Search results for: dimensional model
4972 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid
Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine
Abstract:
New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.Keywords: control strategy, drive cycle, hybrid vehicle, simulation
Procedia PDF Downloads 3804971 Evaluation of Geomechanical and Geometrical Parameters’ Effects on Hydro-Mechanical Estimation of Water Inflow into Underground Excavations
Authors: M. Mazraehli, F. Mehrabani, S. Zare
Abstract:
In general, mechanical and hydraulic processes are not independent of each other in jointed rock masses. Therefore, the study on hydro-mechanical coupling of geomaterials should be a center of attention in rock mechanics. Rocks in their nature contain discontinuities whose presence extremely influences mechanical and hydraulic characteristics of the medium. Assuming this effect, experimental investigations on intact rock cannot help to identify jointed rock mass behavior. Hence, numerical methods are being used for this purpose. In this paper, water inflow into a tunnel under significant water table has been estimated using hydro-mechanical discrete element method (HM-DEM). Besides, effects of geomechanical and geometrical parameters including constitutive model, friction angle, joint spacing, dip of joint sets, and stress factor on the estimated inflow rate have been studied. Results demonstrate that inflow rates are not identical for different constitutive models. Also, inflow rate reduces with increased spacing and stress factor.Keywords: distinct element method, fluid flow, hydro-mechanical coupling, jointed rock mass, underground excavations
Procedia PDF Downloads 1664970 Taguchi Method for Analyzing a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method
Procedia PDF Downloads 1874969 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 194968 The Comparison of Backward and Forward Running Program on Balance Development and Plantar Flexion Force in Pre Seniors: Healthy Approach
Authors: Neda Dekamei, Mostafa Sarabzadeh, Masoumeh Bigdeli
Abstract:
Backward running is commonly used in different sports conditioning, motor learning, and neurological purposes, and even more commonly in physical rehabilitation. The present study evaluated the effects of six weeks backward and forward running methods on balance promotion adaptation in students. 12 male and female preseniors with the age range of 45-60 years participated and were randomly classified into two groups of backward running (n: 6) and forward running (n: 6) training interventions. During six weeks, 3 sessions per week, all subjects underwent stated different models of backward and forward running training on treadmill (65-80 of HR max). Pre and post-tests were performed by force plate and electromyogram, two times before and after intervention. Data were analyzed using by T test. On the basis of obtained data, significant differences were recorded on balance and plantar flexion force in backward running (BR) and no difference for forward running (FR). It seems the training model of backward running can generate more stimulus to achieve better plantar flexion force and strengthening ankle protectors which leads to balance improvement in pre aging period. It can be recommended as an effective method to promote seniors life quality especially in balance neuromuscular parameters.Keywords: backward running, balance, plantar flexion, pre seniors
Procedia PDF Downloads 1654967 Biological Expressions of Hamilton’s Rule in Human Populations: The Deep Psychological Influence of Defensive and Offensive Motivations Found in Human Conflicts and Sporting Events
Authors: Monty Vacura
Abstract:
Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need naturally selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Places Dawkins’s selfish gene as the r, relationship variable; 5) Flipping the equation variable themes (close relationship to distant relationship, and benefit to threat) the new equation can now be used to identify the offensive and defensive sides of conflict; 6) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 6) Pathway to reduce human sacrifice through manipulation of variables. This paper discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.Keywords: psychology, Hamilton’s rule, evolution, human instincts
Procedia PDF Downloads 504966 Muddle Effort for Organized Crime in India: Social Work Concern for Anti Human Trafficking Unit
Authors: Rajkamal Ajmeri, Leena Mehta
Abstract:
