluants, bacteria, micropolluant
Procedia PDF Downloads 201578 Enhancing Heavy Oil Recovery: Experimental Insights into Low Salinity Polymer in Sandstone Reservoirs
Authors: Intisar, Khalifa, Salim, Al Busaidi
Abstract:
Recently, the synergic combination of low salinity water flooding with polymer flooding has been a subject of paramount interest for the oil industry. Numerous studies have investigated the efficiency of enhanced oil recovery using low salinity polymer flooding (LSPF). However, there is no clear conclusion that can explain the incremental oil recovery, determine the main factors controlling the oil recovery process, and define the relative contribution of rock/fluids or fluid/fluid interactions to extra oil recovery. Therefore, this study aims to perform a systematic investigation of the interactions between oil, polymer, low salinity and sandstone rock surface from pore to core scale during LSPF. Partially hydrolyzed polyacrylamide (HPAM) polymer, Boise outcrop, a crude oil sample and reservoir cores from an Omani oil field, and brine at two different salinities were used in the study. Several experimental measurements including static bulk measurements of polymer solutions prepared with brines of high and low salinities, single phase displacement experiments, along with rheological, total organic carbon and ion chromatography measurements to analyze ion exchange reactions, polymer adsorption, and viscosity loss were used. In addition, two-phase experiments were performed to demonstrate the oil recovery efficiency of LSPF. The results revealed that the incremental oil recovery from LSPF was attributed to the combination of the reduction in the water-oil mobility ratio, an increase in the repulsion forces between crude oil/brine/rock interfaces and an increase in pH of the aqueous solution. In addition, lowering the salinity of the make-up brine resulted in a larger conformation (expansion) of the polymer molecules, which in turn resulted in less adsorption and a greater in-situ viscosity without any negative impact on injectivity. This plays a positive role in the oil displacement process. Moreover, the loss of viscosity in the effluent of polymer solutions was lower in low-salinity than in high-salinity brine, indicating that an increase in cations concentration (mainly driven by Ca2+ ions) has stronger effect on the viscosity of high-salinity polymer solution compared with low-salinity polymer.Keywords: polymer, heavy oil, low salinity, COBR interactions
Procedia PDF Downloads 911577 Flow and Heat Transfer of a Nanofluid over a Shrinking Sheet
Authors: N. Bachok, N. L. Aleng, N. M. Arifin, A. Ishak, N. Senu
Abstract:
The problem of laminar fluid flow which results from the shrinking of a permeable surface in a nanofluid has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. A similarity solution is presented which depends on the mass suction parameter S, Prandtl number Pr, Lewis number Le, Brownian motion number Nb and thermophoresis number Nt. It was found that the reduced Nusselt number is decreasing function of each dimensionless number.Keywords: Boundary layer, nanofluid, shrinking sheet, Brownian motion, thermophoresis, similarity solution
Procedia PDF Downloads 4131576 Barriers to Social Sustainability in Afghan Residential Building Construction: An Exploratory Factor Analysis
Authors: Mohammad Qasim Mohammadi, Mohammad Arif Rohman
Abstract:
Although socially sustainable building is becoming increasingly popular worldwide, past studies indicate that when policymakers support sustainable building development, the social dimension is often given insufficient attention or entirely disregarded. There are not many studies that focus on the problems of socially sustainable buildings in Afghanistan. This research investigates the factors that may hinder social sustainability implementation in residential building construction. The study will gather data from construction professionals by purposive sampling and employ Exploratory Factor Analysis (EFA) and Varimax for analysis. The results will undergo rigorous examination and thorough discussion. The expected results in this research will analyze the underlying barrier structure (factors) that hinder social sustainability, and each of these factors will represent a set of observed variables. In addition, the factor loadings show which barriers pose the greatest challenges. The primary goal of this study is to provide valuable insights into the impediment factors of social sustainability within the residential building environment, aiming to inform decision-making in the industry and encourage the adoption of more socially sustainable construction practices.Keywords: social sustainability, residential building, barriers, drivers, afghanistan, factor analysis
