Search results for: Half Power Beam Width (HPBW)
7668 Determination of Critical Organ Doses for Liver Scintigraphy Using Cr-51
Authors: O. Maranci, A. B. Tugrul
Abstract:
Scintigraphy is an imaging method of nuclear events provoked by collisions or charged current interactions with radiation. It is used for diagnostic test used in nuclear medicine via radiopharmaceuticals emitting radiation which is captured by gamma cameras to form two-dimensional images. Liver scintigraphy is widely used in nuclear medicine.Tc-99m and Cr-51 gamma radioisotopes can be used for this purpose. Cr-51 usage is more important for patients’ organ dose that has higher energy and longer half-life as compared to Tc-99m. In this study, it is aimed to determine the required dose for critical organs of patient through liver scintigraphy via Cr-51 gamma radioisotope. Experimental studies were conducted on patients even though conducting experimental studies on patients is extremely difficult for determination of critical organ doses. Torso phantom was utilized to simulate the liver scintigraphy by using 20 mini packages of Cr-51 that were placed on the organ. The radioisotope was produced by irradiation in central thimble of TRIGA MARK II Reactor at 250 KW power. As the results of the study, critical organ doses were determined and evaluated with different critic organs.Keywords: critical organ doses, liver, scintigraphy, TRIGA Mark-II
Procedia PDF Downloads 5547667 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints
Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno
Abstract:
Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.Keywords: battery energy storage, power system stability, system strength, weak power system
Procedia PDF Downloads 607666 Crystallization of the US Supreme Court’s Role as an Arbiter of Constitutionality of Laws
Authors: Fethia Braik
Abstract:
This paper summarizes the history of the US Supreme Court. It did not enjoy today’s status. It did neither control legislation nor the executive power. It was until 1803, during Marshall’s term, that it gained the pride of ruling over the constitutionality of acts be they federal or local, congressional or presidential. The Chief Justice, whether intended or not, vested such power in the supreme judicial institution via the case of Marbury v. Madison. Such power, nevertheless, had not been exercised for many years, till the Dred Scott case.Keywords: Judiciary Acts 1789, 1801, chief justice, associate justice, justice of peace, review of constitutionality of acts, Jay court, Ellsworth court, Marshall court
Procedia PDF Downloads 3027665 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.Keywords: communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder
Procedia PDF Downloads 2607664 Impact of a Biopesticide Formulated an Entomopathogenic Fungus Metarhizium Anisopliae et Abstracts of Two Different Plants Sage (Salvia officinalis) and American Paper (Schinus molle) on Aphis Fabae (Homoptera - Aphididae)
Authors: Hicham Abidallah
Abstract:
In this work we realized a formulation of an entomopathogenic fungus Metarhizium anisopliae with a dose of 1,7 x 105 spores/ml, and aqueous abstracts of two different plants sage (Salvia officinalis) and American paper (Schinus molle) with they’re full dose and half dose, on a black bean aphid populations (Aphis fabae) on a bean crop planted in pots at semi-controlled conditions. Five formulations were achieved (Met, Fd, F1/2d, Sd et S1/2d) and tested on six blocks each one contained six pots. This study revealed that four (04) formulations exercised an influence over black bean aphid (Met, Fd, F1/2d, Sd), of which Metarhizium marked the most elevated and aggressive toxicity with an efficiency of 99,24%, however, sage formulation with the half dose (S1/2d ) marked a weak toxicity with an efficiency of 18%. Test of Metarhizium anisopliae on bees didn’t show toxicity, and no mortality has been marked, and no trace of green Muscardine observed.Keywords: Metarhizium anisopliae, salvia officinalis, Schinus molle, Aphis fabae, efficiency degree
Procedia PDF Downloads 3707663 BeamGA Median: A Hybrid Heuristic Search Approach
Authors: Ghada Badr, Manar Hosny, Nuha Bintayyash, Eman Albilali, Souad Larabi Marie-Sainte
Abstract:
The median problem is significantly applied to derive the most reasonable rearrangement phylogenetic tree for many species. More specifically, the problem is concerned with finding a permutation that minimizes the sum of distances between itself and a set of three signed permutations. Genomes with equal number of genes but different order can be represented as permutations. In this paper, an algorithm, namely BeamGA median, is proposed that combines a heuristic search approach (local beam) as an initialization step to generate a number of solutions, and then a Genetic Algorithm (GA) is applied in order to refine the solutions, aiming to achieve a better median with the smallest possible reversal distance from the three original permutations. In this approach, any genome rearrangement distance can be applied. In this paper, we use the reversal distance. To the best of our knowledge, the proposed approach was not applied before for solving the median problem. Our approach considers true biological evolution scenario by applying the concept of common intervals during the GA optimization process. This allows us to imitate a true biological behavior and enhance genetic approach time convergence. We were able to handle permutations with a large number of genes, within an acceptable time performance and with same or better accuracy as compared to existing algorithms.Keywords: median problem, phylogenetic tree, permutation, genetic algorithm, beam search, genome rearrangement distance