Growing magnitude of human trafficking is the indicatory symptom of ill society. Despite of many treaties, legislation and protocols control over human trafficking require additional attention. However, many Anti Human Trafficking Units (AHTU) are working throughout India but it is a fact that incidence pertaining to illegal human trade is not fully under control. Social work as discipline and practice base profession has a lot of concern about situation and the trafficked victims. United state put Indian in tier II watch list because they are not fully complying with the minimum standard of Trafficking Victims Protection laws but they are making a significant effort to bring themselves into compliance with those standards. In order to solve the issue, scientific research of experiences and opinions of government / non government machineries can play an effective role in raising the standard legislation for trafficked victims. Proper study can enhance understanding on various problems faced by government machineries. The study can help in developing the scientific model, which can effectively solve the problem in human trafficking field.Keywords: human trafficking, legislations, victims, social work, government machinery
Procedia PDF Downloads 2984965 Satellite Imagery Classification Based on Deep Convolution Network
Authors: Zhong Ma, Zhuping Wang, Congxin Liu, Xiangzeng Liu
Abstract:
Satellite imagery classification is a challenging problem with many practical applications. In this paper, we designed a deep convolution neural network (DCNN) to classify the satellite imagery. The contributions of this paper are twofold — First, to cope with the large-scale variance in the satellite image, we introduced the inception module, which has multiple filters with different size at the same level, as the building block to build our DCNN model. Second, we proposed a genetic algorithm based method to efficiently search the best hyper-parameters of the DCNN in a large search space. The proposed method is evaluated on the benchmark database. The results of the proposed hyper-parameters search method show it will guide the search towards better regions of the parameter space. Based on the found hyper-parameters, we built our DCNN models, and evaluated its performance on satellite imagery classification, the results show the classification accuracy of proposed models outperform the state of the art method.Keywords: satellite imagery classification, deep convolution network, genetic algorithm, hyper-parameter optimization
Procedia PDF Downloads 3014964 Improving Alginate Bioink by Recombinant Spider-Silk Biopolymer
Authors: Dean Robinson, Miriam Gublebank, Ella Sklan, Tali Tavor Re'em
Abstract:
Alginate, a natural linear polysaccharide polymer extracted from brown seaweed, is extensively applied due to its biocompatibility, all- aqueous ease of handling, and relatively low costs. Alginate easily forms a hydrogel when crosslinked with a divalent ion, such as calcium. However, Alginate hydrogel holds low mechanical properties and is cell-inert. To overcome these drawbacks and to improve alginate as a bio-ink for bioprinting, we produced a new alginate matrix combined with spider silk, one of the most resilient, elastic, strong materials known to men. Recombinant spider silk biopolymer has a sponge-like structure and is known to be biocompatible and non-immunogenic. Our results indicated that combining synthetic spider-silk into bio-printed cell-seeded alginate hydrogels resulted in improved properties compared to alginate: improved mechanical properties of the matrix, achieving a tunable gel viscosity and high printability, alongside prolonged and higher cell viability in culture, probably due to the improved cell-matrix interactions. The new bio-ink was then used for bilayer bioprinting of epithelial and stromal endometrial cells. Such a co-culture model will be used for the formation of the complex endometrial tissue for studying the embryo implantation process.Keywords: cell culture, tissue engineering, spider silk, alginate, bioprinting
Procedia PDF Downloads 1974963 Mechanism of Formation, Mineralogy and Geochemistry of Iron Mineralization in M'Taguinarou North Tebessa, Algeria
Authors: Fakher Eddine Messaoudi
Abstract:
The M'Taguinarou North iron occurrence contains Iron and polymetallic mineralization (Fe-Zn-Cu), hosted in Turonian limestone. It manifests in metric clusters of goethite and hematite and in centimetre veins of smithsonite, malachite, and azurite. The genesis of this mineralization is clearly polyphased and results from the supergene processes superposed on hydrothermal phases where the Triassic diapirs probably generated the circulation of hydrothermal fluids through the sedimentary series, and the alteration of the Turonian limestone gave the formation of the hydrothermal primary ore composed of iron carbonates (siderite). Several uplift episodes affected the mineralization and the host rocks, generating the genesis of a polymetallic supergene assembly (goethite, malachite, azurite, quartz, and calcite). In M’taguinarou North, iron oxy-hydroxides are mainly observed in the form of fibrous stalactites, stalagmites, and Botroydale structures, where hematite precipitated first, followed immediately by goethite, limonite, and smithsonite. Siderite is completely absent. Subsequently, malachite, azurite, and calcite formed in the form of small veins intersecting the surrounding limestone.Keywords: mineralization, genetic model, hydrothermal iron, supergene, Tebessa, Algeria