Procedia PDF Downloads 431575 A Simplified Method to Assess the Damage of an Immersed Cylinder Subjected to Underwater Explosion
Authors: Kevin Brochard, Herve Le Sourne, Guillaume Barras
Abstract:
The design of a submarine’s hull is crucial for its operability and crew’s safety, but also complex. Indeed, engineers need to balance lightness, acoustic discretion and resistance to both immersion pressure and environmental attacks. Submarine explosions represent a first-rate threat for the integrity of the hull, whose behavior needs to be properly analyzed. The presented work is focused on the development of a simplified analytical method to study the structural response of a deeply immersed cylinder submitted to an underwater explosion. This method aims to provide engineers a quick estimation of the resulting damage, allowing them to simulate a large number of explosion scenarios. The present research relies on the so-called plastic string on plastic foundation model. A two-dimensional boundary value problem for a cylindrical shell is converted to an equivalent one-dimensional problem of a plastic string resting on a non-linear plastic foundation. For this purpose, equivalence parameters are defined and evaluated by making assumptions on the shape of the displacement and velocity field in the cross-sectional plane of the cylinder. Closed-form solutions for the deformation and velocity profile of the shell are obtained for explosive loading, and compare well with numerical and experimental results. However, the plastic-string model has not yet been adapted for a cylinder in immersion subjected to an explosive loading. In fact, the effects of fluid-structure interaction have to be taken into account. Moreover, when an underwater explosion occurs, several pressure waves are emitted by the gas bubble pulsations, called secondary waves. The corresponding loads, which may produce significant damages to the cylinder, must also be accounted for. The analytical developments carried out to solve the above problem of a shock wave impacting a cylinder, considering fluid-structure interaction will be presented for an unstiffened cylinder. The resulting deformations are compared to experimental and numerical results for different shock factors and different standoff distances.Keywords: immersed cylinder, rigid plastic material, shock loading, underwater explosion
Procedia PDF Downloads 3301574 The Role of Organizational Identity in Disaster Response, Recovery and Prevention: A Case Study of an Italian Multi-Utility Company
Authors: Shanshan Zhou, Massimo Battaglia
Abstract:
Identity plays a critical role when an organization faces disasters. Individuals reflect on their working identities and identify themselves with the group and the organization, which facilitate collective sensemaking under crisis situations and enable coordinated actions to respond to and recover from disasters. In addition, an organization’s identity links it to its regional community, which fosters the mobilization of resources and contributes to rapid recovery. However, identity is also problematic for disaster prevention because of its persistence. An organization’s ego-defenses system prohibits the rethink of its identity and a rigid identity obstructs disaster prevention. This research aims to tackle the ‘problem’ of identity by study in-depth a case of an Italian multi–utility which experienced the 2012 Northern Italy earthquakes. Collecting data from 11 interviews with top managers and key players in the local community and archived materials, we find that the earthquakes triggered the rethink of the organization’s identity, which got reinforced afterward. This research highlighted the importance of identity in disaster response and recovery. More importantly, it explored the solution of overcoming the barrier of ego-defense that is to transform the organization into a learning organization which constantly rethinks its identity.Keywords: community identity, disaster, identity, organizational learning
Procedia PDF Downloads 7281573 Transient Heat Transfer of a Spiral Fin
Authors: Sen-Yung Lee, Li-Kuo Chou, Chao-Kuang Chen
Abstract:
In this study, the problem of temperature transient response of a spiral fin, with its end insulated, is analyzed with base end subjected to a variation of fluid temperature. The hybrid method of Laplace transforms/Adomian decomposed method-Padé, is applied to the temperature transient response of the fin, the result of the temperature distribution and the heat flux at the base of the spiral fin are obtained, show a good agreement in the physical phenomenon.Keywords: Laplace transforms, Adomian decomposed method- Padé, transient response, heat transfer