Procedia PDF Downloads 2647662 Structural Stress of Hegemon’s Power Loss: A Pestle Analysis for Pacification and Security Policy Plan
Authors: Sehrish Qayyum
Abstract:
Active military power contention is shifting to economic and cyberwar to retain hegemony. Attuned Pestle analysis confirms that structural stress of hegemon’s power loss drives a containment approach towards caging actions. Ongoing diplomatic, asymmetric, proxy and direct wars are increasing stress hegemon’s power retention due to tangled military and economic alliances. It creates the condition of catalepsy with defective reflexive control which affects the core warfare operations. When one’s own power is doubted it gives power to one’s own doubt to ruin all planning either done with superlative cost-benefit analysis. Strategically calculated estimation of Hegemon’s power game since the early WWI to WWII, WWII-to Cold War and then to the current era in three chronological periods exposits that Thucydides’s trap became the reason for war broke out. Thirst for power is the demise of imagination and cooperation for better sense to prevail instead it drives ashes to dust. Pestle analysis is a wide array of evaluation from political and economic to legal dimensions of the state matters. It helps to develop the Pacification and Security Policy Plan (PSPP) to avoid hegemon’s structural stress of power loss in fact, in turn, creates an alliance with maximum amicable outputs. PSPP may serve to regulate and pause the hurricane of power clashes. PSPP along with a strategic work plan is based on Pestle analysis to deal with any conceivable war condition and approach for saving international peace. Getting tangled into self-imposed epistemic dilemmas results in regret that becomes the only option of performance. It is a generic application of probability tests to find the best possible options and conditions to develop PSPP for any adversity possible so far. Innovation in expertise begets innovation in planning and action-plan to serve as a rheostat approach to deal with any plausible power clash.Keywords: alliance, hegemon, pestle analysis, pacification and security policy plan, security
Procedia PDF Downloads 1047661 Virtual Routing Function Allocation Method for Minimizing Total Network Power Consumption
Authors: Kenichiro Hida, Shin-Ichi Kuribayashi
Abstract:
In a conventional network, most network devices, such as routers, are dedicated devices that do not have much variation in capacity. In recent years, a new concept of network functions virtualisation (NFV) has come into use. The intention is to implement a variety of network functions with software on general-purpose servers and this allows the network operator to select their capacities and locations without any constraints. This paper focuses on the allocation of NFV-based routing functions which are one of critical network functions, and presents the virtual routing function allocation algorithm that minimizes the total power consumption. In addition, this study presents the useful allocation policy of virtual routing functions, based on an evaluation with a ladder-shaped network model. This policy takes the ratio of the power consumption of a routing function to that of a circuit and traffic distribution between areas into consideration. Furthermore, the present paper shows that there are cases where the use of NFV-based routing functions makes it possible to reduce the total power consumption dramatically, in comparison to a conventional network, in which it is not economically viable to distribute small-capacity routing functions.Keywords: NFV, resource allocation, virtual routing function, minimum power consumption
Procedia PDF Downloads 3407660 Characteristics of Autism Spectrum Disorder Patient and Perception of Caregiver Regarding Speech and Language Therapy in Bangladesh
Authors: K. M. Saif Ur Rahman, Razib Mamun, Himica Arjuman, Fida Al Shams
Abstract:
Introduction: Autism spectrum disorder (ASD) has become an emerging neurodevelopmental disorder with increasing prevalence. It has become an important public health issue globally. Many approaches including speech and language therapy (SLT), occupational therapy, behavioral therapy etc. are being applied for the betterment of the ASD patients. This study aims to describe the characteristics of ASD patients and perception of caregiver regarding SLT in Bangladesh. Methods: This cross-sectional study was conducted in a therapy and rehabilitation center at Dhaka city. Caregivers of 48 ASD patients responded regarding their perception of SLT and characteristics of patients. Results: Among 48 ASD patients, 56.3% were between 3 to 5 years age group with a male predominance (87.5%). More than half of the participants (56.3%) initiated SLT at the age of 1-3 years and the majority (43.8%) were taking SLT for less than 1 year. Majority of the patients (64.6%) were taken to a physician for healthcare as a first contact of which 29.2% were referred to SLT by physicians. More than half (56.3%) of the caregivers were moderately satisfied with SLT and most of them (62.5%) mentioned moderate improvement through SLT. Improvement rate was 10-15% in specific symptoms such as eye contact, complex mannerism, pointing, imitation etc. Conclusion: This study reveals the self-reported perception of caregivers on SLT. Despite reported improvements, more exploration of different approaches and intervention for management of ASD is recommended.Keywords: ASD, characteristics, SLT, Bangladesh