Procedia PDF Downloads 2114962 The Neurofunctional Dissociation between Animal and Tool Concepts: A Network-Based Model
Authors: Skiker Kaoutar, Mounir Maouene
Abstract:
Neuroimaging studies have shown that animal and tool concepts rely on distinct networks of brain areas. Animal concepts depend predominantly on temporal areas while tool concepts rely on fronto-temporo-parietal areas. However, the origin of this neurofunctional distinction for processing animal and tool concepts remains still unclear. Here, we address this question from a network perspective suggesting that the neural distinction between animals and tools might reflect the differences in their structural semantic networks. We build semantic networks for animal and tool concepts derived from McRae and colleagues’s behavioral study conducted on a large number of participants. These two networks are thus analyzed through a large number of graph theoretical measures for small-worldness: centrality, clustering coefficient, average shortest path length, as well as resistance to random and targeted attacks. The results indicate that both animal and tool networks have small-world properties. More importantly, the animal network is more vulnerable to targeted attacks compared to the tool network a result that correlates with brain lesions studies.Keywords: animals, tools, network, semantics, small-worls, resilience to damage
Procedia PDF Downloads 5434961 Quantitative Texture Analysis of Shoulder Sonography for Rotator Cuff Lesion Classification
Authors: Chung-Ming Lo, Chung-Chien Lee
Abstract:
In many countries, the lifetime prevalence of shoulder pain is up to 70%. In America, the health care system spends 7 billion per year about the healthy issues of shoulder pain. With respect to the origin, up to 70% of shoulder pain is attributed to rotator cuff lesions This study proposed a computer-aided diagnosis (CAD) system to assist radiologists classifying rotator cuff lesions with less operator dependence. Quantitative features were extracted from the shoulder ultrasound images acquired using an ALOKA alpha-6 US scanner (Hitachi-Aloka Medical, Tokyo, Japan) with linear array probe (scan width: 36mm) ranging from 5 to 13 MHz. During examination, the postures of the examined patients are standard sitting position and are followed by the regular routine. After acquisition, the shoulder US images were drawn out from the scanner and stored as 8-bit images with pixel value ranging from 0 to 255. Upon the sonographic appearance, the boundary of each lesion was delineated by a physician to indicate the specific pattern for analysis. The three lesion categories for classification were composed of 20 cases of tendon inflammation, 18 cases of calcific tendonitis, and 18 cases of supraspinatus tear. For each lesion, second-order statistics were quantified in the feature extraction. The second-order statistics were the texture features describing the correlations between adjacent pixels in a lesion. Because echogenicity patterns were expressed via grey-scale. The grey-scale co-occurrence matrixes with four angles of adjacent pixels were used. The texture metrics included the mean and standard deviation of energy, entropy, correlation, inverse different moment, inertia, cluster shade, cluster prominence, and Haralick correlation. Then, the quantitative features were combined in a multinomial logistic regression classifier to generate a prediction model of rotator cuff lesions. Multinomial logistic regression classifier is widely used in the classification of more than two categories such as the three lesion types used in this study. In the classifier, backward elimination was used to select a feature subset which is the most relevant. They were selected from the trained classifier with the lowest error rate. Leave-one-out cross-validation was used to evaluate the performance of the classifier. Each case was left out of the total cases and used to test the trained result by the remaining cases. According to the physician’s assessment, the performance of the proposed CAD system was shown by the accuracy. As a result, the proposed system achieved an accuracy of 86%. A CAD system based on the statistical texture features to interpret echogenicity values in shoulder musculoskeletal ultrasound was established to generate a prediction model for rotator cuff lesions. Clinically, it is difficult to distinguish some kinds of rotator cuff lesions, especially partial-thickness tear of rotator cuff. The shoulder orthopaedic surgeon and musculoskeletal radiologist reported greater diagnostic test accuracy than general radiologist or ultrasonographers based on the available literature. Consequently, the proposed CAD system which was developed according to the experiment of the shoulder orthopaedic surgeon can provide reliable suggestions to general radiologists or ultrasonographers. More quantitative features related to the specific patterns of different lesion types would be investigated in the further study to improve the prediction.Keywords: shoulder ultrasound, rotator cuff lesions, texture, computer-aided diagnosis