Procedia PDF Downloads 4251572 Electrospray Plume Characterisation of a Single Source Cone-Jet for Micro-Electronic Cooling
Authors: M. J. Gibbons, A. J. Robinson
Abstract:
Increasing expectations on small form factor electronics to be more compact while increasing performance has driven conventional cooling technologies to a thermal management threshold. An emerging solution to this problem is electrospray (ES) cooling. ES cooling enables two phase cooling by utilising Coulomb forces for energy efficient fluid atomization. Generated charged droplets are accelerated to the grounded target surface by the applied electric field and surrounding gravitational force. While in transit the like charged droplets enable plume dispersion and inhibit droplet coalescence. If the electric field is increased in the cone-jet regime, a subsequent increase in the plume spray angle has been shown. Droplet segregation in the spray plume has been observed, with primary droplets in the plume core and satellite droplets positioned on the periphery of the plume. This segregation is facilitated by inertial and electrostatic effects. This result has been corroborated by numerous authors. These satellite droplets are usually more densely charged and move at a lower relative velocity to that of the spray core due to the radial decay of the electric field. Previous experimental research by Gomez and Tang has shown that the number of droplets deposited on the periphery can be up to twice that of the spray core. This result has been substantiated by a numerical models derived by Wilhelm et al., Oh et al. and Yang et al. Yang et al. showed from their numerical model, that by varying the extractor potential the dispersion radius of the plume also varies proportionally. This research aims to investigate this dispersion density and the role it plays in the local heat transfer coefficient profile (h) of ES cooling. This will be carried out for different extractor – target separation heights (H2), working fluid flow rates (Q), and extractor applied potential (V2). The plume dispersion will be recorded by spraying a 25 µm thick, joule heated steel foil and by recording the thermal footprint of the ES plume using a Flir A-40 thermal imaging camera. The recorded results will then be analysed by in-house developed MATLAB code.Keywords: electronic cooling, electrospray, electrospray plume dispersion, spray cooling
Procedia PDF Downloads 3971571 Analysis of the Effect of Food Veils on the Preservation of Button and Oyster Mushrooms, Case Study: Zein Corn Coating
Authors: Mohamad Javad Shakouri, Hamid Tavakkolipour, Mahdis Jamshidi Tehranian
Abstract:
The inclination toward using food coatings is increasing daily, due to containing natural elements and not producing environmental pollution. Food coatings are uniform and thin layers of natural substances that cover the food product and act as a barrier against moisture, oxygen, and substances dissolved in food. Using food coatings on fruits and vegetables can delay water dissipation, losing aroma, decolorization, and improve the appearance of the product, and in general, preserve and protect the quality of fresh produce. When fruits and vegetables grow, they are equipped with a natural shield, called cuticle– a layer of wax. Washing the products, after harvest, the cuticle – this protective coating – is removed. In order to replace the cuticle, we can use an edible protective coating. This coating delays dehydration and deterioration and hence increases the life of the product while keeping its moisture. In this study, it was concluded that using food coatings, such as corn zein, carrageenan, and starch can have a substantial effect on the quantitative and qualitative preservation of food products, such as fruits, vegetables, and mushrooms.Keywords: food coating, corn zein, button and oyster mushrooms, ascorbic and citric acids
Procedia PDF Downloads 2971570 Flood Control Structures in the River Göta Älv to Protect Gothenburg City (Sweden) during the 21st Century: Preliminary Evaluation
Authors: M. Irannezhad, E. H. N. Gashti, U. Moback, B. Kløve
Abstract:
Climate change because of increases in concentration level of greenhouse gases emissions to the atmosphere will result in mean sea level rise about +1 m by 2100. To prevent coastal floods resulted from the sea level rising, different flood control structures have been built, e.g. the Thames barrier on the Thames River in London (UK), with acceptable protection levels at least so far. Gothenburg located on the southwest coast of Sweden, with the River Göta älv running through it, is one of vulnerable cities to the accelerated rises in mean sea level. Developing a water level model by MATLAB, we evaluated using a sea barrage in the Göta älv River as the flood control structure for protecting the Gothenburg city during this century. Considering three operational scenarios for two barriers in upstream and downstream, the highest sea level was estimated to + 2.95 m above the current mean sea level by 2100. To verify flood protection against such high sea levels, both barriers have to be closed. To prevent high water level in the River Göta älv reservoir, the barriers would be open when the sea level is low. The suggested flood control structures would successfully protect the city from flooding events during this century.Keywords: climate change, flood control structures, gothenburg, sea level rising, water level mode
Procedia PDF Downloads 3541569 A Review of Material and Methods Used in Liner Layers in Various Landfills
Authors: S. Taghvamanesh
Abstract:
Modern landfills are highly engineered containment systems that are designed to reduce the environmental and human health impacts of solid waste (trash). In modern landfills, waste is contained by a liner system. The primary goal of the liner system is to isolate the landfill contents from the environment, thereby protecting the soil and groundwater from pollution caused by the leachate of a landfill. Landfill leachate is the most serious threat to groundwater. Therefore, it is necessary to design a system that prevents the penetration of this dangerous substance into the environment. These layers are made up of two basic elements: clay and geosynthetics. Hydraulic conductivity and flexibility are two desirable properties of these materials. There are three different types of liner systems that will be discussed in this paper. According to available data, the current article analyzed materials and methods for constructing liner layers made of distinct leachates, including various harmful components and heavy metals from all around the world. Also, this study attempted to gather data on leachates for each of the sites discussed. In conclusion, every landfill requires a specific type of liner, which depends on the type of leachate that it produces daily. It should also be emphasized that, based on available data, this article focused on the number of landfills that each country or continent possesses.Keywords: landfill, liner layer, impervious layer, barrier layer
Procedia PDF Downloads 751568 Effects of Polymer Adsorption and Desorption on Polymer Flooding in Waterflooded Reservoir
Authors: Sukruthai Sapniwat, Falan Srisuriyachai
Abstract:
Polymer Flooding is one of the most well-known methods in Enhanced Oil Recovery (EOR) technology which can be implemented after either primary or secondary recovery, resulting in favorable conditions for the displacement mechanism in order to lower the residual oil in the reservoir. Polymer substances can lower the mobility ratio of the whole process by increasing the viscosity of injected water. Therefore, polymer flooding can increase volumetric sweep efficiency, which leads to a better recovery factor. Moreover, polymer adsorption onto rock surface can help decrease reservoir permeability contrast with high heterogeneity. Due to the reduction of the absolute permeability, effective permeability to water, representing flow ability of the injected fluid, is also reduced. Once polymer is adsorbed onto rock surface, polymer molecule can be desorbed when different fluids are injected. This study is performed to evaluate the effects of the adsorption and desorption process of polymer solutions to yield benefits on the oil recovery mechanism. A reservoir model is constructed by reservoir simulation program called STAR® commercialized by the Computer Modeling Group (CMG). Various polymer concentrations, starting times of polymer flooding process and polymer injection rates were evaluated with selected values of polymer desorption degrees including 0, 25, 50, 75 and 100%. The higher the value, the more adsorbed polymer molecules to return back to flowing fluid. According to the results, polymer desorption lowers polymer consumption, especially at low concentrations. Furthermore, starting time of polymer flooding and injection rate affect the oil production. The results show that waterflooding followed by earlier polymer flooding can increase the oil recovery factor while the higher injection rate also enhances the recovery. Polymer concentration is