Procedia PDF Downloads 1807659 Nitrogen Doping Effect on Enhancement of Electrochemical Performance of a Carbon Nanotube Based Microsupercapacitor
Authors: Behnoush Dousti, Ye Choi, Gil S. Lee
Abstract:
Microsupercapacitors (MScs) are known as the future of miniaturized energy sources that can be coupled to a battery to deliver stable and constant energy to microelectronics. Among all their counterparts, electrochemical microsupercapacitor have drawn the most research attention due to their higher power density and long cycle life. Designing the microstructure and choosing the electroactive materials are two significant factors that greatly affect the performance of the device. Here, we report successful fabrication and characterization of a microsupercapacitor with interdigitated structure based on Carbon nanotube sheets (CNT sheet). Novel structure of highly aligned CNT sheet as the electrode materials which also offers excellent conductivity and large surface area along with doping with nitrogen, enabled us to develop a device with serval order of magnitude higher electrochemical performance than the pristine CNT in aqueous electrolyte including high specific capacitance and rate capabilities and excellent cycle life over 10000 cycles. Geometric parameters such as finger width and gap size were also studied and it was shown the device performance is much depended on them. Results of this study confirms the potential of CNT sheet for future energy storage devices.Keywords: carbon nanotube, energy storage systems, microsupercapacitor, nitrogen doping
Procedia PDF Downloads 1307658 Power Generation from Sewage by a Micro-Hydraulic Turbine
Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide
Abstract:
This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.Keywords: micro-hydraulic turbine, power generation, sewage, sewer pipe
Procedia PDF Downloads 3907657 The Impact of Locations on the Perception of the Same Product: An Application to Motor Industry
Authors: Anna Claudia Pellicelli, Silvia Procacci
Abstract:
The study aims to demonstrate how different locations, where the same product is unveiled and tested, can provide a different result in terms of perception by the same kind of people. The experiment was done in occasion of the presentation of a new bike. A group of dealers has been invited in Lloret de Mar, two persons from the headquarter were present to run the presentation, together with an outsourced trainer. Half day dedicated to the theoretical presentation and half day to the test of the new bike on the road, including the test of its direct competitors. The same presentation, organized in the same way, has been delivered in Italy, in 4 locations often used to run business meetings with dealers. In the end of all days of the presentation, dealers had to fill a questionnaire regarding the evaluation of the different bikes tested. The result of the questionnaire showed how the group invited in Spain rated much higher the new bike compared with the dealers testing the bike in locations already known and close to their home. So, in terms of business strategy, it is important to take into account how the location and the way of presenting any product or service can have a favourable impact on the people we want to convince. The next step of the experiment will be to cross check the sales of that bike with the dealers and measure if there is a relation between the top sellers and the one that appreciated the bike the most, in Spain. It would mean that they were able to transfer to customers the same good feelings and impressions they had in Spain.Keywords: product presentation, locations, emotional effect, business strategy
Procedia PDF Downloads 3997656 A Novel Approach for Energy Utilisation in a Pyrolysis Plant
Authors: S. Murugan, Bohumil Horak
Abstract:
Pyrolysis is one of the possible technologies to derive energy from waste organic substances. In recent years, pilot level and demonstrated plants have been installed in few countries. The heat energy lost during the process is not effectively utilized resulting in less savings of energy and money. This paper proposes a novel approach to integrate a combined heat and power unit(CHP) and reduce the primary energy consumption in a tyre pyrolysis pilot plant. The proposal primarily uses the micro combined heat and power concept that will help to produce both heat and power in the process.Keywords: pyrolysis, waste tyres, waste plastics, biomass, waste heat
Procedia PDF Downloads 3277655 Merit Order of Indonesian Coal Mining Sources to Meet the Domestic Power Plants Demand
Authors: Victor Siahaan
Abstract:
