Search results for: three angle complex rotation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7051

Search results for: three angle complex rotation

5791 Evolution Mechanism of the Formation of Rock Heap under Seismic Action and Analysis on Engineering Geological Structure

Authors: Jian-Xiu Wan, Yao Yin

Abstract:

In complex terrain and poor geological conditions areas, Railway, highway and other transportation constructions are still strongly developing. However, various geological disasters happened such as landslide, rock heap and so on. According to the results of geological investigation, the form of skirt (trapezoidal), semicircle and triangle rock heaps are mainly due to complex internal force and external force, in a certain extent, which is related to the terrain, the nature of the rock mass, the supply area and the surface shape of rock heap. Combined with the above factors, discrete element numerical simulation of rock mass is established under different terrain conditions based on 3DEC, and accelerated formation process of rock heap under seismic action is simulated. The fragmentation structure supply area is calculated, in which the most dangerous area is located. At the same time, the formation mechanism and development process are studied in different terrain conditions, and the structure of rock heap is judged by section, which can provide a strong theoretical and technical support for the prevention and control of geological disasters.

Keywords: 3DEC, fragmentation structure, rock heap, slope, seismic action

Procedia PDF Downloads 299
5790 Structural Elucidation of Intact Rough-Type Lipopolysaccharides using Field Asymmetric Ion Mobility Spectrometry and Kendrick Mass Defect Plots

Authors: Abanoub Mikhael, Darryl Hardie, Derek Smith, Helena Petrosova, Robert Ernst, David Goodlett

Abstract:

Lipopolysaccharide (LPS) is a hallmark virulence factor of Gram-negative bacteria. It is a complex, structurally het- erogeneous mixture due to variations in number, type, and position of its simplest units: fatty acids and monosaccharides. Thus, LPS structural characterization by traditional mass spectrometry (MS) methods is challenging. Here, we describe the benefits of field asymmetric ion mobility spectrometry (FAIMS) for analysis of intact R-type lipopolysaccharide complex mixture (lipooligo- saccharide; LOS). Structural characterization was performed using Escherichia coli J5 (Rc mutant) LOS, a TLR4 agonist widely used in glycoconjugate vaccine research. FAIMS gas phase fractionation improved the (S/N) ratio and number of detected LOS species. Additionally, FAIMS allowed the separation of overlapping isobars facilitating their tandem MS characterization and un- equivocal structural assignments. In addition to FAIMS gas phase fractionation benefits, extra sorting of the structurally related LOS molecules was further accomplished using Kendrick mass defect (KMD) plots. Notably, a custom KMD base unit of [Na-H] created a highly organized KMD plot that allowed identification of interesting and novel structural differences across the different LOS ion families, i.e., ions with different acylation degrees, oligosaccharides composition, and chemical modifications. Defining the composition of a single LOS ion by tandem MS along with the organized KMD plot structural network was sufficient to deduce the composition of 181 LOS species out of 321 species present in the mixture. The combination of FAIMS and KMD plots allowed in-depth characterization of the complex LOS mixture and uncovered a wealth of novel information about its structural variations.

Keywords: lipopolysaccharide, ion mobility MS, Kendrick mass defect, Tandem mass spectrometry

Procedia PDF Downloads 75
5789 Investigating the UAE Residential Valuation System: A Framework for Analysis

Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa

Abstract:

The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.

Keywords: valuation, property rights, information, institutions, trust, salience

Procedia PDF Downloads 382
5788 Modified Design of Flyer with Reduced Weight for Use in Textile Machinery

Authors: Payal Patel

Abstract:

Textile machinery is one of the fastest evolving areas which has an application of mechanical engineering. The modular approach towards the processing right from the stage of cotton to the fabric, allows us to observe the result of each process on its input. Cost and space being the major constraints. The flyer is a component of roving machine, which is used as a part of spinning process. In the present work using the application of Hyper Works, the flyer arm has been modified which saves the material used for manufacturing the flyer. The size optimization of the flyer is carried out with the objective of reduction in weight under the constraints of standard operating conditions. The new design of the flyer is proposed and validated using the module of HyperWorks which is equally strong, but light weighted compared to the existing design. Dynamic balancing of the optimized model is carried out to align a principal inertia axis with the geometric axis of rotation. For the balanced geometry of flyer, air resistance is obtained theoretically and with Gambit and Fluent. Static analysis of the balanced geometry has been done to verify the constraint of operating condition. Comparison of weight, deflection, and factor of safety has been made for different aluminum alloys.