Procedia PDF Downloads 2844960 Numerical Design and Characterization of MOVPE Grown Nitride Based Semiconductors
Authors: J. Skibinski, P. Caban, T. Wejrzanowski, K. J. Kurzydlowski
Abstract:
In the present study numerical simulations of epitaxial growth of gallium nitride in Metal Organic Vapor Phase Epitaxy reactor AIX-200/4RF-S are addressed. The aim of this study was to design the optimal fluid flow and thermal conditions for obtaining the most homogeneous product. Since there are many agents influencing reactions on the crystal growth area such as temperature, pressure, gas flow or reactor geometry, it is difficult to design optimal process. Variations of process pressure and hydrogen mass flow rates have been considered. According to the fact that it’s impossible to determine experimentally the exact distribution of heat and mass transfer inside the reactor during crystal growth, detailed 3D modeling has been used to get an insight of the process conditions. Numerical simulations allow to understand the epitaxial process by calculation of heat and mass transfer distribution during growth of gallium nitride. Including chemical reactions in the numerical model allows to calculate the growth rate of the substrate. The present approach has been applied to enhance the performance of AIX-200/4RF-S reactor.Keywords: computational fluid dynamics, finite volume method, epitaxial growth, gallium nitride
Procedia PDF Downloads 4544959 Association between Carbon Dioxide (CO2) Emission and Under-Five Mortality: Panel Data Evidence from 100 Countries
Authors: Mahadev Bhise, Nabanita Majumder
Abstract:
Recent studies have found association between air pollutants and mortality, particularly how concentration of air pollutant explains under-five mortality across the countries. Thus, the present study evaluates the relationship between Carbon dioxide (CO2) emission and under-five mortality, while controlling other well-being determinant of Under-five mortality in 100 countries using panel unbalanced cross sectional data. We have used PCSE and GMM model for the period 1990-2011 to meet our objectives. Our findings suggest that, the positive relationship between lagged periods of carbon dioxide and under-five mortality; the percentage of rural population with access of improved water is negatively associated with under-five mortality, while in case of urban population with access of improved water, is positively related to under-five mortality. Access of sanitation facility, food production index, GDP per capita, and concentration of urban population have significant negative impact on under-five mortality. Further, total fertility rate is significantly associated (positive) with under-five mortality which indicates relative change in fertility is related to relative change in under-five mortality.Keywords: arbon dioxide (CO2), under-five mortality (0q5), gross domestic product (GDP), urban population, food production, panel corrected standard errors (PCSE), generalized method of moments (GMM)
Procedia PDF Downloads 3094958 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior
Authors: N. Manoj
Abstract:
The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake
Procedia PDF Downloads 2844957 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country
Authors: Ezgi Avci-Surucu, Doganbey Akgul
Abstract:
Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure
Procedia PDF Downloads 5534956 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3034955 Dose Evaluations with SNAP/RADTRAD for Loss of Coolant Accidents in a BWR6 Nuclear Power Plant
Authors: Kai Chun Yang, Shao-Wen Chen, Jong-Rong Wang, Chunkuan Shih, Jung-Hua Yang, Hsiung-Chih Chen, Wen-Sheng Hsu
Abstract:
In this study, we build RADionuclide Transport, Removal And Dose Estimation/Symbolic Nuclear Analysis Package (SNAP/RADTRAD) model of Kuosheng Nuclear Power Plant which is based on the Final Safety Evaluation Report (FSAR) and other data of Kuosheng Nuclear Power Plant. It is used to estimate the radiation dose of the Exclusion Area Boundary (EAB), the Low Population Zone (LPZ), and the control room following ‘release from the containment’ case in Loss Of Coolant Accident (LOCA). The RADTRAD analysis result shows that the evaluation dose at EAB, LPZ, and the control room are close to the FSAR data, and all of the doses are lower than the regulatory limits. At last, we do a sensitivity analysis and observe that the evaluation doses increase as the intake rate of the control room increases.Keywords: RADTRAD, radionuclide transport, removal and dose estimation, snap, symbolic nuclear analysis package, boiling water reactor, NPP, kuosheng
Procedia PDF Downloads 3434954 Investigation of the Speckle Pattern Effect for Displacement Assessments by Digital Image Correlation
Authors: Salim Çalışkan, Hakan Akyüz
Abstract:
Digital image correlation has been accustomed as a versatile and efficient method for measuring displacements on the article surfaces by comparing reference subsets in undeformed images with the define target subset in the distorted image. The theoretical model points out that the accuracy of the digital image correlation displacement data can be exactly anticipated based on the divergence of the image noise and the sum of the squares of the subset intensity gradients. The digital image correlation procedure locates each subset of the original image in the distorted image. The software then determines the displacement values of the centers of the subassemblies, providing the complete displacement measures. In this paper, the effect of the speckle distribution and its effect on displacements measured out plane displacement data as a function of the size of the subset was investigated. Nine groups of speckle patterns were used in this study: samples are sprayed randomly by pre-manufactured patterns of three different hole diameters, each with three coverage ratios, on a computer numerical control punch press. The resulting displacement values, referenced at the center of the subset, are evaluated based on the average of the displacements of the pixel’s interior the subset.Keywords: digital image correlation, speckle pattern, experimental mechanics, tensile test, aluminum alloy
Procedia PDF Downloads 744953 Introduction to Various Innovative Techniques Suggested for Seismic Hazard Assessment
Authors: Deepshikha Shukla, C. H. Solanki, Mayank K. Desai
Abstract:
Amongst all the natural hazards, earthquakes have the potential for causing the greatest damages. Since the earthquake forces are random in nature and unpredictable, the quantification of the hazards becomes important in order to assess the hazards. The time and place of a future earthquake are both uncertain. Since earthquakes can neither be prevented nor be predicted, engineers have to design and construct in such a way, that the damage to life and property are minimized. Seismic hazard analysis plays an important role in earthquake design structures by providing a rational value of input parameter. In this paper, both mathematical, as well as computational methods adopted by researchers globally in the past five years, will be discussed. Some mathematical approaches involving the concepts of Poisson’s ratio, Convex Set Theory, Empirical Green’s Function, Bayesian probability estimation applied for seismic hazard and FOSM (first-order second-moment) algorithm methods will be discussed. Computational approaches and numerical model SSIFiBo developed in MATLAB to study dynamic soil-structure interaction problem is discussed in this paper. The GIS-based tool will also be discussed which is predominantly used in the assessment of seismic hazards.Keywords: computational methods, MATLAB, seismic hazard, seismic measurements
Procedia PDF Downloads 3404952 A Natural Killer T Cell Subset That Protects against Airway Hyperreactivity
Authors: Ya-Ting Chuang, Krystle Leung, Ya-Jen Chang, Rosemarie H. DeKruyff, Paul B. Savage, Richard Cruse, Christophe Benoit, Dirk Elewaut, Nicole Baumgarth, Dale T. Umetsu
Abstract:
We examined characteristics of a Natural Killer T (NKT) cell subpopulation that developed during influenza infection in neonatal mice, and that suppressed the subsequent development of allergic asthma in a mouse model. This NKT cell subset expressed CD38 but not CD4, produced IFN-γ, but not IL-17, IL-4 or IL-13, and inhibited the development of airway hyperreactivity (AHR) through contact-dependent suppressive activity against helper CD4 T cells. The NKT subset expanded in the lungs of neonatal mice after infection with influenza, but also after treatment of neonatal mice with a Th1-biasing α-GalCer glycolipid analogue, Nu-α-GalCer. These results suggest that early/neonatal exposure to infection or to antigenic challenge can affect subsequent lung immunity by altering the profile of cells residing in the lung and that some subsets of NKT cells can have direct inhibitory activity against CD4+ T cells in allergic asthma. Importantly, our results also suggest a potential therapy for young children that might provide protection against the development of asthma.Keywords: NKT subset, asthma, airway hyperreactivity, hygiene hypothesis, influenza
Procedia PDF Downloads 2404951 Analysis of Moment Rotation Curve for Steel Beam Column Joint
Authors: A. J. Shah, G. R. Vesmawala
Abstract:
Connections perform a fundamental role in the steel structures as global behaviour. In order to evaluate the real influence of the physical and geometrical parameters that control their behaviour, many experimental tests and analysis have been developed but a definitive answer to the problem in question still stands. Here, various configurations of bolts were tried and the resulting moment rotation (M-θ) curves were plotted. The connection configuration is such that two bolts are located above each of the flanges and beside each of the webs. The model considers the combined effects of prying action, the formation of yield lines, and failures due to punching shear and beam section failure. For many types of connections, the stiffness at the service load level falls somewhere in between the fully restrained and simple limits and designers need to account for its behaviour. The (M-θ) curves are generally assumed to be the best characterization of connection behaviour. The moment rotation curves are generally derived from experiments on cantilever type specimens. The moments are calculated directly from the statics of the specimen, while the rotations are measured over a distance typically equal to the point of loading. Thus, this paper establishes the relationship between M-θ behaviour of different types of connections tested and presents the relative strength of various possible arrangements of bolts.Keywords: bolt, moment, rotation, stiffness, connections