related to polymer consumption due to the two main benefits of polymer flooding control described above. Therefore, polymer slug size should be optimized based on polymer concentration. Polymer desorption causes polymer re-employment that is previously adsorbed onto rock surface, resulting in an increase of sweep efficiency in the further period of polymer flooding process. Even though waterflooding supports polymer injectivity, water cut at the producer can prematurely terminate the oil production. The injection rate decreases polymer adsorption due to decreased retention time of polymer flooding process.Keywords: enhanced oil recovery technology, polymer adsorption and desorption, polymer flooding, reservoir simulation
Procedia PDF Downloads 3281567 Dielectric Spectroscopy Investigation of Hydrophobic Silica Aerogel
Authors: Deniz Bozoglu, Deniz Deger, Kemal Ulutas, Sahin Yakut
Abstract:
In recent years, silica aerogels have attracted great attention due to their outstanding properties, and their wide variety of potential applications such as microelectronics, nuclear and high-energy physics, optics and acoustics, superconductivity, space-physics. Hydrophobic silica aerogels were successfully synthesized in one-step by surface modification at ambient pressure. FT-IR result confirmed that Si-OH groups were successfully converted into hydrophobic and non-polar Si-CH3 groups by surface modification using trimethylchloro silane (TMCS) as co-precursor. Using Alpha-A High-Resolution Dielectric, Conductivity and Impedance Analyzer, AC conductivity of samples were examined at temperature range 293-423 K and measured over frequency range between 1-106 Hz. The characteristic relaxation time decreases with increasing temperature. The AC conductivity follows σ_AC (ω)=σ_t-σ_DC=Aω^s relation at frequencies higher than 10 Hz, and the dominant conduction mechanism is found to obey the Correlated Barrier Hopping (CBH) mechanism. At frequencies lower than 10 Hz, the electrical conduction is found to be in accordance with DC conduction mechanism. The activation energies obtained from AC conductivity results and it was observed two relaxation regions.Keywords: aerogel, synthesis, dielectric constant, dielectric loss, relaxation time
Procedia PDF Downloads 1891566 Two-Dimensional Analysis and Numerical Simulation of the Navier-Stokes Equations for Principles of Turbulence around Isothermal Bodies Immersed in Incompressible Newtonian Fluids
Authors: Romulo D. C. Santos, Silvio M. A. Gama, Ramiro G. R. Camacho
Abstract:
In this present paper, the thermos-fluid dynamics considering the mixed convection (natural and forced convections) and the principles of turbulence flow around complex geometries have been studied. In these applications, it was necessary to analyze the influence between the flow field and the heated immersed body with constant temperature on its surface. This paper presents a study about the Newtonian incompressible two-dimensional fluid around isothermal geometry using the immersed boundary method (IBM) with the virtual physical model (VPM). The numerical code proposed for all simulations satisfy the calculation of temperature considering Dirichlet boundary conditions. Important dimensionless numbers such as Strouhal number is calculated using the Fast Fourier Transform (FFT), Nusselt number, drag and lift coefficients, velocity and pressure. Streamlines and isothermal lines are presented for each simulation showing the flow dynamics and patterns. The Navier-Stokes and energy equations for mixed convection were discretized using the finite difference method for space and a second order Adams-Bashforth and Runge-Kuta 4th order methods for time considering the fractional step method to couple the calculation of pressure, velocity, and temperature. This work used for simulation of turbulence, the Smagorinsky, and Spalart-Allmaras models. The first model is based on the local equilibrium hypothesis for small scales and hypothesis of Boussinesq, such that the energy is injected into spectrum of the turbulence, being equal to the energy dissipated by the convective effects. The Spalart-Allmaras model, use only one transport equation for turbulent viscosity. The results were compared with numerical data, validating the effect of heat-transfer together with turbulence models. The IBM/VPM is a powerful tool to simulate flow around complex geometries. The results showed a good numerical convergence in relation the references adopted.Keywords: immersed boundary method, mixed convection, turbulence methods, virtual physical model
Procedia PDF Downloads 1141565 Temporal and Spacial Adaptation Strategies in Aerodynamic Simulation of Bluff Bodies Using Vortex Particle Methods