Keywords: flyer, size optimization, textile, weight

Procedia PDF Downloads 218
5787 Assessing Supply Chain Performance through Data Mining Techniques: A Case of Automotive Industry

Authors: Emin Gundogar, Burak Erkayman, Nusret Sazak

Abstract:

Providing effective management performance through the whole supply chain is critical issue and hard to applicate. The proper evaluation of integrated data may conclude with accurate information. Analysing the supply chain data through OLAP (On-Line Analytical Processing) technologies may provide multi-angle view of the work and consolidation. In this study, association rules and classification techniques are applied to measure the supply chain performance metrics of an automotive manufacturer in Turkey. Main criteria and important rules are determined. The comparison of the results of the algorithms is presented.

Keywords: supply chain performance, performance measurement, data mining, automotive

Procedia PDF Downloads 513
5786 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip

Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar

Abstract:

Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.

Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation

Procedia PDF Downloads 187
5785 An Investigation on Orthopedic Rehabilitation by Avoiding Thermal Necrosis

Authors: R. V. Dahibhate, A. B. Deoghare, P. M. Padole

Abstract:

Maintaining natural integrity of biosystem is paramount significant for orthopedic surgeon while performing surgery. Restoration is challenging task to rehabilitate trauma patient. Drilling is an inevitable procedure to fix implants. The task leads to rise in temperature at the contact site which intends to thermal necrosis. A precise monitoring can avoid thermal necrosis. To accomplish it, data acquiring instrument is integrated with the drill bit. To contemplate it, electronic feedback system is developed. It not only measures temperature without any physical contact in between measuring device and target but also visualizes the site and monitors correct movement of tool path. In the current research work an infrared thermometer data acquisition system is used which monitors variation in temperature at the drilling site and a camera captured movement of drill bit advancement. The result is presented in graphical form which represents variations in temperature, drill rotation and time. A feedback system helps in keeping drill speed in threshold limit.

Keywords: thermal necrosis, infrared thermometer, drilling tool, feedback system

Procedia PDF Downloads 233
5784 Double Magnetic Phase Transition in the Intermetallic Compound Gd₂AgSi₃

Authors: Redrisse Djoumessi Fobasso, Baidyanath Sahu, Andre M. Strydom

Abstract:

The R₂TX₃ (R = rare-earth, T = transition, and X = s and p block element) series of compounds are interesting owing to their fascinating structural and magnetic properties. In this present work, we have studied the magnetic and physical properties of the new Gd₂AgSi₃ polycrystalline compound. The sample was synthesized by the arc-melting method and confirmed to crystallize in the tetragonal α-ThSi₂-type crystal structure with space group I4/amd. Dc– and ac–magnetic susceptibility, specific heat, electrical resistivity, and magnetoresistance measurements were performed on the new compound. The structure provides a unique position in the unit cell for the magnetic trivalent Gd ion. Two magnetic phase transitions were consistently found in dc- and ac-magnetic susceptibility, heat capacity, and electrical resistivity at temperatures Tₙ₁ = 11 K and Tₙ₂ = 20 K, which is an indication of the complex magnetic behavior in this compound. The compound is found to be metamagnetic over a range of temperatures below and above Tₙ₁. From field-dependent electrical resistivity, it is confirmed that the compound shows unusual negative magnetoresistance in the antiferromagnetically ordered region. These results contribute to a better understanding of this class of materials.