Procedia PDF Downloads 3924950 Glocalization of Journalism and Mass Communication Education: Best Practices from an International Collaboration on Curriculum Development
Authors: Bellarmine Ezumah, Michael Mawa
Abstract:
Glocalization is often defined as the practice of conducting business according to both local and global considerations – this epitomizes the curriculum co-development collaboration between a journalism and mass communications professor from a university in the United States and the Uganda Martyrs University in Uganda where a brand new journalism and mass communications program was recently co-developed. This paper presents the experiences and research result of this initiative which was funded through the Institute of International Education (IIE) under the umbrella of the Carnegie African Diaspora Fellowship Program (CADFP). Vital international and national concerns were addressed. On a global level, scholars have questioned and criticized the general Western-module ingrained in journalism and mass communication curriculum and proposed a decolonization of journalism curricula. Another major criticism is the concept of western-based educators transplanting their curriculum verbatim to other regions of the world without paying greater attention to the local needs. To address these two global concerns, an extensive assessment of local needs was conducted prior to the conceptualization of the new program. The assessment of needs adopted a participatory action model and captured the knowledge and narratives of both internal and external stakeholders. This involved review of pertinent documents including the nation’s constitution, governmental briefs, and promulgations, interviews with governmental officials, media and journalism educators, media practitioners, students, and benchmarking the curriculum of other tertiary institutions in the nation. Information gathered through this process served as blueprint and frame of reference for all design decisions. In the area of local needs, four key factors were addressed. First, the realization that most media personnel in Uganda are both academically and professionally unqualified. Second, the practitioners with academic training were found lacking in experience. Third, the current curricula offered at several tertiary institutions are not comprehensive and lack local relevance. The project addressed these problems thus: first, the program was designed to cater to both traditional and non-traditional students offering opportunities for unqualified media practitioners to get their formal training through evening and weekender programs. Secondly, the challenge of inexperienced graduates was mitigated by designing the program to adopt the experiential learning approach which many refer to as the ‘Teaching Hospital Model’. This entails integrating practice to theory - similar to the way medical students engage in hands-on practice under the supervision of a mentor. The university drew a Memorandum of Understanding (MoU) with reputable media houses for students and faculty to use their studios for hands-on experience and for seasoned media practitioners to guest-teach some courses. With the convergence functions of media industry today, graduates should be trained to have adequate knowledge of other disciplines; therefore, the curriculum integrated cognate courses that would render graduates versatile. Ultimately, this research serves as a template for African colleges and universities to follow in their quest to glocalize their curricula. While the general concept of journalism may remain western, journalism curriculum developers in Africa through extensive assessment of needs, and focusing on those needs and other societal particularities, can adjust the western module to fit their local needs.Keywords: curriculum co-development, glocalization of journalism education, international journalism, needs assessment
Procedia PDF Downloads 1294949 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures
Authors: Shyh-Ming Chern, Wei-Ling Lin
Abstract:
Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.Keywords: ethanol, gasification, lignin, supercritical
Procedia PDF Downloads 2394948 A Daily Diary Study on Technology-Assisted Supplemental Work, Psychological Detachment, and Well-Being – The Mediating Role of Cognitive Coping