Authors: Dario Milani, Guido Morgenthal
Abstract:
Fluid dynamic computation of wind caused forces on bluff bodies e.g light flexible civil structures or high incidence of ground approaching airplane wings, is one of the major criteria governing their design. For such structures a significant dynamic response may result, requiring the usage of small scale devices as guide-vanes in bridge design to control these effects. The focus of this paper is on the numerical simulation of the bluff body problem involving multiscale phenomena induced by small scale devices. One of the solution methods for the CFD simulation that is relatively successful in this class of applications is the Vortex Particle Method (VPM). The method is based on a grid free Lagrangian formulation of the Navier-Stokes equations, where the velocity field is modeled by particles representing local vorticity. These vortices are being convected due to the free stream velocity as well as diffused. This representation yields the main advantages of low numerical diffusion, compact discretization as the vorticity is strongly localized, implicitly accounting for the free-space boundary conditions typical for this class of FSI problems, and a natural representation of the vortex creation process inherent in bluff body flows. When the particle resolution reaches the Kolmogorov dissipation length, the method becomes a Direct Numerical Simulation (DNS). However, it is crucial to note that any solution method aims at balancing the computational cost against the accuracy achievable. In the classical VPM method, if the fluid domain is discretized by Np particles, the computational cost is O(Np2). For the coupled FSI problem of interest, for example large structures such as long-span bridges, the aerodynamic behavior may be influenced or even dominated by small structural details such as barriers, handrails or fairings. For such geometrically complex and dimensionally large structures, resolving the complete domain with the conventional VPM particle discretization might become prohibitively expensive to compute even for moderate numbers of particles. It is possible to reduce this cost either by reducing the number of particles or by controlling its local distribution. It is also possible to increase the accuracy of the solution without increasing substantially the global computational cost by computing a correction of the particle-particle interaction in some regions of interest. In this paper different strategies are presented in order to extend the conventional VPM method to reduce the computational cost whilst resolving the required details of the flow. The methods include temporal sub stepping to increase the accuracy of the particles convection in certain regions as well as dynamically re-discretizing the particle map to locally control the global and the local amount of particles. Finally, these methods will be applied on a test case and the improvements in the efficiency as well as the accuracy of the proposed extension to the method are presented. The important benefits in terms of accuracy and computational cost of the combination of these methods will be thus presented as long as their relevant applications.Keywords: adaptation, fluid dynamic, remeshing, substepping, vortex particle method
Procedia PDF Downloads 2611564 Empirical Study of Health Behaviors of Employees in Information Technology and Business Process Outsourcing
Authors: Yogesh Pawar
Abstract:
The purpose of this paper is to investigate the behaviors of information technology (IT) and business process outsourcing (BPO) employees in relation to diet, exercise, sleep, stress, and social habits. This was a qualitative research study, using in-depth,semi-structured interviews. Descriptive data were collected from a two-stage purposive sample of 28 IT-BPO employees from two IT companies and one BPOs in Pune. The majority of interviewees reported having an unhealthy diet and/or sedentary lifestyle. Lack of time due to demanding work schedules was the largest barrier to diet and exercise. Given the qualitative study design and limited sampling frame, results may not be generalizable. However, the qualitative data suggests that Pune’s young IT-BPO employees may be at greater risk of lifestyle-related diseases than the general population. The data also suggests that interventions incorporating social influence may be a promising solution, particularly at international call centers. The results from this study provide qualitative insight on the motives for health behaviors of IT-BPO employees, as well as the barriers and facilitators for leading a healthy lifestyle in this industry. The findings provide the framework for future workplace wellness interventions.Keywords: exercise, information technology, qualitative research, wellness