Coal still become the most important energy source for electricity generation known for its contribution which take the biggest portion of energy mix that a country has, for example Indonesia. The low cost of electricity generation and quite a lot of resources make this energy still be the first choice to fill the portion of base load power. To realize its significance to produce electricity, it is necessary to know the amount of coal (volume) needed to ensure that all coal power plants (CPP) in a country can operate properly. To secure the volume of coal, in this study, discussion was carried out regarding the identification of coal mining sources in Indonesia, classification of coal typical from each coal mining sources, and determination of the port of loading. By using data above, the sources of coal mining are then selected to feed certain CPP based on the compatibility of the coal typical and the lowest transport cost.Keywords: merit order, Indonesian coal mine, electricity, power plant
Procedia PDF Downloads 1527654 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions
Authors: Kusum Tharani, Ratna Dahiya
Abstract:
This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault
Procedia PDF Downloads 5517653 An Analysis of Conditions for Efficiency Gains in Large ICEs Using Cycling
Authors: Bauer Peter, Murillo Jenny
Abstract:
This paper investigates the bounds of achievable fuel efficiency improvements in engines due to cycling between two operating points assuming a series hybrid configuration . It is shown that for linear bsfc dependencies (as a function of power), cycling is only beneficial if the average power needs are smaller than the power at the optimal bsfc value. Exact expressions for the fuel efficiency gains relative to the constant output power case are derived. This asymptotic analysis is then extended to the case where transient losses due to a change in the operating point are also considered. The case of the boundary bsfc trajectory where constant power application and cycling yield the same fuel consumption.is investigated. It is shown that the boundary bsfc locations of the second non-optimal operating points is hyperbolic. The analysis of the boundary case allows to evaluate whether for a particular engine, cycling can be beneficial. The introduced concepts are illustrated through a number of real world examples, i.e. large production Diesel engines in series hybrid configurations.Keywords: cycling, efficiency, bsfc, series hybrid, diesel, operating point
Procedia PDF Downloads 5027652 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components
Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla
Abstract:
As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT
Procedia PDF Downloads 4617651 The Impact of System Cascading Collapse and Transmission Line Outages to the Transfer Capability Assessment
Authors: Nur Ashida Salim, Muhammad Murtadha Othman, Ismail Musirin, Mohd Salleh Serwan
Abstract:
Uncertainty of system operating conditions is one of the causative reasons which may render to the instability of a transmission system. This will encumber the performance of transmission system to efficiently transmit the electrical power between areas. For that reason, accurate assessment of Transmission Reliability Margin (TRM) is essential in order to ensure effective power transfer between areas during the occurrence of system uncertainties. The power transfer is also called as the Available Transfer Capability (ATC) in which it is the information required by the utilities and marketers to instigate selling and buying the electric energy. This paper proposes a computationally effective approach to estimate TRM and ATC by considering the uncertainties of system cascading collapse and transmission line outages which is identified as the main reasons in power system instability. In accordance to the results that have been obtained, the proposed method is essential for the transmission providers which could help the power marketers and planning sectors in the operation and reserving transmission services based on the ATC calculated.Keywords: system cascading collapse, transmission line outages, transmission reliability margin, available transfer capability
Procedia PDF Downloads 4247650 5G Future Hyper-Dense Networks: An Empirical Study and Standardization Challenges
Authors: W. Hashim, H. Burok, N. Ghazaly, H. Ahmad Nasir, N. Mohamad Anas, A. F. Ismail, K. L. Yau
Abstract:
Future communication networks require devices that are able to work on a single platform but support heterogeneous operations which lead to service diversity and functional flexibility. This paper proposes two cognitive mechanisms termed cognitive hybrid function which is applied in multiple broadband user terminals in order to maintain reliable connectivity and preventing unnecessary interferences. By employing such mechanisms especially for future hyper-dense network, we can observe their performances in terms of optimized speed and power saving efficiency. Results were obtained from several empirical laboratory studies. It was found that selecting reliable network had shown a better optimized speed performance up to 37% improvement as compared without such function. In terms of power adjustment, our evaluation of this mechanism can reduce the power to 5dB while maintaining the same level of throughput at higher power performance. We also discuss the issues impacting future telecommunication standards whenever such devices get in place.Keywords: dense network, intelligent network selection, multiple networks, transmit power adjustment