Authors: Clara Eichberger, Daantje Derks, Hannes Zacher
Abstract:
Technology-assisted supplemental work (TASW) involves performing job-related tasks after regular working hours with the help of technological devices. Due to emerging information and communication technologies, such behavior becomes increasingly common. Since previous research on the relationship of TASW, psychological detachment and well-being are mixed, this study aimed to examine the moderating roles of appraisal and cognitive coping. A moderated mediation model was tested with daily diary data from 100 employees. As hypothesized, TASW was positively related to negative affect at bedtime. In addition, psychological detachment mediated this relationship. Results did not confirm appraisal and cognitive coping as moderators. However, additional analyses revealed cognitive coping as a mediator of the positive relationship of TASW and positive affect at bedtime. These results suggest that, on the one hand engaging in TASW can be harmful to employee well-being (i.e., more negative affect) and on the other hand, it can also be associated with higher well-being (i.e., more positive affect) in case it is accompanied by cognitive coping.Keywords: cognitive coping, psychological detachment, technology-assisted supplemental work, well-being
Procedia PDF Downloads 1934947 A phytochemical and Biological Study of Viscum schemperi Engl. Growing in Saudi Arabia
Authors: Manea A. I. Alqrad, Alaa Sirwi, Sabrin R. M. Ibrahim, Hossam M. Abdallah, Gamal A. Mohamed
Abstract:
Phytochemical study of the methanolic extract of the air dried powdered of the parts of Viscum schemperi Engl. (Family: Viscaceae) using different chromatographic techniques led to the isolation of five compounds: -amyrenone (1), betulinic acid (2), (3β)-olean-12-ene-3,23-diol (3), -oleanolic acid (4), and α-oleanolic acid (5). Their structures were established based on physical, chemical, and spectral data. Anti-inflammatory and anti-apoptotic activities of oleanolic acid in a mouse model of acute hepatorenal damage were assessed. This study showed the efficacy of oleanolic acid to counteract thioacetamide-induced hepatic and kidney injury in mice through the reduction of hepatocyte oxidative damage, suppression of inflammation, and apoptosis. More importantly, oleanolic acid suppressed thioacetamide-induced hepatic and kidney injury by inhibiting NF-κB/TNF-α-mediated inflammation/apoptosis and enhancing SIRT1/Nrf2/Heme-oxygenase signalling pathway. These promising pharmacological activities suggest the potential use of oleanolic acid against hepatorenal damage.Keywords: oleanolic acid, viscum schimperi, thioacetamide, SIRT1/Nrf2/NF-κB, hepatorenal damage
Procedia PDF Downloads 984946 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design
Authors: Sebastian Kehne, Alexander Epple, Werner Herfs
Abstract:
A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design
Procedia PDF Downloads 2864945 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 4754944 Surfactant-Free O/W-Emulsion as Drug Delivery System
Authors: M. Kumpugdee-Vollrath, J.-P. Krause, S. Bürk
Abstract:
Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.Keywords: emulsion, lidocaine, Miglyol, size, surfactant, light scattering, release, injection, ultrasound, stability
Procedia PDF Downloads 4884943 Developing an Interpretive Plan for Qubbet El-Hawa North Archaeological Site in Aswan, Egypt
Authors: Osama Amer Mohyeldin Mohamed
Abstract:
Qubbet el-Hawa North (QHN) is an example of an archaeological site in West-Aswan and It has not opened to the public yet and has been under excavation since its discovery in 2013 as a result of the illegal digging that happened in many sites in Egypt because of the unstable situation and the absence of security. The site has the potential to be one of the most attractive sites in Aswan. Moreover, it deserves to be introduced to the visitors in a good manner appropriate to its great significance. Both interpretation and presentation are crucial inseparable tools that communicate the archaeological site's significance to the public and raise their awareness. Moreover, it helps them to understand the past and appreciate archaeological assets. People will never learn or see anything from ancient remains unless it is explained. They would only look at it as ancient and charming. They expect a story, and more than knowledge, authenticity, or even supporting preservation actions, they want to enjoy and be entertained. On the other hand, a lot of archaeologists believe that planning an archaeological site for entertaining visitors deteriorates it and affects its authenticity. Thus, it represents a challenge to design a model for visitors’ experience that meets their expectations and needs while safeguarding the site’s integrity. The article presents a proposal for an interpretation plan for the site of Qubbet el-Hawa North.Keywords: heritage interpretation and presentation, archaeological site management, qubbet el-hawa North, local community engagement, accessibility
Procedia PDF Downloads 28