Procedia PDF Downloads 3321563 Sensitivity Analysis of External-Rotor Permanent Magnet Assisted Synchronous Reluctance Motor
Authors: Hadi Aghazadeh, Seyed Ebrahim Afjei, Alireza Siadatan
Abstract:
In this paper, a proper approach is taken to assess a set of the most effective rotor design parameters for an external-rotor permanent magnet assisted synchronous reluctance motor (PMaSynRM) and therefore to tackle the design complexity of the rotor structure. There are different advantages for introducing permanent magnets into the rotor flux barriers, some of which are to saturate the rotor iron ribs, to increase the motor torque density and to improve the power factor. Moreover, the d-axis and q-axis inductances are of great importance to simultaneously achieve maximum developed torque and low torque ripple. Therefore, sensitivity analysis of the rotor geometry of an 8-pole external-rotor permanent magnet assisted synchronous reluctance motor is performed. Several magnetically accurate finite element analyses (FEA) are conducted to characterize the electromagnetic performance of the motor. The analyses validate torque and power factor equations for the proposed external-rotor motor. Based upon the obtained results and due to an additional term, permanent magnet torque, added to the reluctance torque, the electromagnetic torque of the PMaSynRM increases.Keywords: permanent magnet assisted synchronous reluctance motor, flux barrier, flux carrier, electromagnetic torque, and power factor
Procedia PDF Downloads 3291562 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles
Authors: Mohsen Solimani Babarsad, Payam Taheri
Abstract:
Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’
Procedia PDF Downloads 3611561 Amifostine Analogue, Drde-30, Attenuates Radiation-Induced Lung Injury in Mice
Authors: Aastha Arora, Vikas Bhuria, Saurabh Singh, Uma Pathak, Shweta Mathur, Puja P. Hazari, Rajat Sandhir, Ravi Soni, Anant N. Bhatt, Bilikere S. Dwarakanath
Abstract:
Radiotherapy is an effective curative and palliative option for patients with thoracic malignancies. However, lung injury, comprising of pneumonitis and fibrosis, remains a significant clin¬ical complication of thoracic radiation, thus making it a dose-limiting factor. Also, injury to the lung is often reported as part of multi-organ failure in victims of accidental radiation exposures. Radiation induced inflammatory response in the lung, characterized by leukocyte infiltration and vascular changes, is an important contributing factor for the injury. Therefore, countermeasure agents to attenuate radiation induced inflammatory response are considered as an important approach to prevent chronic lung damage. Although Amifostine, the widely used, FDA approved radio-protector, has been found to reduce the radiation induced pneumonitis during radiation therapy of non-small cell lung carcinoma, its application during mass and field exposure is limited due to associated toxicity and ineffectiveness with the oral administration. The amifostine analogue (DRDE-30) overcomes this limitation as it is orally effective in reducing the mortality of whole body irradiated mice. The current study was undertaken to investigate the potential of DRDE-30 to ameliorate radiation induced lung damage. DRDE-30 was administered intra-peritoneally, 30 minutes prior to 13.5 Gy thoracic (60Co-gamma) radiation in C57BL/6 mice. Broncheo- alveolar lavage fluid (BALF) and lung tissues were harvested at 12 and 24 weeks post irradiation for studying inflammatory and fibrotic markers. Lactate dehydrogenase (LDH) leakage, leukocyte count and protein content in BALF were used as parameters to evaluate lung vascular permeability. Inflammatory cell signaling (p38 phosphorylation) and anti-oxidant status (MnSOD and Catalase level) was assessed by Western blot, while X-ray CT scan, H & E staining and trichrome staining were done to study the lung architecture and collagen deposition. Irradiation of the lung increased the total protein content, LDH leakage and total leukocyte count in the BALF, reflecting endothelial barrier dysfunction. These disruptive effects were significantly abolished by DRDE-30, which appear to be linked to the DRDE-30 mediated abrogation of activation of the redox-sensitive pro- inflammatory signaling cascade, the MAPK pathway. Concurrent administration of DRDE-30 with radiation inhibited radiation-induced oxidative stress by