Procedia PDF Downloads 3767649 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.Keywords: power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions
Procedia PDF Downloads 2727648 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: M. Khaled Abduesslam, Mohammed Ali, Basher H. Alsdai, Muhammad Nizam Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New-England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.Keywords: IEEE 39 bus, least squares support vector machine, learning vector quantization, voltage collapse
Procedia PDF Downloads 4397647 Micropower Composite Nanomaterials Based on Porous Silicon for Renewable Energy Sources
Authors: Alexey P. Antropov, Alexander V. Ragutkin, Nicolay A. Yashtulov
Abstract:
The original controlled technology for power active nanocomposite membrane-electrode assembly engineering on the basis of porous silicon is presented. The functional nanocomposites were studied by electron microscopy and cyclic voltammetry methods. The application possibility of the obtained nanocomposites as high performance renewable energy sources for micro-power electronic devices is demonstrated.Keywords: cyclic voltammetry, electron microscopy, nanotechnology, platinum-palladium nanocomposites, porous silicon, power activity, renewable energy sources
Procedia PDF Downloads 3527646 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy
Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao
Abstract:
This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.Keywords: MBE, AlN/GaN, RTDs, double NDR
Procedia PDF Downloads 617645 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System
Authors: Eronini Iheanyi Umez-Eronini
Abstract:
Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation
Procedia PDF Downloads 827644 Investigation on Development of Pv and Wind Power with Hydro Pumped Storage to Increase Renewable Energy Penetration: A Parallel Analysis of Taiwan and Greece
Authors: Robel Habtemariam
Abstract:
Globally, wind energy and photovoltaics (PV) solar energy are among the leading renewable energy sources (RES) in terms of installed capacity. In order to increase the contribution of RES to the power supply system, large scale energy integration is required, mainly due to wind energy and PV. In this paper, an investigation has been made on the electrical power supply systems of Taiwan and Greece in order to integrate high level of wind and photovoltaic (PV) to increase the penetration of renewable energy resources. Currently, both countries heavily depend on fossil fuels to meet the demand and to generate adequate electricity. Therefore, this study is carried out to look into the two cases power supply system by developing a methodology that includes major power units. To address the analysis, an approach for simulation of power systems is formulated and applied. The simulation is based on the non-dynamic analysis of the electrical system. This simulation results in calculating the energy contribution of different types of power units; namely the wind, PV, non-flexible and flexible power units. The calculation is done for three different scenarios (2020, 2030, & 2050), where the first two scenarios are based on national targets and scenario 2050 is a reflection of ambitious global targets. By 2030 in Taiwan, the input of the power units is evaluated as 4.3% (wind), 3.7% (PV), 65.2 (non-flexible), 25.3% (flexible), and 1.5% belongs to hydropower plants. In Greece, much higher renewable energy contribution is observed for the same scenario with 21.7% (wind), 14.3% (PV), 38.7% (non-flexible), 14.9% (flexible), and 10.3% (hydro). Moreover, it examines the ability of the power systems to deal with the variable nature of the wind and PV generation. For this reason, an investigation has also been done on the use of the combined wind power with pumped storage systems (WPS) to enable the system to exploit the curtailed wind energy & surplus PV and thus increase the wind and PV installed capacity and replace the peak supply by conventional power units. Results show that the feasibility of pumped storage can be justified in the high scenario (that is the scenario of 2050) of RES integration especially in the case of Greece.Keywords: large scale energy integration, photovoltaics solar energy, pumped storage systems, renewable energy sources
Procedia PDF Downloads 2757643 Selection of Wind Farms to Add Virtual Inertia Control to Assist the Power System Frequency Regulation
Authors: W. Du, X. Wang, Jun Cao, H. F. Wang
Abstract:
Due to the randomness and uncertainty of wind energy, modern power systems integrating large-scale wind generation will be significantly impacted in terms of system performance and technical challenges. System inertia with high wind penetration is decreasing when conventional thermal generators are gradually replaced by wind turbines, which do not naturally contribute to inertia response. The power imbalance caused by wind power or demand fluctuations leads to the instability of system frequency. Accordingly, the need to attach the supplementary virtual inertia control to wind farms (WFs) strongly arises. When multi-wind farms are connected to the grid simultaneously, the selection of which critical WFs to install the virtual inertia control is greatly important to enhance the stability of system frequency. By building the small signal model of wind power systems considering frequency regulation, the installation locations are identified by the geometric measures of the mode observability of WFs. In addition, this paper takes the impacts of grid topology and selection of feedback control signals into consideration. Finally, simulations are conducted on a multi-wind farms power system and the results demonstrate that the designed virtual inertia control method can effectively assist the frequency regulation.Keywords: frequency regulation, virtual inertia control, installation locations, observability, wind farms
Procedia PDF Downloads 3967642 Failure Analysis Using Rtds for a Power System Equipped with Thyristor-Controlled Series Capacitor in Korea
Authors: Chur Hee Lee, Jae in Lee, Minh Chau Diah, Jong Su Yoon, Seung Wan Kim
Abstract:
This paper deals with Real Time Digital Simulator (RTDS) analysis about effects of transmission lines failure in power system equipped with Thyristor Controlled Series Capacitance (TCSC) in Korea. The TCSC is firstly applied in Korea to compensate real power in case of 765 kV line faults. Therefore, It is important to analyze with TCSC replica using RTDS. In this test, all systems in Korea, other than those near TCSC, were abbreviated to Thevenin equivalent. The replica was tested in the case of a line failure near the TCSC, a generator failure, and a 765-kV line failure. The effects of conventional operated STATCOM, SVC and TCSC were also analyzed. The test results will be used for the actual TCSC operational impact analysis.Keywords: failure analysis, power system, RTDS, TCSC
Procedia PDF Downloads 1187641 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor
Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho
Abstract:
In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system
Procedia PDF Downloads 1957640 Neural Networks for Distinguishing the Performance of Two Hip Joint Implants on the Basis of Hip Implant Side and Ground Reaction Force
Authors: L. Parisi
Abstract:
In this research work, neural networks were applied to classify two types of hip joint implants based on the relative hip joint implant side speed and three components of each ground reaction force. The condition of walking gait at normal velocity was used and carried out with each of the two hip joint implants assessed. Ground reaction forces’ kinetic temporal changes were considered in the first approach followed but discarded in the second one. Ground reaction force components were obtained from eighteen patients under such gait condition, half of which had a hip implant type I-II, whilst the other half had the hip implant, defined as type III by Orthoload®. After pre-processing raw gait kinetic data and selecting the time frames needed for the analysis, the ground reaction force components were used to train a MLP neural network, which learnt to distinguish the two hip joint implants in the abovementioned condition. Further to training, unknown hip implant side and ground reaction force components were presented to the neural networks, which assigned those features into the right class with a reasonably high accuracy for the hip implant type I-II and the type III. The results suggest that neural networks could be successfully applied in the performance assessment of hip joint implants.Keywords: kinemic gait data, neural networks, hip joint implant, hip arthroplasty, rehabilitation engineering
Procedia PDF Downloads 3547639 Power System Stability Enhancement Using Self Tuning Fuzzy PI Controller for TCSC
Authors: Salman Hameed
Abstract:
In this paper, a self-tuning fuzzy PI controller (STFPIC) is proposed for thyristor controlled series capacitor (TCSC) to improve power system dynamic performance. In a STFPIC controller, the output scaling factor is adjusted on-line by an updating factor (α). The value of α is determined from a fuzzy rule-base defined on error (e) and change of error (Δe) of the controlled variable. The proposed self-tuning controller is designed using a very simple control rule-base and the most natural and unbiased membership functions (MFs) (symmetric triangles with equal base and 50% overlap with neighboring MFs). The comparative performances of the proposed STFPIC and the standard fuzzy PI controller (FPIC) have been investigated on a multi-machine power system (namely, 4 machine two area system) through detailed non-linear simulation studies using MATLAB/SIMULINK. From the simulation studies it has been found out that for damping oscillations, the performance of the proposed STFPIC is better than that obtained by the standard FPIC. Moreover, the proposed STFPIC as well as the FPIC have been found to be quite effective in damping oscillations over a wide range of operating conditions and are quite effective in enhancing the power carrying capability of the power system significantly.Keywords: genetic algorithm, power system stability, self-tuning fuzzy controller, thyristor controlled series capacitor
Procedia PDF Downloads 422