Keywords: complex magnetic behavior, metamagnetic, negative magnetoresistance, two magnetic phase transitions

Procedia PDF Downloads 124
5783 Combining Bio-Molecular and Isotopic Tools to Determine the Fate of Halogenated Compounds in Polluted Groundwater

Authors: N. Balaban, A. Buernstein, F. Gelman, Z. Ronen

Abstract:

Brominated flame retardants are widespread pollutants, and are known to be toxic, carcinogenic, endocrinic disrupting as well as recalcitrant. The industrial complex Neot Hovav, in the Northern Negev, Israel, is situated above a fractured chalk aquitard, which is polluted by a wide variety of halogenated organic compounds. Two of the abundant pollutants found in the site are Dibromoneopentyl-glycol (DBNPG) and tribromoneopentyl-alcohol (TBNPA). Due to the elusive nature of the groundwater flow, it is difficult to connect between the spatial changes in contaminant concentrations to degradation. In this study, we attempt to determine whether these compounds are biodegraded in the groundwater, and to gain a better understanding concerning the bacterial community in the groundwater. This was achieved through the application of compound-specific isotope analysis (CSIA) of carbon (13^C/12^C) and bromine (81^Br/79^Br), and new-generation MiSeq pyrosequencing. The sampled boreholes were distributed among three main areas of the industrial complex: around the production plant of TBNPA and DBNPG; along the Hovav Wadi (small ephemeral stream) which crosses and drains the industrial complex; and downstream to the industrial area. TBNPA and DBNPG are found in all three areas, with no clear connection to the proximity of the borehole to the production plant. Initial isotopic data of TBNPA from boreholes in the area surrounding the production plant, reveal no changes in the carbon and bromine isotopic values. When observing the microbial groundwater community, the dominant phylum is Proteobacteria. Known anaerobic dehalogenating bacteria such as Dehalococcoides from the Chloroflexi phylum have also been detected. A statistical comparison of the groundwater microbial diversity using a multi-variant ordination of non-metric multidimensional scaling (NMDS) reveals three main clusters in accordance to spatial location in the industrial complex: all the boreholes sampled adjacent to the production plant cluster together and separately from the Wadi Hovav boreholes cluster and the downstream to the industrial area borehole cluster. This work provides the basis for the development and implication of an isotopic fractionation based tool for assessing the biodegradation of brominated organic compounds in contaminated environments, and a novel attempt to characterize the spatial microbial diversity in the contaminated site.

Keywords: biodegradation, brominated flame retardants, groundwater, isotopic fractionation, microbial diversity

Procedia PDF Downloads 237
5782 Study of Interaction between Recycled Asphalt Pavement (RAP) Material and Virgin Material

Authors: G. Bharath, K. S. Reddy, Vivek Tandon, M. Amaranatha Reddy

Abstract:

This paper presents the details of a study conducted to evaluate the interaction between recycled binder and fresh binder in Recycled Asphalt Pavement (RAP) mixes. When RAP is mixed with virgin aggregates in the presence of fresh binder there will be partial blending in a hot mix asphalt mixture. A recent approach used by some researchers for studying the degree of blending of RAP binder with virgin binder has been adopted in this study. Dense Bituminous Macadam mix of Ministry of Road Transport of India with a nominal maximum aggregate size of 19 mm was studied. Two proportions of RAP-20% and 35% and two types of virgin binders – viscosity grade VG10 and VG30 were considered. Design binder contents were determined for all the four types of mixes (two RAP contents and two virgin binders) as per Marshall mix design procedure. The degree of blending of RAP and virgin binders was evaluated in terms of the complex modulus of the binder. Laboratory test results showed that with an increase in RAP content, the degree of blending decreases. Better blending was observed for softer grade binder (VG10).

Keywords: blending, complex modulus, recycled asphalt pavement, virgin binder

Procedia PDF Downloads 432
5781 Effect of Oxidation on Wetting Behavior between Silicon and Silicon Carbide

Authors: Zineb Benouahmane, Zhang Lifeng

Abstract:

Experimental oxidation tests at high temperature (1300°C-1500°C) on α-SiC samples have been performed with different holding times and atmosphere (air, argon). Oxidized samples were then analyzed using X-ray photoelectron spectroscopy coupled to SEM and DAKTEK surface profiler verification. The oxidation rate and the mas gain were found to increase with temperature and holding times, corresponding to a passive oxidation regime which lead to the formation of SiO2 layer. The sessile drop method is employed in order to measure the wetting angles between Si/SiC system at high temperature (1430°C-1550°C). Contact angle can be varied between 44 °C to 85°C, by controlling the oxygen content in α-SiC. Increasing the temperature occurred the infiltration of liquid silicon and deoxidation of the coating.