strengthening the anti-oxidant defense system and abrogated p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and macrophage recruitment to the lungs. Histopathological examination (by H & E staining) of the lung showed radiation-induced inflammation of the lungs, characterized by cellular infiltration, interstitial oedema, alveolar wall thickening, perivascular fibrosis and obstruction of alveolar spaces, which were all reduced by pre-administration of DRDE-30. Structural analysis with X-ray CT indicated lung architecture (linked to the degree of opacity) comparable to un-irradiated mice that correlated well with the lung morphology and reduced collagen deposition. Reduction in the radiation-induced inflammation and fibrosis brought about by DRDE-30 resulted in a profound increase in animal survival (72 % in the combination vs 24% with radiation) observed at the end of 24 weeks following irradiation. These findings establish the potential of the Amifostine analogue, DRDE-30, in reducing radiation induced pulmonary injury by attenuating the inflammatory and fibrotic responses.Keywords: amifostine, fibrosis, inflammation, lung injury radiation
Procedia PDF Downloads 5081560 An Object-Oriented Modelica Model of the Water Level Swell during Depressurization of the Reactor Pressure Vessel of the Boiling Water Reactor
Authors: Rafal Bryk, Holger Schmidt, Thomas Mull, Ingo Ganzmann, Oliver Herbst
Abstract:
Prediction of the two-phase water mixture level during fast depressurization of the Reactor Pressure Vessel (RPV) resulting from an accident scenario is an important issue from the view point of the reactor safety. Since the level swell may influence the behavior of some passive safety systems, it has been recognized that an assumption which at the beginning may be considered as a conservative one, not necessary leads to a conservative result. This paper discusses outcomes obtained during simulations of the water dynamics and heat transfer during sudden depressurization of a vessel filled up to a certain level with liquid water under saturation conditions and with the rest of the vessel occupied by saturated steam. In case of the pressure decrease e.g. due to the main steam line break, the liquid water evaporates abruptly, being a reason thereby, of strong transients in the vessel. These transients and the sudden emergence of void in the region occupied at the beginning by liquid, cause elevation of the two-phase mixture. In this work, several models calculating the water collapse and swell levels are presented and validated against experimental data. Each of the models uses different approach to calculate void fraction. The object-oriented models were developed with the Modelica modelling language and the OpenModelica environment. The models represent the RPV of the Integral Test Facility Karlstein (INKA) – a dedicated test rig for simulation of KERENA – a new Boiling Water Reactor design of Framatome. The models are based on dynamic mass and energy equations. They are divided into several dynamic volumes in each of which, the fluid may be single-phase liquid, steam or a two-phase mixture. The heat transfer between the wall of the vessel and the fluid is taken into account. Additional heat flow rate may be applied to the first volume of the vessel in order to simulate the decay heat of the reactor core in a similar manner as it is simulated at INKA. The comparison of the simulations results against the reference data shows a good agreement.Keywords: boiling water reactor, level swell, Modelica, RPV depressurization, thermal-hydraulics
Procedia PDF Downloads 2091559 The Soliton Solution of the Quadratic-Cubic Nonlinear Schrodinger Equation
Authors: Sarun Phibanchon, Yuttakarn Rattanachai
Abstract:
The quadratic-cubic nonlinear Schrodinger equation can be explained the weakly ion-acoustic waves in magnetized plasma with a slightly non-Maxwellian electron distribution by using the Madelung's fluid picture. However, the soliton solution to the quadratic-cubic nonlinear Schrodinger equation is determined by using the direct integration. By the characteristics of a soliton, the solution can be claimed that it's a soliton by considering its time evolution and their collisions between two solutions. These results are shown by applying the spectral method.Keywords: soliton, ion-acoustic waves, plasma, spectral method
Procedia PDF Downloads 4091558 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine
Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy
Abstract:
This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.Keywords: CFD model, combustion, engine, simulation
Procedia PDF Downloads 359