Keywords: oxidation, wettability, silicon, SiC

Procedia PDF Downloads 466
5780 Morphological and Biological Identification of Fusarium Species Associated with Ear Rot Disease of Maize in Indonesia and Malaysia

Authors: Darnetty Baharuddin Salleh

Abstract:

Fusarium ear rot disease is one of the most important diseases of maize and not only causes significant losses but also produced harmful mycotoxins to animals and humans. A total of 141 strains of Fusarium species were isolated from maize plants showing typical ear rot symptoms in Indonesia, and Malaysia by using the semi-selective medium (peptone pentachloronitrobenzene agar, PPA). These strains were identified morphologically. For strains in Gibberella fujikuroi species complex (Gfsc), the identification was continued by using biological identification. Three species of Fusarium were morphologically identified as Fusarium in Gibberella species complex (105 strains, 74.5%), F. verticillioides (78 strains), F. proliferatum (24 strains) and F. subglutinans (3 strains) and five species from other section (36 strains, 25.5%), F. graminearum (14 strains), F. oxysporum (8 strains), F. solani ( 1 strain), and F. semitectum (13 strains). Out of 105 Fusarium species in Gfsc, 63 strains were identified as MAT-1, 25 strains as MAT-2 and 17 strains could not be identified and in crosses with nine standard testers, three mating populations of Fusarium were identified as MP-A, G. moniliformis (68 strains, 64.76%), MP-D, G. intermedia (21 strains, 20%) and MP-E, G. subglutinans (3 strains, 2.9%), and 13 strains (12.38%) could not be identified. All trains biologically identified as MP-A, MP-D, and MP-E, were identified morphologically as F. verticillioides, F. proliferatum, and F. subglutinans, respectively. Thus, the results of this study indicated that identification based on biological identification were consistent with those of morphological identification. This is the first report on the presence of MP-A, MP-D, and MP-E on ear rot-infected maize in Indonesia; MP-A and MP-E in Malaysia.

Keywords: Fusarium, MAT-1, MAT-2, MP-A, MP-D, MP-E

Procedia PDF Downloads 311
5779 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education

Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke

Abstract:

This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.

Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education

Procedia PDF Downloads 23
5778 Step into the Escalator’s Fractal Behavior by Using the Poincare Map

Authors: Ali Albadri

Abstract:

Step band in an escalator moves in a cyclic periodic pattern. Similarly, most if not all of the components and sub-assemblies in the escalator operate in the same way. If you mark up one step in the step band of an escalator and stand next to the escalator, on the incline, to watch the marked-up step when it passes by, you ask yourself, does the marked up step behaves exactly the same way during each revolution when it passes you by again and again? We can say that; there is some similarity in this example and the example when an astronomer watches planets in the sky, and he or she asks himself or herself, does each planet intersects the plan of observation in the same position for every pantry rotation? For a fact, we know for the answer to the second example is no, because scientist, astronomers, and mathematicians have proven that planets deviate from their paths to take new paths during their planetary moves, albeit with minimal change. But what about the answer to the question in the first example? considering that there is increase in the wear and tear of components with time in the step, in the step band, in the tracks and in many other places in the escalator. There is also the accumulation of fatigue in the components and sub-assemblies. This research is part of many studies which we are conducting to address the answer for the question in the first example. We have been using the fractal dimension as a quantities tool and the Poincare map as a qualitative tool. This study has shown that the fractal dimension value and the shape and distribution of the orbits in the Poincare map has significant correlation with the quality of the mechanical components and sub-assemblies in the escalator.

Keywords: fractal dimension, Poincare map, rugby ball orbit, worm orbit

Procedia PDF Downloads 63
5777 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment

Authors: C. Temaneh-Nyah

Abstract:

Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.

Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network

Procedia PDF Downloads 220
5776 Real-Time Big-Data Warehouse a Next-Generation Enterprise Data Warehouse and Analysis Framework

Authors: Abbas Raza Ali

Abstract:

Big Data technology is gradually becoming a dire need of large enterprises. These enterprises are generating massively large amount of off-line and streaming data in both structured and unstructured formats on daily basis. It is a challenging task to effectively extract useful insights from the large scale datasets, even though sometimes it becomes a technology constraint to manage transactional data history of more than a few months. This paper presents a framework to efficiently manage massively large and complex datasets. The framework has been tested on a communication service provider producing massively large complex streaming data in binary format. The communication industry is bound by the regulators to manage history of their subscribers’ call records where every action of a subscriber generates a record. Also, managing and analyzing transactional data allows service providers to better understand their customers’ behavior, for example, deep packet inspection requires transactional internet usage data to explain internet usage behaviour of the subscribers. However, current relational database systems limit service providers to only maintain history at semantic level which is aggregated at subscriber level. The framework addresses these challenges by leveraging Big Data technology which optimally manages and allows deep analysis of complex datasets. The framework has been applied to offload existing Intelligent Network Mediation and relational Data Warehouse of the service provider on Big Data. The service provider has 50+ million subscriber-base with yearly growth of 7-10%. The end-to-end process takes not more than 10 minutes which involves binary to ASCII decoding of call detail records, stitching of all the interrogations against a call (transformations) and aggregations of all the call records of a subscriber.

Keywords: big data, communication service providers, enterprise data warehouse, stream computing, Telco IN Mediation

Procedia PDF Downloads 177
5775 A Simulation-Based Investigation of the Smooth-Wall, Radial Gravity Problem of Granular Flow through a Wedge-Shaped Hopper

Authors: A. F. Momin, D. V. Khakhar

Abstract:

Granular materials consist of particulate particles found in nature and various industries that, due to gravity flow, behave macroscopically like liquids. A fundamental industrial unit operation is a hopper with inclined walls or a converging channel in which material flows downward under gravity and exits the storage bin through the bottom outlet. The simplest form of the flow corresponds to a wedge-shaped, quasi-two-dimensional geometry with smooth walls and radially directed gravitational force toward the apex of the wedge. These flows were examined using the Mohr-Coulomb criterion in the classic work of Savage (1965), while Ravi Prakash and Rao used the critical state theory (1988). The smooth-wall radial gravity (SWRG) wedge-shaped hopper is simulated using the discrete element method (DEM) to test existing theories. DEM simulations involve the solution of Newton's equations, taking particle-particle interactions into account to compute stress and velocity fields for the flow in the SWRG system. Our computational results are consistent with the predictions of Savage (1965) and Ravi Prakash and Rao (1988), except for the region near the exit, where both viscous and frictional effects are present. To further comprehend this behaviour, a parametric analysis is carried out to analyze the rheology of wedge-shaped hoppers by varying the orifice diameter, wedge angle, friction coefficient, and stiffness. The conclusion is that velocity increases as the flow rate increases but decreases as the wedge angle and friction coefficient increase. We observed no substantial changes in velocity due to varying stiffness. It is anticipated that stresses at the exit result from the transfer of momentum during particle collisions; for this reason, relationships between viscosity and shear rate are shown, and all data are collapsed into a single curve. In addition, it is demonstrated that viscosity and volume fraction exhibit power law correlations with the inertial number and that all the data collapse into a single curve. A continuum model for determining granular flows is presented using empirical correlations.

Keywords: discrete element method, gravity flow, smooth-wall, wedge-shaped hoppers

Procedia PDF Downloads 91
5774 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst

Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka

Abstract:

The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.

Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface

Procedia PDF Downloads 84
5773 Study on the Transition to Pacemaker of Two Coupled Neurons

Authors: Sun Zhe, Ruggero Micheletto

Abstract:

The research of neural network is very important for the development of advanced next generation intelligent devices and the medical treatment. The most important part of the neural network research is the learning. The process of learning in our brain is essentially several adjustment processes of connection strength between neurons. It is very difficult to figure out how this mechanism works in the complex network and how the connection strength influences brain functions. For this reason, we made a model with only two coupled neurons and studied the influence of connection strength between them. To emulate the neuronal activity of realistic neurons, we prefer to use the Izhikevich neuron model. This model can simulate the neuron variables accurately and it’s simplicity is very suitable to implement on computers. In this research, the parameter ρ is used to estimate the correlation coefficient between spike train of two coupling neurons.We think the results is very important for figuring out the mechanism between synchronization of coupling neurons and synaptic plasticity. The result also presented the importance of the spike frequency adaptation in complex systems.

Keywords: neural networks, noise, stochastic processes, coupled neurons, correlation coefficient, synchronization, pacemaker, synaptic plasticity

Procedia PDF Downloads 287
5772 “Double Layer” Theory of Hydrogenation

Authors: Vaclav Heral

Abstract:

Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to, based on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism, because, for example: (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. We believe that the Horiuti-Polanyi mechanism is flawed and we naturally think that our two-layer theory better describes the experimental findings.

Keywords: acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation

Procedia PDF Downloads 73
5771 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: multi-wavelength Q-switched, multi-walled carbon nanotube, photonic crystal fiber

Procedia PDF Downloads 535
5770 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method

Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent

Abstract:

A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.

Keywords: bed topography, FBM, LBM, shallow water, simulations

Procedia PDF Downloads 100
5769 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: single agent control, multi-agent system, transfer function, graph angle

Procedia PDF Downloads 453
5768 Petrology, Geochemistry and Formation Conditions of Metaophiolites of the Loki Crystalline Massif (the Caucasus)

Authors: Irakli Gamkrelidze, David Shengelia, Tamara Tsutsunava, Giorgi Chichinadze, Giorgi Beridze, Ketevan Tedliashvili, Tamara Tsamalashvili

Abstract:

The Loki crystalline massif crops out in the Caucasian region and the geological retrospective represent the northern marginal part of the Baiburt-Sevanian terrain (island arc), bordering with the Paleotethys oceanic basin in the north. The pre-Alpine basement of the massif is built up of Lower-Middle Paleozoic metamorphic complex (metasedimentary and metabasite rocks), Upper Devonian quartz-diorites and Late Variscan granites. Earlier metamorphic complex was considered as an indivisible set including suites with different degree of metamorphism. Systematic geologic, petrologic and geochemical investigations of the massif’s rocks suggest the different conception on composition, structure and formation conditions of the massif. In particular, there are two main rock types in the Loki massif: the oldest autochthonous series of gneissic quartz-diorites and cutting them granites. The massif is flanked on its western side by a volcano-sedimentary sequence, metamorphosed to low-T facies. Petrologic, metamorphic and structural differences in this sequence prove the existence of a number of discrete units (overthrust sheets). One of them, the metabasic sheet represents the fragment of ophiolite complex. It comprises transition types of the second and third layers of the Paleooceanic crust: the upper noncumulated part of the third layer gabbro component and the following lowest part of the parallel diabase dykes of the second layer. The ophiolites are represented by metagabbros, metagabbro-diabases, metadiabases and amphibolite schists. According to the content of petrogenic components and additive elements in metabasites is stated that the protolith of metabasites belongs to petrochemical type of tholeiitic series of basalts. The parental magma of metaophiolites is of E-MORB composition, and by petrochemical parameters, it is very close to the composition of intraplate basalts. The dykes of hypabissal leucocratic siliceous and medium magmatic rocks associated with the metaophiolite sheet form the separate complex. They are granitoids with the extremely low content of CaO and quartz-diorite porphyries. According to various petrochemical parameters, these rocks have mixed characteristics. Their formation took place in spreading conditions or in the areas of manifestation of plumes most likely of island arc type. The metamorphism degree of the metaophiolites corresponds to a very low stage of green schist facies. The rocks of the metaophiolite complex are obducted from the Paleotethys Ocean. Geological and paleomagnetic data show that the primary location of the ocean is supposed to be to the north of the Loki crystalline massif.

Keywords: the Caucasus, crystalline massif, ophiolites, tectonic sheet

Procedia PDF Downloads 277
5767 Flexible, Hydrophobic and Mechanical Strong Poly(Vinylidene Fluoride): Carbon Nanotube Composite Films for Strain-Sensing Applications

Authors: Sudheer Kumar Gundati, Umasankar Patro

Abstract:

Carbon nanotube (CNT) – polymer composites have been extensively studied due to their exceptional electrical and mechanical properties. In the present study, poly(vinylidene fluoride) (PVDF) – multi-walled CNT composites were prepared by melt-blending technique using pristine (ufCNT) and a modified dilute nitric acid-treated CNTs (fCNT). Due to this dilute acid-treatment, the fCNTs were found to show significantly improved dispersion and retained their electrical property. The fCNT showed an electrical percolation threshold (PT) of 0.15 wt% in the PVDF matrix as against 0.35 wt% for ufCNT. The composites were made into films of thickness ~0.3 mm by compression-molding and the resulting composite films were subjected to various property evaluations. It was found that the water contact angle (WCA) of the films increased with CNT weight content in composites and the composite film surface became hydrophobic (e.g., WCA ~104° for 4 wt% ufCNT and 111.5° for 0.5 wt% fCNT composites) in nature; while the neat PVDF film showed hydrophilic behavior (WCA ~68°). Significant enhancements in the mechanical properties were observed upon CNT incorporation and there is a progressive increase in the tensile strength and modulus with increase in CNT weight fraction in composites. The composite films were tested for strain-sensing applications. For this, a simple and non-destructive method was developed to demonstrate the strain-sensing properties of the composites films. In this method, the change in electrical resistance was measured using a digital multimeter by applying bending strain by oscillation. It was found that by applying dynamic bending strain, there is a systematic change in resistance and the films showed piezo-resistive behavior. Due to the high flexibility of these composite films, the change in resistance was reversible and found to be marginally affected, when large number of tests were performed using a single specimen. It is interesting to note that the composites with CNT content notwithstanding their type near the percolation threshold (PT) showed better strain-sensing properties as compared to the composites with CNT contents well-above the PT. On account of the excellent combination of the various properties, the composite films offer a great promise as strain-sensors for structural health-monitoring.

Keywords: carbon nanotubes, electrical percolation threshold, mechanical properties, poly(vinylidene fluoride), strain-sensor, water contact angle

Procedia PDF Downloads 247
5766 Modeling and Simulation of Textile Effluent Treatment Using Ultrafiltration Membrane Technology

Authors: Samia Rabet, Rachida Chemini, Gerhard Schäfer, Farid Aiouache

Abstract:

The textile industry generates large quantities of wastewater, which poses significant environmental problems due to its complex composition and high levels of pollutants loaded principally with heavy metals, large amounts of COD, and dye. Separation treatment methods are often known for their effectiveness in removing contaminants whereas membrane separation techniques are a promising process for the treatment of textile effluent due to their versatility, efficiency, and low energy requirements. This study focuses on the modeling and simulation of membrane separation technologies with a cross-flow filtration process for textile effluent treatment. It aims to explore the application of mathematical models and computational simulations using ASPEN Plus Software in the prediction of a complex and real effluent separation. The results demonstrate the effectiveness of modeling and simulation techniques in predicting pollutant removal efficiencies with a global deviation percentage of 1.83% between experimental and simulated results; membrane fouling behavior, and overall process performance (hydraulic resistance, membrane porosity) were also estimated and indicating that the membrane losses 10% of its efficiency after 40 min of working.

Keywords: membrane separation, ultrafiltration, textile effluent, modeling, simulation

Procedia PDF Downloads 61
5765 Solvent Dependent Triazole-Appended Glucofuranose-Based Fluorometric Sensor for Detection of Au³⁺ Ions

Authors: Samiul Islam Hazarika, Domngam Boje, Ananta Kumar Atta

Abstract:

It is well familiar that solvents play a significant role in modern chemistry. Solvents can change the reactivity and physicochemical properties of molecules in a solution. Keeping this in mind, we have designed and synthesized a mono-triazolyl-linked pyrenyl-appended xylofuranose derivative for the detection of metal ions with changing solvent systems. The incorporation of a sugar backbone in the sensor increases the water solubility and biocompatibility. The experimental study revealed that the xylofuranose-based fluorescence probe did not exhibit any specific selectivity towards metal ions in acetonitrile (CH₃CN) solvent. Whereas, we revealed that triazole-linked pyrenyl-appended xylofuranose-based fluorescent sensor would exhibit high selectivity and sensitivity towards Au³⁺ ions in CH₃CN-H₂O (1/1, v/v) system. This observation might be explained by the viscosity and polarity differences of CH₃CN and CH₃CN-H₂O solvent systems. The formation of the sensor-Au³⁺ complex was also established by high-resolution mass spectrometry (HRMS) data of the complex.

Keywords: triazole, furanose, fluorometric, solvent dependent

Procedia PDF Downloads 117
5764 Residual Compressive Strength of Drilled Glass Fiber Reinforced Composites

Authors: Navid Zarif Karimi, Giangiacomo Minak, Parnian Kianfar

Abstract:

Drilling is one of the most frequently used machining process for glass fiber reinforced polymer composites due to the need for structural joining. In drilling of composite laminates, interlaminar cracking, or delamination, has a detrimental effect on the compressive strength of these materials. The delamination can be controlled by adopting proper drilling condition. In this paper, the effect of feed rate, cutting speed and drill point angle on delamination and residual compressive strength of drilled GFRPs is studied. The objective is to find optimal conditions for maximum residual compressive strength.

Keywords: composite material, delamination, drilling, residual compressive strength

Procedia PDF Downloads 459
5763 High-Frequency Half Bridge Inverter Applied to Induction Heating

Authors: Amira Zouaoui, Hamed Belloumi, Ferid Kourda

Abstract:

This paper presents the analysis and design of a DC–AC resonant converter applied to induction heating. The proposed topology based on the series-parallel half-bridge resonant inverter is described. It can operate with Zero-Voltage Switching (ZVS). At the resonant frequency, the secondary current is amplified over the heating coil with small switching angle, which keeps the reactive power low and permits heating with small current through the resonant inductor and the transformer. The operation and control principle of the proposed high frequency inverter is described and verified through simulated and experimental results.

Keywords: induction heating, inverter, high frequency, resonant

Procedia PDF Downloads 465
5762 A Study of Microglitches in Hartebeesthoek Radio Pulsars

Authors: Onuchukwu Chika Christian, Chukwude Augustine Ejike

Abstract:

We carried out a statistical analyse of microglitches events on a sample of radio pulsars. The distribution of microglitch events in frequency (ν) and first frequency derivatives ν˙ indicates that the size of a microglitch and sign combinations of events in ν and ν˙ are purely randomized. Assuming that the probability of a given size of a microglitch event occurring scales inversely as the absolute size of the event in both ν and ν˙, we constructed a cumulative distribution function (CDF) for the absolute sizes of microglitches. In most of the pulsars, the theoretical CDF matched the observed values. This is an indication that microglitches in pulsar may be interpreted as an avalanche process in which angular momentum is transferred erratically from the flywheel-like superfliud interior to the slowly decelerating solid crust. Analysis of the waiting time indicates that it is purely Poisson distributed with mean microglitch rate <γ> ∼ 0.98year^−1 for all the pulsars in our sample and <γ> / <∆T> ∼ 1. Correlation analysis, showed that the relative absolute size of microglitch event strongly with the rotation period of the pulsar with correlation coefficient r ∼ 0.7 and r ∼ 0.5 respectively for events in ν and ν˙. The mean glitch rate and number of microglitches (Ng) showed some dependence on spin down rate (r ∼ −0.6) and the characteristic age of the pulsar (τ) with (r ∼ −0.4/− 0.5).

Keywords: method-data analysis, star, neutron-pulsar, general

Procedia PDF Downloads 460